
Journal of Applied and Computational Topology
https://doi.org/10.1007/s41468-023-00156-3

Move schedules: fast persistence computations in coarse
dynamic settings

Matthew Piekenbrock1 · Jose A. Perea1,2

Received: 24 May 2023 / Revised: 13 October 2023 / Accepted: 10 December 2023
© The Author(s) 2024

Abstract
Matrix reduction is the standard procedure for computing the persistent homology of a
filtered simplicial complex with m simplices. Its output is a particular decomposition
of the total boundary matrix, from which the persistence diagrams and generating
cycles are derived. Persistence diagrams are known to vary continuously with respect
to their input, motivating the study of their computation for time-varying filtered com-
plexes. Computing persistence dynamically can be reduced to maintaining a valid
decomposition under adjacent transpositions in the filtration order. Since there are
O(m2) such transpositions, this maintenance procedure exhibits limited scalability
and is often too fine for many applications. We propose a coarser strategy for main-
taining the decomposition over a 1-parameter family of filtrations. By reduction to a
particular longest common subsequence problem, we show that the minimal number
of decomposition updates d can be found in O(m log logm) time and O(m) space,
and that the corresponding sequence of permutations—which we call a schedule—can
be constructed in O(dm logm) time. We also show that, in expectation, the storage
needed to employ this strategy is actually sublinear in m. Exploiting this connection,
we show experimentally that the decrease in operations to compute diagrams across a
family of filtrations is proportional to the difference between the expected quadratic
number of states and the proposed sublinear coarsening. Applications to video data,
dynamic metric space data, and multiparameter persistence are also presented.

Keywords Computational topology · Persistent homology · Topological data analysis

Mathematics Subject Classification 68T09 · 55N31 · 62R40

B Matthew Piekenbrock
piekenbrock.m@northeastern.edu

Jose A. Perea
j.pereabenitez@northeastern.edu

1 Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, USA

2 Department of Mathematics, Northeastern University, Boston, MA 02115, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41468-023-00156-3&domain=pdf

M. Piekenbrock, J. A. Perea

1 Introduction

Given a triangulable topological space equipped with a tame continuous function, per-
sistent homology captures the changes in topology across the sublevel sets of the space,
and encodes them in a persistence diagram. The stability of persistence contends that
if the function changes continuously, so too will the points on the persistence diagram
(Cohen-Steiner et al. 2006, 2007). This motivates the application of persistence to
time-varying settings, like that of dynamic metric spaces (Kim and Mémoli 2020).
As persistence-related computations tend to exhibit high algorithmic complexity—
essentially cubic1 in the size of the underlying filtration—their adoption to dynamic
settings poses a challenging computational problem. Currently, there is no recourse
when faced with a time-varying complex containingmillions of simplices across thou-
sands of snapshots in time. Acquiring such a capability has far-reaching consequences:
methods that vectorize persistence diagrams for machine learning purposes all imme-
diately become computationally viable tools in the dynamic setting. Such persistence
summaries include adaptive template functions (Polanco and Perea 2019), persistence
images (Adams et al. 2017), and α-smoothed Betti curves (Ulmer et al. 2019).

Cohen-Steiner et al. refer to a continuous 1-parameter family of persistence dia-
grams as a vineyard, and they give in Cohen-Steiner et al. (2006) an efficient algorithm
for their computation. The vineyards approach can be interpreted as an extension of
the reduction algorithm (Zomorodian and Carlsson 2005), which computes the per-
sistence diagrams of a filtered simplicial complex K withm simplices in O(m3) time,
via a particular decomposition R = DV (or RU = D) of the boundary matrix D of
K . The vineyards algorithm, in turn, transforms a time-varying filtration into a certain
set of permutations of the decomposition R = DV , each of which takes at most O(m)

time to execute. If one is interested in understanding how the persistent homology of
a continuous function changes over time, then this algorithm is sufficient, for homo-
logical critical points can only occur when the filtration order changes. Moreover, the
vineyards algorithm is efficient asymptotically: if there are d time-points where the
filtration order changes, then vineyards takes O(m3 + md) time; one initial O(m3)-
time reduction at time t0 followed by one O(m) operation to update the decomposition
at the remaining time points (t1, t2, . . . , td). When d >> m, the initial reduction cost
is amortized by the cost of maintaining the decomposition, implying each diagram
produced takes just linear time per time point to obtain.

Despite its theoretical efficiency, vineyards is often not the method of choice in
practical settings. While there is an increasingly rich ecosystem of software packages
offering variations of the standard reduction algorithm (e.g. Ripser, PHAT, Dionysus,
etc. see (Otter et al. 2017) for an overview), implementations of the vineyards algo-
rithm are relatively uncommon,2 The reason for this disparity is perhaps explained
by Lesnick and Wright (Lesnick and Wright 2015): “While an update to an RU
decomposition involving few transpositions is very fast in practice... many trans-
positions can be quite slow... it is sometimes much faster to simply recompute the

1 For finite fields, it is known that the persistence computation reduces to the PLU factorization problem,
which takes O(mω) where ω ≈ 2.373 is the matrix multiplication constant.
2 Dionysus 1 does have an implementation of vineyards however the algorithm was never ported to version
2. Other major packages, such as GUDHI and PHAT, do not have vineyards implementations.

123

Move schedules: fast persistence computations in coarse dynamic settings

RU -decomposition from scratch using the standard persistence algorithm.” Indeed,
they observe that maintaining the decomposition along a certain parameterized family
is the most computationally demanding aspect of RIVET [11], a software for comput-
ing and visualizing two-parameter persistent homology.

The work presented here seeks to further understand and remedy this discrepancy:
building on the work presented in Busaryev et al. (2010), we introduce a coarser
approach to the vineyards algorithm. Though the vineyards algorithm is efficient at
constructing a continuous 1-parameter family of diagrams, it is not necessarily effi-
cient when the parameter is coarsely discretized. Our methodology is based on the
observation that practitioners often don’t need (or want!) all the persistence diagrams
generated by a continuous 1-parameter of filtrations; usually just n << d of them
suffice. By exploiting the “donor” concept introduced in Busaryev et al. (2010), we
are able tomake a trade-off between the number of times the decomposition is restored
to a valid state and the granularity of the decomposition repair step, reducing the total
number of column operations needed to apply an arbitrary permutation to the filtration.
This trade-off, paired with a fast greedy heuristic explained in Sect. 3.4.2, yields an
algorithm that can update a R = DV decomposition more efficiently than vineyards
in coarse time-varying contexts, making dynamic persistence more computationally
tractable for a wider class of use-cases. Both the source code containing the algo-
rithm we propose and the experiments performed in Sect. 4 are available open source
online.3

1.1 Related work

To the author’s knowledge, work focused on ways of updating a decomposition
R = DV , for all homological dimensions, is limited: there is the vineyards algo-
rithm (Cohen-Steiner et al. 2006) and the moves algorithm (Busaryev et al. 2010),
both of which are discussed extensively in Sect. 2. At the time of writing, we were
made aware of very recent work (Luo and Nelson 2021) that iteratively repairs a per-
muted decomposition via a column swapping strategy, which they call “warm starts.”
Though their motivation is similar to our own, their approach relies on the reduction
algorithm as a subprocedure, which is quite different from the strategy we employ
here.

Contrasting the dynamic setting, there is extensivework on improving the efficiency
of computing a single (static) R = DV decomposition. Chen and Kerber (2011) pro-
posed persistence with a twist, also called the clearing optimization, which exploits a
boundary/cycle relationship to “kill” columns early in the reduction rather than reduc-
ing them. Another popular optimization is to utilize the duality between homology
and cohomology (De Silva et al. 2011), which dramatically improves the effectiveness
of the clearing optimization (Bauer 2021). There are many other optimizations on the
implementation side: the use of ranking functions defined on the combinatorial number
system enables implicit cofacet enumeration, removing the need to store the boundary
matrix explicitly; the apparent/emergent pairs optimization identifies columns whose
pivot entries are unaffected by the reduction algorithm, reducing the total number of

3 For all accompanying software and materials, see: https://github.com/peekxc/move_schedules.

123

https://github.com/peekxc/move_schedules.

M. Piekenbrock, J. A. Perea

Fig. 1 Top: A video of an expanding annulus. Bottom: Sublevel-set filtrations, via (negative) pixel intensity,
of a Freudenthal triangulation of the plane

columns which need to be reduced; sparse data structures such as bit-trees and lazy
heaps allow for efficient column-wise additions with Z2 = Z/2Z coefficients and
effective O(1) pivot entry retrieval, and so on Bauer (2021); Bauer et al. (2017).

By making stronger assumptions on the underlying topological space, restricting
the homological dimension, or targeting a weaker invariant (e.g. Betti numbers), one
can usually obtain faster algorithms. Edelsbrunner et al. (2000) give a fast incremental
algorithm for computing persistent Betti numbers up to dimension 2, again by utilizing
symmetry, duality, and “time-reversal” (Delfinado and Edelsbrunner 1995). Chen and
Kerber (2013) give an output-sensitive method for computing persistent homology,
utilizing the property that certain submatrices of D have the same rank as R, which
they exploit through fast sub-cubic rank algorithms specialized for sparse-matrices.

If zeroth homology is the only dimension of interest, computing and updating both
the persistence and rank information is greatly simplified. For example, if the edges
of the graph are in filtered order a priori, obtaining a tree representation fully char-
acterizing the connectivity of the underlying space (also known as the incremental
connectivity problem) takes just O(α(n)n) time using the disjoint-set data structure,
where α(n) is the extremely slow-growing inverse Ackermann function. Adapting this
approach to the time-varying setting, Oesterling et al. (2015) give an algorithm that
maintains a merge tree with e edges in O(e) time per-update. If only Betti numbers
are needed, the zeroth-dimension problem reduces even further to the dynamic con-
nectivity problem, which can be efficiently solved in amortized O(log n) query and
update times using either Link-cut trees or multi-level Euler tour trees (Kapron et al.
2013).

1.2 Amotivating example

Tomotivate this effort,we beginwith an illustrative example ofwhy the vineyards algo-
rithm does not always yield an efficient strategy for time-varying settings. Consider
a series of grayscale images (i.e. a video) depicting a fixed-width annulus expanding
about the center of a 9× 9 grid, and its associated sublevel-set filtrations, as shown in
Fig. 1.

123

Move schedules: fast persistence computations in coarse dynamic settings

Fig. 2 The cumulative column operations needed to compute persistence across the time-varying filtration
of grayscale images. Observe 10 independent persistence computations evenly spaced in time (green line)
captures the major topological changes and is the most computationally efficient approach shown (colour
figure online)

Each image in the series consists of pixels whose intensities vary with time, upon
which we build a simplicial complex using the Freudenthal triangulation of the plane.
For each complex, we create a filtration of simplices whose order is determined by
the lower stars of pixel values. Two events critically change the persistence diagrams:
the first occurs when the central connected component splits to form a cycle, and the
secondwhen the annulus splits into four components. From left to right, the ε-persistent
Betti numbers4 of the five evenly spaced ‘snapshots’ of the filtration shown in Fig. 1
are: (β0, β1) = (1, 0), (1, 1), (1, 1), (1, 1), (4, 0). Thus, in this example, only a
few persistence diagrams are needed to capture the major changes to the topology.

We use this data set as a baseline for comparing vineyards and the standard reduc-
tion algorithm pHcol (Algorithm 4). Suppose a practitioner wanted to know the
major homological changes a time-varying filtration encounters over time. Since it is
unknown a priori when the persistent pairing function changes, one solution is to do n
independent persistence computations at n evenly spaced points in the time domain.
An alternative approach is to construct a homotopy between a pair of filtrations (K , f),
(K , f ′) and then decompose this homotopy into adjacent transpositions based on the
filtration order—the vineyards approach. We refer to the former as the discrete setting,
which is often used in practice, and the latter as the continuous setting. Note that
though the discrete setting is often more practical, it is not guaranteed to capture all
homological changes in persistence that occur in the continuous 1-parameter family
of diagrams.

The cumulative cost (in total column operations) of these various approaches are
shown in Fig. 2, wherein the reduction (pHcol) and vineyard algorithms are com-
pared. Two discrete strategies (green and purple) and two continuous strategies (black
and blue) are shown.

4 By “ε-persistent Betti number”, we mean the number of persistent pairs lying above the diagonal with
persistence at least ε, for some suitable choice of ε > 0.

123

M. Piekenbrock, J. A. Perea

Note that without knowing where the persistence pairing function changes, a con-
tinuous strategy must construct all ≈ 7 × 104 diagrams induced by the homotopy. In
this setting, as shown in the figure, the vineyards approach is indeed far more efficient
than naively applying the reduction algorithm independently at all time points. How-
ever, when the discretization of the time domain is coarse enough, the naive approach
actually performs less column operations than vineyards, while still capturing themain
events.

The existence of a time discretization that is more efficient to compute than contin-
ually updating the decomposition indicates that the vineyards framework must incur
some overhead (in terms of column operations) tomaintain the underlying decomposi-
tion, evenwhen the pairing function determining the persistence diagram is unchanged.
Indeed, as shown by the case where n = 10, applying pHcol independently between
relatively “close” filtrations is substantially more efficient than iteratively updating the
decomposition. Moreover, any optimizations to the reduction algorithm (e.g. clearing
Chen and Kerber 2011) would only increase this disparity. Since persistence has found
many applications in dynamic contexts (Topaz et al. 2015; Xian et al. 2020; Lesnick
and Wright 2015; Kim and Mémoli 2020), a more efficient alternative to vineyards is
clearly needed.

Our approach and contributions are as follows: First, we leverage the moves frame-
work of Busaryev et al. (2010) to include coarser operations for dynamic persistence
settings. By a reduction to an edit distance problem, we give a lower bound on the
minimal number of moves needed to perform an arbitrary permutation to the R = DV
decomposition, along with a proof of its optimality. We also give worst-case sizes of
these quantities in expectation as well as efficient algorithms for constructing these
operations—both of which are derived from a reduction to the Longest Increasing
Subsequence (LIS) problem. These operations parameterize sequences of permuta-
tions S = (s1, s2, . . . , sd) of minimal size d, which we call schedules. However, not
all minimal size schedules incur the same cost (i.e., number of column operations).We
investigate the feasibility of choosing optimal cost schedules, and show that greedy-
type approaches can lead to arbitrarily bad behavior. In light of these results, we
give an alternative proxy-objective for cost minimization, provide bounds justifying
its relevance to the original problem, and give an efficient O(d2 logm) algorithm
for heuristically solving this proxy minimization. A performance comparison with
other reduction-based persistence computations is given, wherein move schedules are
demonstrated to be an order of magnitude more efficient than existing approaches at
calculating persistence in dynamic settings. In particular, we illustrate the effective-
ness of efficient scheduling with a variety of real-world applications, including flock
analysis in dynamic metric spaces and manifold detection from image data using 2D
persistence computations.

1.3 Main results

Given a simplicial complex K with filtration function f , denote by R = DV the
decomposition of its corresponding boundary matrix D such that R is reduced and V
is upper-triangular (see section 2.1 for details). If one has a pair of filtrations (K , f),

123

Move schedules: fast persistence computations in coarse dynamic settings

(K , f ′) of size m = |K | and R = DV has been computed for (K , f), then it may
be advantageous to use the information stored in (R, V) to reduce the computation of
R′ = D′V ′. Given a permutation P such that D′ = PDPT , such an update scheme
has the form:

(∗P ∗ R ∗ PT ∗) = (PDPT)(∗P ∗ V ∗ PT ∗)

where ∗ is substituted with elementary column operations that repair the permuted
decomposition. It is known how to linearly interpolate f �→ f ′ using d ∼ O(m2)

updates to the decomposition, where each update requires at most two column oper-
ations (Cohen-Steiner et al. 2006). Since each column operation takes O(m), the
complexity of re-indexing f �→ f ′ is O(m3), which is efficient if all d decompo-
sitions are needed. Otherwise, if only (R′, V ′) is needed, updating R �→ R′ using
the approach from Cohen-Steiner et al. (2006) matches the complexity of computing
R′ = D′V ′ independently.

We now summarize our main results (Theorem 1): suppose one has a schedule
S = (s1, s2, . . . , sd) yielding a corresponding sequence of decompositions:

R = R0 = D0V0
s1→ D1V1

s2→ . . .
sd→ DdVd = Rd = R′ (1)

where sk = (ik, jk) for k = 1, . . . , d, denotes a particular type of cyclic permutation
(see Sect. 3.2). If ik < jk for all sk ∈ S, our first result extends (Busaryev et al. 2010)
by showing that (1) can be computed using O(ν) column operations, where:

ν =
d∑

k=1

|Ik | + |Jk | (2)

The quantities |Ik | and |Jk | depend on the sparsity of the matrices Vk and Rk , respec-
tively, and d ∼ O(m) is a constant that depends on how similar f and f ′ are. As this
result depends explicitly on the sparsity pattern of the decomposition itself, it is an
output sensitive bound.

Our second result turns towards lower bounding d = |S| and the complexity of
constructing S itself. By reinterpreting a special set of cyclic permutations as edit
operations on strings, we find that any sequence mapping f to f ′ of minimal size
must have length (Proposition 3):

d = m − |LCS(f , f ′)| (3)

where LCS(f , f ′) refers to the size of the longest common subsequence between the
simplexwise filtrations (K , f) and (K , f ′) (see Sect. 3.2 for more details). We also
show that the information needed to construct anyS with optimal size can be computed
in O(m log logm) preprocessing time and O(m) memory. We provide evidence that
d ∼ m−√

m in expectation for randomfiltrations (Corollary 2). Although this implies

123

M. Piekenbrock, J. A. Perea

d can be O(m) for pathological inputs, we give empirical results suggesting d can be
much smaller in practice.

Outline: The paper is organized as follows: we review and establish the notations we
will use to describe simplicial complexes, persistent homology, and dynamic persis-
tence in Sect. 2.We also cover the reduction algorithm (designated here aspHcol), the
vineyards algorithm, and the set of move-related algorithms introduced in Busaryev
et al. (2010), which serves as the starting point of this work. In Sect. 3 we intro-
duce move schedules and provide efficient algorithms to construct them. In Sect. 4 we
present applications of the proposed method, including the computation of Crocker
stacks from flock simulations and of a 2-dimensional persistence invariant on a data
set of image patches derived from natural images. In Sect. 5 we conclude the paper by
discussing other possible applications and future work.

2 Background

Suppose one has a family {Ki }i∈I of simplicial complexes indexed by a totally ordered
set I , and so that for any i < j ∈ I we have Ki ⊆ K j . Such a family is called a
filtration, which is deemed simplexwise if K j�Ki = {σ j }whenever j is the immediate
successor of i in I . Any finite filtration may be trivially converted into a simplexwise
filtration via a set of condensing, refining, and reindexing maps (see Bauer 2021 for
more details). Equivalently, a filtration can be also defined as a pair (K , f) where K
is a simplicial complex and f : K → I is a filter function satisfying f (τ) ≤ f (σ)

in I , whenever τ ⊆ σ in K . In this setting, Ki = { σ ∈ K : f (σ) ≤ i }. Here,
we consider two index sets: [m] = {1, . . . ,m} and R. Without loss of generality, we
exclusively consider simplexwise filtrations, but for brevity-sake refer to them simply
as filtrations.

Let K be an abstract simplicial complex andF a field. A p-chain is a formalF-linear
combination of p-simplices of K . The collection of p-chains under addition yields
an F-vector space denoted Cp(K). The p-boundary ∂p(σ) of a p-simplex σ ∈ K
is the alternating sum of its oriented co-dimension 1 faces, and the p-boundary of a
p-chain is defined linearly in terms of its constitutive simplices. A p-chain with zero
boundary is called a p-cycle, and together they form Z p(K) = Ker ∂p. Similarly, the
collection of p-boundaries forms Bp(K) = Im ∂p+1. Since ∂p ◦ ∂p+1 = 0 for all
p ≥ 0, then the quotient space Hp(K) = Z p(K)/Bp(K) is well-defined, and called
the p-th homology of K with coefficients in F. If f : K → [m] is a filtration, then the
inclusion maps Ki ⊆ Ki+1 induce linear transformations at the level of homology:

Hp(K1) → Hp(K2) → · · · → Hp(Km) (4)

Simplices whose inclusion in the filtration creates a new homology class are called
creators, and simplices that destroy homology classes are called destroyers. The fil-
tration indices of these creators/destroyers are referred to as birth and death times,
respectively. The collection of birth/death pairs (i, j) is denoted dgm p(K , f), and
referred to as the p-th persistence diagram of (K , f). If a homology class is born at
Ki and dies entering K j , the difference |i − j | is called the persistence of that class. In

123

Move schedules: fast persistence computations in coarse dynamic settings

practice, filtrations often arise from triangulations parameterized by geometric scaling
parameters, and the “persistence” of a homology class actually refers to its lifetime
with respect to the scaling parameter.

Let X be a triangulable topological space; that is, so that there exists an abstract
simplicial complex K whose geometric realization is homeomorphic to X. Let f :
X → R be continuous and write Xa = f −1(−∞, a] to denote the sublevel sets of
X defined by the value a. A homological critical value of f is any value a ∈ R

such that the homology of the sublevel sets of f changes at a, i.e. if for some p the
inclusion-induced homomorphism Hp(Xa−ε) → Hp(Xa+ε) is not an isomorphism
for any small enough ε > 0. If there are only finitely many of these homological
critical values, then f is said to be tame. The concept of homological critical points
and tameness will be revisited in Sect. 2.2.

2.1 The reduction algorithm

In this section, we briefly recount the original reduction algorithm introduced in
Zomorodian and Carlsson (2005), also sometimes called the standard algorithm
or more explicitly pHcol (De Silva et al. 2011). The pseudocode is outlined in
Algorithm 4 in the appendix. Without optimizations, like clearing or implicit matrix
reduction, the standard algorithm is very inefficient. Nonetheless, it serves as the foun-
dation of most persistent homology implementations, and its invariants are necessary
before introducing both vineyards in Sect. 2.2 and our move schedules in Sect. 3.

Given a filtration (K , f) with m simplices, the output of the reduction algorithm
is a matrix decomposition R = DV , where the persistence diagrams are encoded in
R and the generating cycles in the columns of V . To begin the reduction, one first
assembles the elementary boundary chains ∂(σ) as columns ordered according to f
into am×m filtration boundarymatrix D. Setting V = I and R = D, one proceeds by
performing elementary left-to-right column operations on V and R until the following
invariants are satisfied:

Decomposition Invariants:

I1. R = DV where D is the boundary matrix of the filtration (K , f)
I2. V is full-rank upper-triangular
l3. R is reduced: if coli (R) �= 0 and col j (R) �= 0, then lowR(i) �= lowR(j)

where lowR(i) denotes the largest row index of a non-zero entry in column i of R. We
call the decomposition satisfying these three invariants valid. The persistence diagrams
of the corresponding filtration can be determined from the lowest entries in R, once it
has been reduced. Note that though R and V are not unique, the persistent pairing is
unique (Zomorodian and Carlsson 2005).

It is at times more succinct to restrict to specific sub-matrices of D based on the
homology dimension p, and so we write Dp to represent the dp−1 × dp matrix rep-
resenting ∂p (the same notation is extended to R and V). We illustrate the reduction
algorithm with an example below.

123

M. Piekenbrock, J. A. Perea

Example 2.1 Consider a triangle with vertices u, v, w, edges a = (u, w), b = (v,w),
c = (u, v), and whose filtration order is given as (u, v, w, a, b, c). Using Z2 coeffi-
cients, the reduction proceeds to compute (R1, V1) as follows:

D1 a b c
⎡

⎣

⎤

⎦
u 1 1
v 1 1
w 1 1

,

I1 a b c
⎡

⎣

⎤

⎦
a 1
b 1
c 1

−→

a b c
⎡

⎣

⎤

⎦
u 1 1 1
v 1 1
w 1

,

a b c
⎡

⎣

⎤

⎦
a 1 1
b 1
c 1

−→

R1 a b c
⎡

⎣

⎤

⎦
u 1 1
v 1
w 1

,

V1 a b c
⎡

⎣

⎤

⎦
a 1 1 1
b 1 1
c 1

Since column c in R1 is 0, the 1-chain indicated by the column c in V1 represents a
dimension 1 cycle. Similarly, the columns at u, v, w in R0 (not shown) are all zero,
indicating three 0-dimensional homology classes are born, two of which are killed by
the pivot entries in columns a and b in R1.

Inspection of the reduction algorithm from Edelsbrunner et al. (2000) suggests
that a loose upper bound for the reduction is O(m3), where m4 is the number of
simplices of the filtration. Despite this high algorithmic complexity, many variations
and optimizations to Algorithm 4 have been proposed over the past decade, see (Bauer
2021; Bauer et al. 2017; Chen and Kerber 2011) for an overview.

2.2 Vineyards

Consider a homotopy F(x, t) : X × [0, 1] → R on a triangulable topological space
X, and denote its “snapshot” at a given time-point t by ft (x) = F(x, t). The snapshot
f0 denotes the initial function at time t = 0 and f1 denotes the function at the last
time step. As t varies in [0, 1], the points in dgm p(ft) trace curves in R

3 which, by
the stability of persistence, will be continuous if F is continuous and the ft ’s are
tame. Cohen-Steiner et al. (2007) referred to these curves as vines, a collection of
which forms as vineyard—the geometric analogy is meant to act as a guidepost for
practitioners seeking to understand the evolution of topological structure over time.

The original purpose of vineyards, as described in Cohen-Steiner et al. (2006),
was to compute a continuous 1-parameter family of persistence diagrams over a time-
varying filtration, detecting homological critical events along the way. As homological
critical events only occur when the filtration order changes, detecting all such events
may be reduced to computing valid decompositions at time points interleaving all
changes in the filtration order. For simplexwise filtrations, these changes manifest as
transpositions of adjacent simplices, and thus any fixed set of rules that maintains a
valid R = DV decomposition under adjacent column transpositions is sufficient to
compute persistence dynamically.

To ensure a decomposition is valid, these rules prescribe certain column and row
operations to apply to a given matrix decomposition either before, during, or after
each transposition. Formally, let S j

i represent the upper-triangular matrix such that

AS j
i results in adding column i of A to column j of A, and let S j

i A be the same
operation on rows i and j . Similarly, let P denote the matrix so that APT permutes
the columns of A and PA permutes the rows. Since the columns of P are orthonormal,

123

Move schedules: fast persistence computations in coarse dynamic settings

P−1 = PT , then PAPT performs the same permutation to both the columns and rows
of A. In the special case where P represents a transposition, we have P = PT andmay
instead simply write PAP . The goal of the vineyards algorithm can now be described
explicitly: to prescribe a set of rules, written as matrices S j

i , such that if R = DV
is a valid decomposition, then (∗P ∗ R ∗ P∗) = (PDP)(∗P ∗ V ∗ P∗) is also a
valid decomposition, where ∗ is some number (possibly zero) of matrices encoding
elementary column or row operations.

Example 2.2 To illustrate the basic principles of vineyards, we re-use the running
example introduced in the previous section. Below,we illustrate the case of exchanging
simplices a and b in the filtration order, and restoring RV to a valid decomposition.

R1 a b c⎡

⎣

⎤

⎦
u 1 1
v 1
w 1

S21−→

a b c⎡

⎣

⎤

⎦
1
1

1 1

P−→

b a c⎡

⎣

⎤

⎦
1

1
1 1

S21−→

b a c⎡

⎣

⎤

⎦
u 1
v 1 1
w 1

V1 a b c⎡

⎣

⎤

⎦
a 1 1 1
b 1 1
c 1

S21−→

a b c⎡

⎣

⎤

⎦
1 1
1 1
1

P−→

b a c⎡

⎣

⎤

⎦
1 1
1 1
1

S21−→

b a c⎡

⎣

⎤

⎦
b 1 1 1
a 1 1
c 1

Starting with a valid reduction R = DV and prior to performing the exchange,
observe that the highlighted entry in V1 would render V1 non-upper triangular after
the exchange. This entry is removed by a left-to-right column operation, given by
applying S21 on the right to R1 and V1. After this operation, the permutation may be
safely applied to V1. Both before and after the permutation P , R1 is rendered non-
reduced, requiring another column operation to restore the decomposition to a valid
state.

The time complexity of vineyards is determined entirely by the complexity of per-
forming adjacent transpositions. Since column operations are the largest complexity
operations needed and each column can have potentially O(m) entries, the complexity
of vineyards is O(m) per transposition. Inspection of the individual cases of the algo-
rithm from Cohen-Steiner et al. (2006) shows that any single transposition requires
at most two such operations on both R and V . However, several factors can affect
the runtime efficiency of the vineyards algorithm. On the positive side, as both the
matrices R and V are often sparse, the cost of a given column operation is proportional
to the number of non-zero entries in the two columns being modified. Moreover, as a
rule of thumb, it has been observed that most transpositions require no column oper-
ations (Edelsbrunner et al. 2000). On the negative side, one needs to frequently query
the non-zero status of various entries in R and V (consider evaluating e.g. Case 1.1
in Cohen-Steiner et al. (2006)), which accrues a non-trivial runtime cost due to the
quadratic frequency with which they are required.

123

M. Piekenbrock, J. A. Perea

2.3 Moves

Originally developed to accelerate tracking generators with temporal coherence,
Busaryev et al. (2010) introduced an extension of the vineyards algorithmwhichmain-
tains a R = DV decomposition undermove operations. Amove operationMove(i, j)
is a set of rules for maintaining a valid decomposition under the permutation P that
moves a simplex σi at position i to position j . If j = i ± 1, this operation is an
adjacent transposition, and in this sense moves generalizes vineyards. However, the
move framework presented by Busaryev is actually distinct in that it exhibits several
attractive qualities not inherited by the vineyards approach that warrants further study.

For completeness, we recapitulate the motivation of the moves algorithm from
Busaryev et al. (2010). Let f : K → [m] denote a filtration of size m = |K | and
R = DV its decomposition. Consider the permutation P that moves a simplex σi in
K to position j , shifting all intermediate simplices σi+1, . . . , σ j down by one (i < j).
To perform this shift, all entries Vik �= 0 with column positions k ∈ [i + 1, j] need
to set to zero, otherwise PV is not upper-triangular. We may zero these entries in
V using column operations V (∗), ensuring invariant I2 (2.1) is maintained, however
these operations may render R′ = PR(∗)PT unreduced, breaking invariant I3. Of
course, we could then reduce R′ with additional column operations, but the number of
such operations scales O(|i− j |2), but this is nomore efficient than simply performing
the permutation and applying the reduction algorithm to columns [i, j] in R.

To bypass this difficulty, Busaryev et al. observed that since R is reduced, if it
contains s pivot entries in the columns [i, j] of R, then R′ must also have s pivots.
Thus, if column operations render some pivot-column rk of R unreduced, then its pivot
entry lowR(k) becomes free,5—if rk is copied prior to its modification, we may re-use
or donate its pivot entry to a later column rk+1, . . . , r j . Repeating this process at most
j − i − 1 times ensures R′ stays reduced in all except possibly at its i-th column.
Moreover, since the k-th such operation simultaneously sets vik = 0, V ′ retains its
upper-triangularity.

Example 2.3 We re-use the running example from Sect. 2.1 and 2.2 to illustratemoves.
The donor columns of R and V are denoted as dR and dV , respectively. Consider
moving edge a to the position of edge c in the filtration.

dR a[]
u 1
v
w 1

R a b c[]
u 1 1
v 1
w 1

→
b[]
1
1

a b c[]
1

1
1 1

→
c[] a b c[]

1 1
1 1

1 1

P−→

a
⎡

⎣

⎤

⎦

b c a
⎡

⎣

⎤

⎦
1 1

1 1
1 1

dR−→

b c a
⎡

⎣

⎤

⎦
1

1 1
1

5 The process of donating pivot columns using O(1) auxiliary storage is similar in spirit to the in-place
sorting algorithm cycle sort which is often used to sort permutations in O(n) time.

123

Move schedules: fast persistence computations in coarse dynamic settings

dV a[]
a 1
b
c

V a b c[]
a 1 1 1
b 1 1
c 1

→
b[]
1
1

a b c[]
1 1

1 1
1

→
c[]
1
1
1

a b c[]
1

1
1

P−→

a
⎡

⎣

⎤

⎦
1
1
1

b c a
⎡

⎣

⎤

⎦
1

1
1

dV−→

b c a
⎡

⎣

⎤

⎦
1 1

1 1
1

Note that the equivalent permutation using vineyards requires 4 column operations on
both R1 and V1, respectively, whereas a single move operation accomplishes using
only 2 column operations per matrix. The pseudocode for MoveRight is given in
Algorithm 1 and for MoveLeft in Algorithm 2.

Algorithm 1Move Right Algorithm

1: function RestoreRight(R, V , I = {I1, I2, . . . , Is}, donors = true)
2: (dlow, dR, dV) ← (lowR(I1), colR(I1), colV (I1))

3: for k in I2, . . . , Is do
4: (d ′

low, d ′
R, d ′

V) ← (lowR(k), colR(k), colV (k))

5: (colR(k), colV (k)) += (dR, dV)

6: if d ′
low < dlow then

7: (dlow, dR, dV) ← (d ′
low, d ′

R, d ′
V)

8: end if
9: end for
10: return (R, V , dR, dV) if donors = true else (R, V)

11: end function

1: function MoveRight(R, V , i , j)
2: I = columns satisfying V [i, i : j] �= 0
3: J = columns satisfying lowR ∈ [i : j] and rowR(i) �= 0
4: (R, V , dR, dV) ← RestoreRight(R, V , I)
5: (R, V) ← RestoreRight(R, V , J, false)
6: (R, V) ← (PRPT , PV PT)

7: (colR(j), colV (j)) ← (PdR, PdV)

8: return (R, V)

9: end function

123

M. Piekenbrock, J. A. Perea

Algorithm 2Move Left Algorithm

1: function RestoreLeft(R, V , K = {k1, k2, . . . , ks})
2: (l, r) ← indices l, r ∈ K satisfying l < r , lowR(l) = lowR(r) maximal
3: while lowR(l) �= 0 and lowR(r) �= 0 do
4: (colR(r), colV (r)) += (colR(l), colV (l))

5: K ← K \ l
6: (l, r) ← indices l, r ∈ K satisfying l < r , lowR(l) = lowR(r) maximal
7: end while
8: return (R, V)

9: end function

1: function MoveLeft(R, V , i , j)
2: I ← ∅
3: while V (k, i) �= 0 for k = lowV (i) where j ≤ k < i do
4: (colR(i), colV (i)) += (colR(k), colV (k))

5: I ← I ∪ k + 1
6: end while
7: (R, V) ← (PRPT , PV PT)

8: J = columns satisfying lowR ∈ [i : j] and rowR(i) �= 0
9: (R, V) ← RestoreLeft(R, V , I)
10: (R, V) ← RestoreLeft(R, V , J)
11: return (R, V)

12: end function

Regarding the complexity of move operations, which clearly depend on the sparsity
of R and V , we recall the proposition shown in Busaryev et al. (2010):

Proposition 1 (Busaryev et al. 2010) Given a filtration with n simplices of dimensions
p − 1, p, and p + 1, let R = DV denote its associated decomposition. Then, the
operation MoveRight(i, j) constructs a valid decomposition R′ = D′V ′ in O((|I| +
|J|)n) time, where I, J are given by:

|I| =
j∑

l=i+1

1 (vl(i) �= 0) , J =
m∑

l=1

1 (lowR(l) ∈ [i, j] and rl(i) �= 0)

Moreover, the quantity |I| + |J| satisfies |I| + |J| ≤ 2(j − i).

Though similar to vineyards, move operations confer additional advantages:

M1: Querying the non-zero status of entries in R or V occurs once per move.
M2: R = DV is not guaranteed to be valid during the movement of σi to σ j .
M3: At most O(m) moves are needed to reindex f �→ f ′

123

Move schedules: fast persistence computations in coarse dynamic settings

First, consider property M1. Prior to applying any permutation P to the decomposi-
tion, it is necessary to remove non-zero entries in V which render PT V P non-upper
triangular, to maintain invariant I2. Using vineyards, one must consistently perform
|i − j | − 1 non-zero status queries interleaved between repairing column operations.
A move operation groups these status queries into a single pass prior to performing
any modifying operations.

Property M2 implies that the decomposition is not fully maintained during the exe-
cution of RestoreRight and RestoreLeft below, which starkly contrasts the vineyards
algorithm. In this way, we interpret move operations as making a tradeoff in granular-
ity: whereas a sequence of adjacent transpositions (i, i+1), (i+1, i+2), . . . , (j−1, j)
generates |i − j | valid decompositions in vineyards, an equivalent move operation
Move(i, j) generates only one. Indeed, Property M3 directly follows from this fact,
as one may simply move each simplex σ ∈ K into its new order f ′(σ) via insertion
sort. Note that the number of valid decompositions produced by vineyards is bounded
above by O(m2), as each pair of simplices σi , σ j ∈ K may switch its relative ordering
at most once during the interpolation from f to f ′.

As shown by example 2.3,moves can be cheaper than vineyards in terms of column
operations. However, it is not clear that this is always the case upon inspection of
Algorithm 1, as the usage of a donor column seemingly implies that many O(m) copy
operations need to be performed. It turns out that we may handle all such operations
except the first in O(1) time, which we formalize below.

Proposition 2 Let (K , f) denote a filtration of size |K | = m with decomposition
R = DV and let T denote the number of column operations needed by vineyards to
perform the sequence of transpositions:

R = R1
s1→ R2

s2→ . . .
sk→ Rk−1 = R′

where si denotes the transposition (i, i + 1), i < j , and k = |i − j |. Moreover, let M
denote the number of column operations to perform the same update R �→ R′ with
Move(i, j). Then the inequality M ≤ T holds.

Proof First, consider executing the vineyards algorithm with a given pair (i, j). As
there are at most 2 column operations, any contiguous sequence of transpositions
(i, i + 1), (i + 1, i + 2), . . . (j − 1, j) induces at most 2(|i − j |) column operations
in both R and V , giving a total of 4(|i − j |) column operations.

Now consider a singleMoveRight(i , j) outlined in Algorithm 1. Here, the dominant
cost again are the column operations (line 5). Though we need an extra O(m) storage
allocation for the donor columns d∗ prior to the movement, notice that assignment to
and from d∗ (lines (4), and (7) in RestoreLeft and MoveRight, respectively) requires
just O(1) time via a pointer swapping argument. That is, when d ′

low < dlow, instead
of copying col∗(k) to d ′∗—which takes O(m) time—we instead swap their column
pointers in O(1) prior to column operations. After the movement, d∗ contains the
newly modified column and col∗(k) contains the unmodified donor d ′∗, so the final
donor swap also requires O(1) time. Since at most one O(m) column operation is

123

M. Piekenbrock, J. A. Perea

required for each index in [i, j], moving a column from i to j where i < j requires at
most 2(|i − j |) column operations for both R and V . The claimed inequality follows.

��
As a final remark, we note that the combination ofMoveRight andMoveLeft enable

efficient simplex additions or deletions to the underlying complex. In particular, given
K and a decomposition R = DV , obtaining a valid decomposition R′ = D′V ′ of
K ′ = K ∪ {σ } can be achieved by appending its requisite elementary chains to D and
V , reducing them, and then executing MoveLeft(m + 1, i) with i = f ′(σ). Dually,
deleting a simplex σi may be achieved via MoveRight by moving i-th to the end of
the decomposition and dropping the corresponding columns.

3 Our contribution: move schedules

We begin with a brief overview of the pipeline to compute the persistence diagrams of
a discrete 1-parameter family (f1, f2, . . . , fn) of filtrations.Without loss of generality,
assume each filtration fi : K → [m] is a simplexwise filtration of a fixed simplicial
complex K with |K | = m, and let (f , f ′) denote any pair of such filtrations. Our
strategy to efficiently obtain a valid RV decomposition of the filtration (K , f ′) from
a given decomposition of (K , f) is to decompose a fixed bijection ρ : [m] → [m]
satisfying f ′ = ρ ◦ f into a schedule of updates:

Definition 1 (Schedule). Given a pair of filtrations (K , f), (K , f ′) and R = DV the
initial decomposition of (K , f), a schedule S = (s1, s2, . . . , sd) is a sequence of
permutations satisfying:

R = D0V0
s1→ D1V1

s2→ . . .
sd→ DdVd = R′ (5)

where, for each i ∈ [d], Ri = DiVi is a valid decomposition respecting invariants 2.1,
and R′ is a valid decomposition for (K , f ′).

To produce this sequence of permutations S = (s1, . . . , sd) from ρ, our approach
is as follows: define q = (ρ(1), ρ(2), . . . , ρ(m)). We compute a longest increasing
subsequence LIS(q), and then use this subsequence to recover a longest common sub-
sequence (LCS) between f and f ′, which we denote later with LCS(f , f ′). We pass
q, LIS(q), and a “greedy” heuristic for picking moves h to our scheduling algorithm
(to be defined later), which returns as output an ordered set of move permutations S
of minimum size satisfying (5)—a schedule for the pair (f , f ′). These sequence of
steps is outlined in Algorithm 3 below.

Though using the LCS between a pair of permutations induced by simplexwise
filtrations is a relatively intuitive way of producing a schedule of move-type decom-
position updates, it is not immediately clear whether such an algorithm has any
computational benefits compared to vineyards. Indeed, sincemoves is a generalization
of vineyards, several important questions arise when considering practical aspects of
how to implement Algorithm 3, such as e.g. how to pick a “good” heuristic h, how
expensive can the Schedule algorithm be, or how |S| scales with respect to the size of
the complex K . We address these issues in the following sections.

123

Move schedules: fast persistence computations in coarse dynamic settings

Algorithm 3 Scheduling algorithm
Require: Filtration pair F = { f0, f1} and valid R = DV for (K , f0)
Ensure: Valid R = DV is computed for (K , f1)
1: procedure MoveSchedule(F = (f0, f1), R, V)
2: Fix ρ ∈ Sm such that f1 = ρ ◦ f0 � O(m)

3: q ← (ρ(1), ρ(2), . . . , ρ(m)) � O(m)

4: lisq ← LIS(q) � O(m log logm)

5: h ← greedy � Heuristic for picking moves
6: S ← Schedule(q, lisq , h) � O(d2 logm), see Sect. 3.4
7: for (i, j) in S do � |S| = d
8: (R, V) ← if i < j MoveRight(i, j) else MoveLeft(i, j)
9: end for
10: end procedure

3.1 Continuous setting

In the vineyards setting, a given homotopy F : K ×[0, 1] → R continuously interpo-
lating between (K , f) and (K , f ′) is discretized into a set of critical events that alter
the filtration order. As F determines the number of distinct filtrations encountered
during the deformation from f to f ′, a natural question is whether such an interpola-
tion can be modified so as to minimize |S|—the number of times the decomposition
is restored to a valid state. Towards explaining the phenomenon exhibited in Fig. 2,
we begin by analyzing a class of interpolation schemes to establish an upper bound
on this quantity.

Let F : K × [0, 1] → R be a homotopy of x-monotone curves6 between the
filtrations f , f ′ : K → [m] whose function t �→ F(σ, t) is continuous and satisfies
f (σ) = F(σ, 0) and f ′(σ) = F(σ, 1) for every σ ∈ K . Note that this family includes
the straight-line homotopy F(σ, t) = (1 − t) f (σ) + t f ′(σ), studied in the original
vineyards paper (Cohen-Steiner et al. 2006). If we assume that each pair of curves(
t, F(·, t)) ⊂ [0, 1] × R intersect in at most one point—at which they cross—the
continuity and genericity assumptions on F imply that for σ,μ ∈ K distinct, the
curves t �→ F(σ, t) and t �→ F(μ, t) intersect if and only if f (σ) > f (μ) and
f ′(σ) < f ′(μ), or f (σ) < f (μ) and f ′(σ) > f ′(μ). In other words, the number of
crossings in F is exactly theKendall-τ distance (Diaconis and Graham 1977) between
f and f ′:

Kτ (f , f ′) = 1

2

∣∣ {(σ, μ) | sign(
f (σ) − f (μ)

) �= sign
(
f ′(σ) − f ′(μ)

)} ∣∣ (6)

After slightly perturbing F if necessary, we can further assume that its crossings occur
at k = Kτ (f , f ′) distinct time points 0 < t1 < · · · < tk < 1. Let t0 = 0, tk+1 = 1
and fix ai ∈ (ti , ti+1) for i = 0, . . . , k. Then, the order in K induced by σ �→ F(σ, ai)

6 This term has been used in reference to parameterized curves whose behavior with respect to a certain
restricted set of geometric predicates is invariant, see Boissonnat and Snoeyink (2000).

123

M. Piekenbrock, J. A. Perea

defines a filtration fi : K → [m] so that f0 = f , fk = f ′ and F = (f0, f1, . . . , fk)
is the ordered sequence of all distinct filtrations in the interpolation from f to f ′ via
F .

The continuity of the curves t �→ F(·, t) and the fact that ti is the sole crossing time
in the interval (ti−1, ti+1), imply that the permutation ρi transforming fi−1 into fi , i.e.
so that fi = ρi ◦ fi−1, must be (in cycle notation) of the form ρi = (�i �i +1) for 1 ≤
�i < m. In other words, ρi is an adjacent transposition for each i = 1, . . . , k. Observe
the size of the ordered sequence of adjacent transpositions SF = (ρ1, ρ2, . . . , ρk)

defined from the homotopy F above is exactly Kτ (f , f ′). On the positive side, the
reduction of schedule planning to crossing detection implies the former can be solved
optimally in output-sensitive O(m logm + k) time by several algorithms (Boissonnat
and Snoeyink 2000), where k is the output-sensitive term and m is the number of
simplices in the filtration(s). On the negative side, k = Kτ (f , f ′) scales in size to
∼ O(m2) in the worst case, achieved when f ′ = − f . As mentioned in 2.2, this
quadratic scaling induces a number of issues in the practical implementations of the
vineyards algorithm

Remark 1 The grayscale image data example from Sect. 1.2 exhibits this quadratic
scaling. Indeed, the Freudenthal triangulation of the 9×9 grid contains (81, 208, 128)
simplices of dimensions (0, 1, 2), respectively. Therefore, m = 417 and |SF | ≤
1
2m(m − 1) = 86, 736. As the homotopy given by the video is varied, ≈ 70,000
transpositions are generated, approaching the worst case upper bound due to the fact
that f ′ is nearly the reverse of f .

If our goal is to decrease |SF |, one option is to coarsen SF to a new schedule S̃F by
e.g. collapsing contiguous sequences of adjacent transpositions to moves, via the map
(i, i + 1)(i + 1, i + 2) · · · (j − 1, j) �→ (j, i + 1, · · · , j − 1, i) (if i < j). Clearly
|S̃F | ≤ |SF | and the associated coarsened S̃F requires just O(m) time to compute.
However, the coarsening depends entirely on the initial choice of F and the quadratic
upper bound remains—it is always possible that there are no contiguous subsequences
to collapse. This suggests one must either abandon the continuous setting or make
stronger assumptions on F to have any hope of keeping |SF | ∼ O(m) in size.

3.2 Discrete setting

Contrasting the continuous-time setting, if we discard the use of a homotopy inter-
polation and allow move operations in any order, we obtain a trivial upper bound of
O(m) on the schedule size: simply move each simplex in K from its position in the
filtration given by f to the position given by f ′—which we call the naive strategy.
In particular, in losing the interpolation interpretation, it is no longer clear the O(m)

bound is tight. Indeed, the “intermediate” filtrations need no longer even respect the
face poset of the underlying complex K . In this section, we investigate these issues
from a combinatorial perspective.

Let Sm denote the symmetric group. Given two fixed permutations p, q ∈ Sm and
a set of allowable permutations � ⊆ Sm , a common problem is to find a sequence of

123

Move schedules: fast persistence computations in coarse dynamic settings

permutations s1, s2, . . . , sd ∈ � whose composition satisfies:

sd ◦ · · · ◦ s2 ◦ s1 ◦ p = q (7)

Common variations of this problem include finding such a sequence of minimal length
(d) and bounding the length d as a function of m. In the latter case, the largest lower
bound on d is referred to as the distance between p and q with respect to�. A sequence
S = (s1, s2, . . . , sd) of operations s ∈ � ⊆ Sm mapping p �→ q is sometimes called a
sorting of p.When p, q are interpreted as strings, these operations s ∈ � are called edit
operations. The minimal number of edit operations d�(p, q) needed to sort p �→ q
with respect to � is referred to as the edit distance (Bergroth et al. 2000) between p
and q. We denote the space of sequences transforming p �→ q using d permutations
in � ⊆ Sm with �(p, q, d). Note the choice of � defines the type of distance being
measured—otherwise if � = Sm , then d�(p, q) = 1 trivially for any p �= q ∈ Sm .

Perhaps surprisingly, small changes to the set of allowable edit operations � dra-
matically affect both the size of d�(p, q) and the difficulty of obtaining a minimal
sorting. For example, while sorting by transpositions and reversals is NP-hard and
sorting by prefix transpositions is unknown, there are polynomial time algorithms for
sorting by block interchanges, exchanges, and prefix exchanges (Labarre 2013). Sort-
ing by adjacent transpositions can be achieved in many ways: any sorting algorithm
that exchanges two adjacent elements during its execution (e.g. bubble sort, insertion
sort) yields a sorting of size Kτ (p, q).

Here we consider sorting by moves. Using permutations, amove operation mi j that
moves i to j in [m], for i < j , corresponds to the circular rotation:

mi j =
(
1 · · · i − 1 i i + 1 · · · j − 1 j j + 1 · · · m
1 · · · i − 1 i + 1 · · · j − 1 j i j + 1 · · · m

)
(8)

In cycle notation, this corresponds to the cyclic permutation mi j = (i j
j-1 . . . i+2 i+1). Observe that a move operation can be interpreted as a paired
delete-and-insert operation, i.e. mi j = (ins j ◦ deli), where deli denotes the operation
that deletes the character at position i and ins j the operation that inserts the same
character at position j . Thus, sorting by move operations can be interpreted as finding
a minimal sequence of edits where the only operations allowed are (paired) insertions
and deletions—this is exactly the well known Longest Common Subsequence (LCS)
distance. Between strings p, q of sizesm and n, the LCS distance is given by Bergroth
et al. (2000):

dlcs(p, q) = m + n − 2|LCS(p, q)| (9)

With this insight in mind, we obtain the following bound on the minimum size of a
sorting (i.e. schedule) using moves and the complexity of computing it.

Proposition 3 (ScheduleSize). Let (K , f), (K , f ′)denote twofiltrations of size |K | =
m. Then, the smallest move schedule S∗ re-indexing f �→ f ′ has size:

|S∗| = d = m − |LCS(f , f ′)|

123

M. Piekenbrock, J. A. Perea

where we use LCS(f , f ′) to denote the LCS of the permutations of K induced by f
and f ′.

Proof Recall our definition of edit distance given above, depending on the choice
� ⊆ Sm of allowable edit operations, and that in order for any edit distance to be
symmetric, if s ∈ � then s−1 ∈ �. This implies that d�(p, q) = d�(p−1, q) for any
choice of p, q ∈ Sm . Moreover, edit distances are left-invariant, i.e.

d�(p, q) = d�(r ◦ p, r ◦ q) for all p, q, r ∈ Sm

Conceptually, left-invariance implies that the edit distance between any pair of permu-
tations p, q is invariant under an arbitrary relabeling of p, q–as long as the relabeling
is consistent. Thus, the following identity always holds:

d�(p, q) = d�(ι, p−1 ◦ q) = d�(q−1 ◦ p, ι)

where ι = [m], the identity permutation. Suppose we are given two permutations
p, q ∈ Sn andwe seek to compute LCS(p, q). Consider the permutation p′ = q−1◦ p.
Since the LCS distance is a valid edit distance, if |LCS(p, q)| = k, then |LCS(p′, ι)| =
k as well. Notice that ι is strictly increasing, and that any common subsequence p′ has
with ιmust also be strictly increasing. The optimality of d follows from the optimality
of the well-studied LCS problem (Kumar and Rangan 1987). ��

For any pair of general string inputs of sizes n andm, respectively, the LCS between
them is computable in O(mn) with dynamic programming, and there is substantial
evidence that the complexity cannot be much lower than this (Abboud et al. 2015).
In our setting, however, we interpret the simplexwise filtrations (K , f), (K , f ′) as
permutations of the same underlying complex K—in this setting, dLCS reduces fur-
ther to the permutation edit distance problem. This special type of edit distance has
additional structure to it, which we demonstrate below.

Corollary 1 Let (K , f), (K , f ′) denote two filtrations of size |K | = m, and let S∗
denote schedule ofminimal size re-indexing f �→ f ′. Then |S∗| = d canbedetermined
in O(m log logm) time.

Proof By the same reduction from Proposition 3, the problem of computing
LCS(f , f ′) reduces to the problem of computing the longest increasing subsequence
(LIS) of a particular permutation p′ ∈ Sm , which can be done in O(m log logm) time
using van Emde Boas trees (Bespamyatnikh and Segal 2000) ��

Reduced complexity is not the only immediate benefit from Proposition 3; by
the same reduction to the LIS problem, we obtain the worst-case bounds on S in
expectation.

Corollary 2 If (K , f), (K , f ′) are random filtrations of a common complex K of size
m, then the expected size of a longest common subsequenceLCS(f , f ′) between f , f ′
is no larger than m − √

m, with probability 1 as m → ∞.

123

Move schedules: fast persistence computations in coarse dynamic settings

Proof The proof of this result reduces to showing the average length of the LIS for
random permutations. Let L(p) ∈ [1,m] denote the maximal length of a increasing
subsequence of p ∈ Sm . The essential quantity to show the expected length of L(p)
over all permutations:

E L(p) = �m = 1

m!
∑

p∈Sm
L(p)

A large body of work dates back at least 50 years has focused on estimating this
quantity, which is sometimes called the Ulam-Hammersley problem. Seminal work
by Baik et al. (1999) established that as m → ∞:

�m = 2
√
m + cm1/6 + o(m1/6)

where c = −1.77108.... Moreover, letting m → ∞, we have:

�m√
m

→ 2 as m → ∞

Thus, if p ∈ Sm denotes a uniformly random permutation in Sm , then L(p)/
√
m → 2

in probability asm → ∞. Using the reduction from above to show that LCS(p, q) ⇔
LIS(p′), the claimed bound follows. ��
Remark 2 Note the quantity from Corollary 2 captures the size of S∗ between pairs of
uniformly sampled permutations, as opposed to uniformly sampled filtrations, which
have more structure due to the face poset. However, Boissonnat and CS (2018) prove
the number of distinct filtrations built from a k-dimensional simplicial complex K

with m simplices and t distinct filtration values is at least
⌊
t+1
k+1

⌋m
. Since this bound

grows similarly to m! when t ∼ O(m) and k << m fixed, d ≈ n − √
n is not too

pessimistic a bound between random filtrations.

In practice, when one has a time-varying filtration and the sampling points are
relatively close [in time], the LCS between adjacent filtrations is expected to be much
larger, shrinking d substantially. For example, for the complex fromSect. 1.2withm =
417 simplices, the average size of the LCS across the 10 evenly spaced filtrations was
343, implying d ≈ 70 permutations needed on average to update the decomposition
between adjacent time points.

We conclude this section with the main theorem of this effort: an output-sensitive
bound on the computation of persistence dynamically.

Theorem 1 Given a pair of filtrations (K , f), (K , f ′), a decomposition R = DV of
K , and a sequence S = (s1, s2, . . . , sd) of cyclic ‘move’ permutations sk = (ik, jk)
satisfying ik < jk for all k ∈ [d], computing the updates:

R = D0V0
s1→ D1V1

s2→ . . .
sd→ DdVd = R′ (10)

123

M. Piekenbrock, J. A. Perea

where R′ = DdVd denotes a valid decomposition of (K , f ′) requires O(ν) column
operations, where ν depends on the sparsity of the intermediate entries V1, V2, . . . , Vd
and R1, R2, . . . , Rd:

ν =
d∑

k=1

(|Ik | + |Jk |), where |Ik |, |Jk |are given in Proposition 1

Moreover, the size of a minimal such S can be determined in O(m log logm) time and
O(m) space.

Proof Proposition 3 yields the necessary conditions for constructing S with optimal
size d in O(m log logm) time and O(m). The definition of ν follows directly from
Algorithm 1. ��

3.3 Constructing schedules

While it is clear from the proof in Proposition 3 that onemay compute the LCSbetween
two permutations p, q ∈ Sm in O(m log logm) time, it is not immediately clear how
to obtain a sorting p �→ q from a given L = LCS(p, q) efficiently. We outline below
a simple procedure which constructs such a sorting S = (s1, . . . , sd) in O(dm logm)

time and O(m) space, or O(m logm) time and O(m) space per update in the online
setting.

Recall that a sorting S with respect to two permutations p, q ∈ Sm is an ordered
sequence of permutations S = (s1, s2, . . . , sd) satisfying q = sd ◦ . . . s1 ◦ p. By
definition, a subsequence in L common to both p and q satisfies:

p−1(σ) < p−1(τ) �⇒ q−1(σ) < q−1(τ) ∀σ, τ ∈ L (11)

where p−1(σ) (resp. q−1(σ)) denotes the position of σ in p (resp. q). Thus, obtaining
a sorting p �→ q of size d = m − |L| reduces to applying a sequence of moves in the
complement of L. Formally, we define a permutation s ∈ Sm as a valid operation with
respect to a fixed pair p, q ∈ Sm if it satisfies:

|LCS(s ◦ p, q)| = |LCS(p, q)| + 1 (12)

The problem of constructing a sorting S of size d thus reduces to choosing a sequence
of d valid moves, which we call a valid sorting. To do this efficiently, let U denote
an ordered set-like data structure that supports the following operations on elements
σ ∈ M from the set M = {0, 1, . . . ,m + 1}:
1 U ∪ σ—inserts σ into U ,
2 U \ σ—removes σ from U ,
3 Usucc(σ)—obtain the successor of σ in U , if it exists, otherwise return m + 1
4 Upred(σ)—obtain the predecessor of σ in U , if it exists, otherwise return 0

123

Move schedules: fast persistence computations in coarse dynamic settings

Given U , a valid sorting can be constructed by querying and maintaining information
about the LCS in U . To see this, suppose U contains the current LCS between two
permutations p and q. By definition of the LCS, we have:

p−1(Upred(σ)) < p−1(σ) < p−1(Usucc(σ)) (13)

for every σ ∈ U . Now, suppose we choose some element σ /∈ U which we would like
to add to the LCS. If p−1(σ) < p−1(Upred(σ)), then we must move σ to the right of
its predecessor in p such that (13) holds. Similarly, if p−1(Usucc(σ)) < p−1(σ), then
we must move σ left of its successor in p. Assuming the structure U supports all of
the above operations in O(logm) time, we easily deduce a O(dm logm) algorithm
for obtaining a valid sorting.

3.4 Minimizing schedule cost

The algorithm outlined in Sect. 3.3 is a sufficient for generating move schedules of
minimal cardinality: any schedule of moves S sorting f �→ f ′ above is guaranteed to
have size |S| = m − |LCS(f , f ′)|, and the reduction to the permutation edit distance
problem ensures this size is optimal. However, as with the vineyards algorithm, certain
pairs of simplices cost more to exchange depending on whether they are critical pairs
in the sense described in Cohen-Steiner et al. (2006), resulting in a large variability in
the cost of randomly generated schedules. This variability is undesirable in practice:
we would like to generate a schedule which not only small in size, but is also efficient
in terms of its required column operations.

3.4.1 Greedy approach

Ideally, we would like to minimize the cost of a schedule S ∈ �(p, q, d) directly,
which recall is given by the number of non-zeros at certain entries in R and V :

cost(S) =
d∑

k=1

|Ik | + |Jk | (14)

where |I| + |J| are the quantities from Proposition 1. Globally minimizing the objec-
tive (14) directly is difficult due to the changing sparsity of the intermediate matrices
Rk, Vk . One advantage of the moves framework is that the cost of a single move on
a given R = DV decomposition can be determined efficiently prior to any column
operations. Thus, it is natural to consider whether one could minimize (14) by greedily
choosing the lowest cost move in each step. Unfortunately, not only does this approach
does not yield a minimal cost solution, we give a counter-example in the appendix
(A.2) demonstrating such a greedy procedure may lead to arbitrarily bad behavior.

123

M. Piekenbrock, J. A. Perea

3.4.2 Proxy objective

In light of Sect. 3.4.1, we seek an alternative objective that correlates with (14)
and does not depend on the entries in the decomposition. Given a pair of filtra-
tions (K , f), (K , f ′), a natural schedule S ∈ (f , f ′, d) of cyclic permutations
(i1, j1), (i2, j2), . . . , (id , jd) is one minimizing the upper bound:

c̃ost(S) =
d∑

k=1

2|ik − jk | ≥
d∑

k=1

(|Ik | + |Jk |) (15)

Unfortunately, even obtaining an optimal schedule S∗ ∈ (f , f ′, d)minimizing (15)
does not appear tractable due to its similarity with the k-layer crossing minimization
problem, which is NP-hard for k sets of permutations when k ≥ 4 (Biedl et al. 2009).
For additional discussion on the relationship between these twoproblems, see Sect.A.3
in the appendix.

In light of the discussion above, we devise a proxy objective function based on the
Spearman distance (Diaconis andGraham 1977)whichwe observed is both efficient to
optimize and effective in practice. The Spearman footrule distance F(p, q) between
two p, q ∈ Sm is an �1-type distance for measuring permutation disarrangement:

F(p, q) =
m∑

i=1

| p(i) − q(i) | =
m∑

i=1

| i − (q−1 ◦ p)(i) | (16)

Like Kτ , F forms a metric on Sm and is invariant under relabeling. Our motivation
for considering the footrule distance is motivated by the fact that F recovers c̃ost(S)

when (p, q) differ by a cyclic permutation (i.e. F(p,mi j ◦ p) = 2|i − j |) and by its
usage on similar7 combinatorial optimization problems. To adapt F to sortings, we
decompose F additively via the bound:

F̂S(p, ι) =
d−1∑

i=0

F(ŝi ◦ p, ŝi+1 ◦ p) ≥ F(p, ι) (17)

where ŝi = si ◦ · · · ◦ s2 ◦ s1 denotes the composition of the first i permutations of a
sorting S = (s1, . . . , sd) that maps p �→ ι and s0 = ι. As a heuristic to minimize (17),
we greedily select the optimal k ∈ p \ L at each step which minimizes the Spearman
distance to the identity permutation:

kgreedy = argmin
k∈p\L

F(mi j ◦ p, ι), i = p−1(k) (18)

7 F is often used to approximate Kτ in rank aggregation problems due to the fact that computing the
[Kemini] optimal rank aggregation is NP-hard with respect to Kτ , but only polynomial time with respect
to F (Dinu and Manea 2006). Note F bounds Kτ via the inequalities Kτ (p, q) ≤ F(p, q) ≤ 2Kτ (p, q)

(Diaconis and Graham 1977).

123

Move schedules: fast persistence computations in coarse dynamic settings

Note that equality between F and F̂S (17) is achieved when the displacement of
each σ ∈ p between its initial position in p to its value is non-increasing with every
application of si , which in general not guaranteed using the schedule construction
method in Sect. 3. To build intuition for how this heuristic interacts with Algorithm 5,
we show a purely combinatorial example below.

Example The permutation p ∈ Sm to sort to the identity p �→ ι is given as a sequence
(4, 2, 7, 1, 8, 6, 3, 5, 0) and a precomputed LIS L = (1, 3, 5), which is highlighted in
red.

On the left, a table records permuted sequences {ŝi ◦ p}di=0, given on rows i ∈
{0, 1, . . . , 6}, for the moved elements (7, 0, 8, 4, 6, 2) (highlighted in yellow). In the
middle, we show the Spearman distance cost (18) associated with both each permuted
sequence (left column) and with each candidate permutationmi j ◦ p (rows). Note that
elements σ ∈ L (red) induce identity permutations that do not modify the cost, and
thus the minimization is restricted to elements σ ∈ p \L (black). The right plot shows
the connection to the bipartite crossing minimization problem discussed in Sect. 3.4.1.

3.4.3 Heuristic computation

Wenow introduce an efficient O(d2 logm) algorithm for constructing amove schedule
that greedily minimizes (17). The algorithm is purely combinatorial, and is motivated
by the simplicity of updating the Spearman distance between sequences which differ
by a cyclic permutation.

First, consider an arrayA of size m which provides O(1) access and modification,
initialized with the signed displacement of every element in p to its corresponding
position in q. In the case where q = ι, note A(i) = i − p(i), thus F(p, ι) is given
by the sum of the absolute values of the elements in A. In other words, computing
F(mi j ◦ p, ι) in O(logm) time corresponds to updating an array’s prefix sum under
element insertions and deletions, which is easily solved by many data structures (e.g.
segment trees).

Because the values ofA are signed, the reduction to prefix sums is not exact: it is not
immediately clear how to modify |i − j | elements in O(logm) time. To address this,
observe that at any point during the execution of Algorithm 5, a cyclic permutation
changes each value of A in at most three different ways:

A(mi j ◦ p) =

⎧
⎪⎨

⎪⎩

A(k) ± |i − j | p−1(k) = i

A(k) ± 1 i < p−1(k) ≤ j

A(k) otherwise

123

M. Piekenbrock, J. A. Perea

Thus, A may be partitioned into at most four contiguous intervals, each upon which
the update is constant. Such updates are called range updates, and are known to require
O(logm) time using e.g. an implicit treap data structure (Blelloch and Reid-Miller
1998).

Since single element modifications, deletions, insertions, and constant range
updates can all be achieved in O(logm) expected time with such a data structure,
we conclude that equation (18) may be solved in just O(d2 logm) time.

Example We re-use the previous example of sorting the sequence p = (4, 2, 7, 1, 8,
6, 3, 5, 0) to the identity ι = [m] using a precomputed LIS L = (1, 3, 5). In the left
table shown below, we display the same sorting as before, with elements chosen to
move highlighted in yellow; on the right, a table showing the entries ofA are recorded.

The colors in the right table group the range updates: green values are unchanged
between rows, blue values are modified (and shifted) by ±1, and orange values are
modified arbitrarily. As before, the i th entry of the column on the left-side shows
F(ŝi ◦ p, ι). Small black lines are used to show how the entries inA which change by
±1 move.

4 Applications and experiments

4.1 Video data

A common application of persistence is characterizing topological structure in image
data. Since a set of “snapshot” frames of a video can be equivalently thought of
as discrete 1-parameter family, our framework provides a natural extension of the
typical image analysis to video data. To demonstrate the benefit of scheduling and the
scalability of the greedy heuristic, we perform two performance tests on the video data
from Sect. 1.2: one to test the impact of repairing the decomposition less and one to
measure the asymptotic behavior of the greedy approach.

In the first test, we fix a grid size of 9 × 9 and record the cumulative number
of column operations needed to compute persistence dynamically across 25 evenly-
spaced time points using a variety of scheduling strategies. The three strategies we
test are the greedy approach from section 3.4.2, the “simple” approach which uses
upwards of O(m) move permutations via selection sort, and a third strategy which
interpolates between the two. To perform this interpolation, we use a parameter α ∈
[0, 1] to choose m − α · d random simplices to move using the same construction

123

Move schedules: fast persistence computations in coarse dynamic settings

Fig. 3 Performance comparison between various scheduling strategies. On the left, the cumulative column
operations required to compute the 1-parameter family is shown for varying schedule sizes (d) and strategies.
On the right, both the size of the schedule and the data set (m) are varied

method outlined in section 3.3. The results are summarized in the left graph on Fig. 3,
wherein the mean schedule cost of the random strategies are depicted by solid lines.
To capture the variation in performance, we run 10 independent iterations and shade
the upper and lower bounds of the schedule costs. As seen in Fig. 3, while using less
move operations (lower α) tends to reduce column operations, constructing random
schedules of minimal size is no more competitive than the selection sort strategy.
This suggests that efficient schedule construction needs to account for the structure of
performing several permutations in sequence, like the greedy heuristic we introduced,
to yield an adequate performance boost.

In the second test, we aim to measure the asymptotics of our greedy LCS-based
approach. To do this, we generated 8 video data sets again of the expanding annulus
outlined in section 1.2, each of increasing grid sizes of 5× 5, 6× 6, . . . , 12× 12. For
each data set, we compute persistence over the duration of the video, again testing five
evenly spaced settings of α ∈ [0, 1]—the results are shown in the right plot of Fig. 3.
On the vertical axis, we plot the total number of column operations needed to compute
persistence across 25 evenly-spaced time points as a ratio of the data set size (m); we
also show the regression curves one obtains for each setting of α. As one can see from
the Figure, the cost of using the greedy heuristic tends to increase sub-linearly as a
function of the data set size, suggesting the move scheduling approach is indeed quite
scalable. Moreover, schedules with minimal size tended to be cheaper than otherwise,
confirming our initial hypothesis that repairing the decomposition less can lead to
substantial reductions at run-time.

4.2 Crocker stacks

There are many challenges to characterizing topological behavior in dynamic set-
tings. One approach is to trace out the curves constituting a continuous family of
persistence diagrams in R

3—the vineyards approach—however this visualization can
be cumbersome to workwith as there are potentially many such vines tangled together,
making topological critical events with low persistence difficult to detect. Moreover,
the vineyards visualization does not admit a natural simplification utilizing the stabil-

123

M. Piekenbrock, J. A. Perea

Fig. 4 A Crocker plot (right) depicts the evolution of dimension p = 1 Betti curves over time. The green X
marks correspond chronologically to the complexes (left), in row-major order. The large orange and purple
areas depict 1-cycles persisting in both space (y-axis) and time (x-axis)

ity properties of persistence, as individual vines are not stable: if two vines move near
each other and then pull apart without touching, then a pairing in their corresponding
persistence diagrams may cross under a small perturbation, signaling the presence of
an erroneous topological critical event (Topaz et al. 2015; Xian et al. 2020).

Acknowledging this, Topaz et al. (2015) proposed the use of a 2-dimensional sum-
mary visualization, called a crocker8 plot. In brief, a crocker plot is a contour plot of
a family of Betti curves. Formally, given a filtration K = K0 ⊆ K1 ⊆ · · · ⊆ Km , a
p-dimensional Betti curve β•

p is defined as the ordered sequence of p-th dimensional
Betti numbers:

β•
p = { rank(Hp(K0)), rank(Hp(K1)), . . . , rank(Hp(Km)) }

Given a time-varying filtration K (τ), a crocker plot displays changes to β•
p(τ) as a

function of τ . An example of a crocker plot generated from the simulation described
below is given in Fig. 4. Since only the Betti numbers at each simplex in the filtration
are needed to generate theseBetti curves, the persistence diagram is not directly needed
to generate a crocker plot; it is sufficient to use e.g. any of the specialized methods
discussed in 1.1. This dependence only on the Betti numbers makes crocker plots
easier to compute than standard persistence, however what one gains in efficiency one
loses in stability; it is known that Betti curves are inherently unstable with respect to
small fluctuations about the diagonal of the persistence diagram.

Xian et al. (2020) showed that crocker plots may be smoothed to inherit the stability
property of persistence diagrams and reduce noise in the visualization. That is, when
applied to a time-varyingpersistencemoduleM = {Mt }t∈[0,T], anα-smoothed crocker
plot for α ≥ 0 is the rank of the map Mt (ε − α) → Mt (ε + α) at time t and scale
ε. For example, the standard crock plot is a 0-smoothed crocker plot. Allowing all
three parameters (t, ε, α) to vary continuously leads to 3D visualization called an
α-smoothed crocker stack.

8 crocker stands for “ContourRealizationOfComputed k-dimensional holeEvolution in theRips complex.”
Although the acronym includes Rips complexes in the name, in principle a crocker plot could just as easily
be created using other types of triangulations (e.g. Čech filtrations).

123

Move schedules: fast persistence computations in coarse dynamic settings

Definition 2 (crocker stack) A crocker stack is a family of α-smoothed crock plots
which summarizes the topological information of a time-varying persistence module
M via the function fM : [0, T] × [0,∞) × [0,∞) → N, where:

fM (t, ε, α) = rank(Mt (ε − α) → Mt (ε + α))

and fM satisfies fM (t, ε, α′) ≤ fM (t, ε, α) for all 0 ≤ α ≤ α′.

Note that, unlike crocker plots, applying this α smoothing efficiently requires the
persistence pairing. Indeed, it has been shown that crocker stacks and stacked per-
sistence diagrams (i.e. vineyards) are equivalent to each other in the sense that either
one contains the information needed to reconstruct the other (Xian et al. 2020). Thus,
computing crocker stacks reduces to computing the persistence of a (time-varying)
family of filtrations.

To illustrate the applicability of our method, we test the efficiency of computing
these crocker stacks using a spatio-temporal data set. Specifically, we ran a flocking
simulation similar to the one run in Topaz et al. (2015) with m = 20 vertices moving
around on the unit square equipped with periodic boundary conditions (i.e. S1 × S1).
We simulated movement by equipping the vertices with a simple set of rules which
control how the individual vertices position change over time. Such simulations are
also called boid simulations, and they have been extensively used asmodels to describe
how the evolution of collective behavior over time can be described by simple sets
of rules. The simulation is initialized with every vertex positioned randomly in the
space; the positions of vertices over time is updated according to a set of rules related
to the vertices’ acceleration, distance to other vertices, etc. To get a sense of the time
domain, we ran the simulation until a vertex made at least 5 rotations around the torus.

Given this time-evolving data set, we computed the persistence diagram of the Rips
filtration up to ε = 0.30 at 60 evenly spaced time points using three approaches: the
standard algorithm pHcol applied naively at each of the 60 time steps, the vineyards
algorithm applied to (linear) homotopy connecting filtrations adjacent in time, and our
approach using moves. The cumulative number of O(m) column operations executed
by three different approaches. Note again that vineyards requires generating many
decompositions by design (in this case, ≈ 1.8M). The standard algorithm pHcol
and our move strategy were computed at 60 evenly spaced time points. As depicted
in Fig. 5, our moves strategy is far more efficient than both vineyards and the naive
pHcol strategies.

4.3 Multiparameter persistence

Given a procedure to filter a space in multiple dimensions simultaneously, a multi-
filtration, the goal of multi-parameter persistence is to identify persistent features by
examining the entire multifiltration. Such a generalization has appeared naturally in
many application contexts, showing potential as a tool for exploratory data analysis
(Lesnick 2012). Indeed, one of the drawbacks of persistence is its instability with
respect to strong outliers, which can obscure the detection of significant topological
structures (Buchet et al. 2015). One exemplary use case of multi-parameter persis-

123

M. Piekenbrock, J. A. Perea

Fig. 5 On the left, the cumulative number of column operations (log-scale) of the three baseline approaches
tested. On the right, the normalized Kτ between adjacent filtrations depicts the coarseness of the
discretization—about 5% of the ≈ O(m2) simplex pairs between adjacent filtrations are discordant

tence is to detect these strong outliers by filtering the data with respect to both the
original filter function and density. In this section, we show the utility of scheduling
with a real-world use case: detecting the presence of a low-dimensional topological
space which well-approximates the distribution of natural images. As a quick outline,
in what follows we briefly recall the fibered barcode invariant 4.3.1, summarize its
potential application to a particular data set with known topological structure 4.3.2,
and conclude with experiments of demonstrating how scheduling enables such appli-
cations 4.3.3.

4.3.1 Fibered barcode

Unfortunately, unlike the one-parameter case, there is no complete discrete invariant
for multi-parameter persistence. Circumventing this, Lesnick andWright (2015) asso-
ciate a variety of incomplete invariants to 2-parameter persistence modules; we focus
here on the fibered barcode invariant, defined as follows:

Definition 3 (Fibered barcode). The fibered barcodeB(M) of a 2D persistencemodule
M is the map which sends each line L ⊂ R

2 with non-negative slope to the barcode
BL(M):

B(M) = { BL(M) : L ∈ R × R
+ }

Equivalently, B(M) is the 2-parameter family of barcodes given by restricting M to
the of set affine lines with non-negative slope in R

2.

Although an intuitive invariant, it is not clear how one might go about computing
B(M) efficiently. One obvious choice is fix L via a linear combination of two filter
functions, restrict M to L , and compute the associated 1-parameter barcode. However,

123

Move schedules: fast persistence computations in coarse dynamic settings

Fig. 6 Bipersistence example on an 8 × 8 coarsened grid. On the left, the input data, colored by density.
In the middle, the bigraded Betti numbers β0(M) and β1(M) (green and red, respectively), the dimension
function (gray), and a line L emphasizing the persistence of features with high density. On the right, the
line arrangementA(M) lying in the dual space derived from the β(M)

this is an O(m3) time computation, which is prohibitive for interactive data analysis
purposes.

Utilizing the equivalence between the rank and fibered barcode invariants, Lesnick
and Wright (2015) developed an elegant way of computing B(M) via a re-
parameterization using standard point-line duality. This clever technique effectively
reduces the fibered barcode computation to a sequence of 1-D barcode computations
at “template points” lyingwithin the 2-cells of a particular planar subdivisionA(M) of
the half-plane [0,∞) × R. This particular subdivision is induced by the arrangement
of “critical lines” derived by the bigraded Betti numbers β(M) of M . As the barcode
of one template point Te at the 2-cell e ∈ A(M) may be computed efficiently by
re-using information from an adjacent template point Te′ , Lesnick and Wright (2015)
observed that computing the barcodes of all such template points (and thus, B(M))
may be reduced to ordering the 2-cells in A(M) along an Eulerian path traversing
the dual graph of A(M). The full algorithm is out of scope for this effort; we include
supplementary details for the curious reader in the appendix A.4.

Example 4.1 Consider a small set of noisy points distributed around S1 containing a
few strong outliers, as shown on the left side of Fig. 6. Filtering this data set with
respect to the Rips parameter and the complement of a kernel density estimate yields
a bifiltration whose various invariants are shown in the middle figure. The gray areas
indicate homology with positive dimension—the lighter gray area dim1(M) = 1
indicates a persistent loop was detected. On the right side, dual space is shown: the
black lines are the critical lines that formA(M), the blue dashed-lines the edges of the
dual graph ofA(M), the rainbow lines overlaying the dashed-lines form the Eulerian
path, and the orange barycentric points along the 2-cells ofA(M) represent where the
barcodes templates Te are parameterized.

Despite its elegance, there are significant computational barriers prohibiting the 2-
parameter persistence algorithm from being practical. An analysis from Lesnick and
Wright (2015) (using vineyards) shows the barcodes template computation requires on
the order of O(m3κ+mκ2 log κ) elementary operations and O(mκ2) storage, where κ

is a coarseness parameter. Since the number of 2-cells inA(M) is on the order O(κ2),

123

M. Piekenbrock, J. A. Perea

and κ itself is on the order of O(m2) in the worst case, the scaling of the barcode
template computation may approach ≈ O(m5)—this is both the highest complexity
and most time-intensive sub-procedure the RIVET software [11] depends on. Despite
this significant complexity barrier, in practice the external stability result from Landi
(2014) justifies the use of a grid-like reduction procedure which approximates the
module M with a smaller module M ′, enabling practitioners to restrict the size of κ

to a relatively small constant. This in-turn dramatically reduces the size ofA(M) and
thus the number of barcode templates to compute. Moreover, the ordering of barcode
templates given by the dual graph traversal implies that adjacent template points should
be relatively close—so long as κ is not too small—suggesting adjacent templates
may productively share computations due to the high similarity of their associated
filtrations. Indeed, as algorithm 3 was designed for precisely such a computation, 2-
parameter persistence is prototypical of the class of methods that stand to benefit from
moves.

4.3.2 Natural images dataset

A common hypothesis is that high dimensional data tend to lie in the vicinity of an
embedded, low dimensional manifold or topological space. An exemplary demonstra-
tion of this is given in the analysis by Lee et al. (2003), who explored the space of
high-contrast patches extracted from Hans van Hateren’s Hateren and Schaaf (1998)
still image collection,9 which consists of≈ 4, 000 monochrome images depicting var-
ious areas outside Groningen (Holland). In particular, Lee et al. (2003) were interested
in exploring how high-contrast 3 × 3 image patches were distributed, in pixel-space,
with respect to predicted spaces andmanifolds. Formally, theymeasured contrast using
a discrete version of the scale-invariant Dirichlet semi-norm:

‖x‖D =
√∑

i∼ j

(xi − x j)2 =
√
xT Dx

where D is a fixed matrix whose quadratic form xT Dx applied to an image x ∈
R
9 is proportional to the sum of the differences between each pixels 4 connected

neighbors (given above by the relation i ∼ j). Their research was primarily motivated
by discerning whether there existed clear qualitative differences in the distributions
of patches extracted from images of different modalities, such as optical and range
images. By mean-centering, contrast normalizing, and“whitening” the data via the
DiscreteCosineTransform (DCT), they showa convenient basis for Dmaybe obtained
via an expansion of 8 certain non-constant eigenvectors, shown below:

9 See http://bethgelab.org/datasets/vanhateren/ for details on the image collection.

123

http://bethgelab.org/datasets/vanhateren/

Move schedules: fast persistence computations in coarse dynamic settings

Fig. 7 Bipersistence example of natural images data set on a 12×16 coarsened grid. On the left, a projection
of the full data set is shown, along with the 15 landmark patches. (Middle) the bigraded Betti numbers and
a fixed line L over parameter space. As before, the 0/1/2 dimension bigraded Betti numbers are shown in
green/red/yellow, respectively, with the blue region highlighting where dim(M) = 5. (Right) five persistent
features representing BL (M) are revealed from the middle, matching β1 of the three-circle model

Since these images are scale-invariant, the expansion of these basis vectors spans the
7-sphere, S7 ⊂ R

8. Using a Voronoi cell decomposition of the data, their distribution
analysis suggested that the majority of data points concentrated in a few high-density
regions.

In follow-up work, Carlsson et al. (2008) found—using persistent homology—that
the distribution of high-contrast 3×3 patches is actually well-approximated by aKlein
bottle M—around 60% of the high-contrast patches from the still image data set lie
within a small neighborhood around M accounting for only 21% of the 7-sphere’s
volume. Along a similar vein, Perea and Carlsson (2014) established a dictionary
learning framework for efficiently estimating the distribution of patches from texture
images, prompting applications for persistent homology in sparse coding contexts.

If one was not aware of the analysis done by Lee et al. (2003); Hateren and Schaaf
(1998); Carlsson et al. (2008); Perea and Carlsson (2014), it is not immediately clear a
priori that the Klein bottle model is a good candidate for capturing the non-linearity of
image patches. Indeed, armedwith a refined topological intuition, Carlsson still needed
to perform extensive sampling, preprocessing, and model fitting techniques in order
to reveal the underlying the topological space with persistent homology (Carlsson
et al. 2008). One reason such preprocessing is needed is due to persistent homology’s
aforementioned instability with respect to strong outliers. In the ideal setting, a multi-
parameter approach that accounts for the local density of points should require far less
experimentation.

To demonstrate the benefit of 2-parameter persistence on the patch data, consider
the (coarsened) fibered barcode computed from a standard Rips/codensity bifiltration
on a representative sample of the image data from Hateren and Schaaf (1998), shown
in Fig. 7. From the bigraded Betti number and the dimension function, one finds that
a large area of the dimension function is constant (highlighted as the blue portion in
the middle of Fig. 7), wherein the first Betti number is 5. Further inspection suggests
one plausible candidate is the three-circle model C3, which consists of three circles,
two of which (say, Sv and Sh) intersect the third (say, Slin) in exactly two points, but
themselves do not intersect. Projecting the image data onto the first two basis vectors

123

M. Piekenbrock, J. A. Perea

from the DCT shown above leads to the projection shown in the top left of Fig. 7, of
which 15 landmark points are also shown. Observe the data are distributed well around
three “circles”—the outside circle capturing the rotation gradient of the image patches
(Slin), and the other two capturing the vertical and horizontal gradients (Sv and Sh ,
respectively). Since the three circle model is the 1-skeleton of the Klein bottle, one
may concur with Carlssons analysis (Carlsson et al. 2008) that the Klein bottle may
be a reasonable candidate upon which the image data are distributed.

The degree to which multi-parameter persistence simplifies this exploratory phase
cannot be understated: we believe multi-parameter persistence has a larger role to
play in manifold learning. Unfortunately, as mentioned prior, the compute barriers
effectively bar its use in practice.

4.3.3 Accelerating 2D persistence

Having outlined the computational theory of 2-parameter persistence, we now demon-
strate the efficiency of moves using the same high-contrast patch data set studied in
Lee et al. (2003) by evaluating the performance of various methods at computing the
fibered barcode invariant via the parameterization from A.4.

Due to the aforementioned high complexity of the fibered barcode computation,
we begin by working with a subset of the image patch data X . We combine the use of
furthest-point sampling and proportionate allocation (stratified) sampling to sample
landmarks X ⊂ X distributedwithin n = 25 strata. Each stratum consists of the (1/n)-
thick level set given the k-nearest neighbor density estimator ρ15 with k = 15. The
use of furthest-point sampling gives us certain coverage guarantees that the geometry
is approximately preserved within each level set, whereas the stratification ensures the
original density of is approximated preserved as well. From this data set, we construct
a Rips-(co)density bifiltration using ρ15 equipped with the geodesic metric computed
over the same k-nearest neighbor graph on X . Finally, we record the number of column
reductions needed to compute the fibered barcode at a variety of levels of coarsening
using pHcol, vineyards, and our moves approach. The results are summarized in
Table 1.We also record the number of 2-cells inA(M) and the number of permutations
applied encountered along the traversal of the dual graph for both vineyards andmoves,
denoted in the table as dK and dLCS, respectively.

As shown on the table, when the coarsening κ is small enough, we’re able to
achieve a significant reduction in the number of total column operations needed to
compute T compared to both vineyards and pHcol. This is further reinforced by the
observation that vineyards is particularly inefficient when then 1-parameter family is
coarse. Indeed,moves requires about 3x less columnoperations thannaively computing
T independently. However, note that as the coarsening becomes more refined and
more 2-cells are added to A(M), vineyards becomes a more viable option compared
to pHcol—as the asymptotics suggests—though even at the highest coarsening we
tested the gain in efficiency is relatively small. In contrast,moves scales quite well with
this refinement, requiring about 12% and ≈ 5% of the number of column operations
as vineyards and pHcol, respectively.

123

Move schedules: fast persistence computations in coarse dynamic settings

Table 1 Cost to computing T for various coarsening choices of β(M)

β(M) A(M) Col. Reductions / Permutations

Coarsening # 2-cells phCol Vineyards/dK Moves/dLCS

8 x 8 39 94.9K 245K / 1.53M 38.0K / 11.6K

12 x 12 127 318K 439K / 2.66M 81.9K / 33.0K

16 x 16 425 1.07M 825K / 4.75M 114K / 87.4K

20 x 20 926 2.32M 1.15M / 6.77M 148K / 154K

24 x 24 1.53K 3.92M 1.50M / 8.70M 184K / 232K

5 Conclusion and future work

In conclusion,wepresented a scheduling algorithm for efficiently updating a decompo-
sition in coarse dynamic settings. Our approach is simple, relatively easy to implement,
and fully general: it does not depend on the geometry of underlying space, the choice
of triangulation, or the choice of homology dimension. Moreover, we supplied effi-
cient algorithms for our scheduling strategy, provided tight bounds where applicable,
and demonstrated our algorithms performance with several real world use cases.

There are many possible applications of our work beyond the ones discussed in
section 4, such as e.g. accelerating PH featurization methods or detecting homological
critical points in dynamic settings. Indeed, we see our approach as potentially useful
to any situation where the structure of interest can be cast as a parameterized family
of persistence diagrams. Areas of particular interest include time-series analysis and
dynamic metric spaces (Kim and Mémoli 2020).

The simple and combinatorial nature of our approach does pose some limitations to
its applicability. For example, better bounds or algorithmsmaybeobtainable if stronger
assumptions can be made on how the filtration is changing with time. Moreover, if
the filtration (K , f) shares little similarity to the “target” filtration (L, f ′), then the
overhead of reducing the simplices from L \K appended to the decomposition derived
from K may be large enough to motivate simply computing the decomposition at L
independently. Our approach is primarily useful if the filtrations in the parameterized
family are “nearby” in the combinatorial sense.

From an implementation perspective, one non-trivial complication of our approach
is its heavy dependence on a particular sparse matrix data structure, which permits
permuting both the row and columns of a given matrix in at most O(m) time (Cohen-
Steiner et al. 2006). As shown with the natural images example in section 4, there are
often more permutation operations being applied than there are column reductions.
In the more standard compressed sparse matrix representations,10 permuting both the
rows and columns generally takes at most O(Z) time, where Z is the number of non-
zero entries, which can be quite expensive if the particular filtration has many cycles.

10 By“standard,”wemean anyof the common sparse representations used in scientific computingpackages,
like SciPy’s sparse module (https://docs.scipy.org/doc/scipy/reference/sparse.html) .

123

https://docs.scipy.org/doc/scipy/reference/sparse.html

M. Piekenbrock, J. A. Perea

As a result, the more complex sparse matrix representation from Cohen-Steiner et al.
(2006) is necessary to be efficient in practice.

Moving forward, our results suggest there are many aspects of computing persis-
tence in dynamic settings yet to be explored. For example, it’s not immediately clear
whether one could adopt, for example, the twist optimization (Chen and Kerber 2011)
used in the reduction algorithm to the dynamic setting. Another direction to explore
would be the analysis of our approach under the cohomology computation (De Silva
et al. 2011), or the specialization of the move operations to specific types of filtrations
such as Rips filtrations. Such adaptations may result in even greater reductions in
the number of column operations, as have been observed in practice for the standard
reduction algorithm (Bauer 2021). Moreover, though we have carefully constructed
an efficient greedy heuristic in sect. 3.4.2 and illustrated a different perspective with
which to view our heuristic (via crossing minimization), it is an open question whether
there exists a more structured reduction of (14) or (17) to a better-known problem.

Author Contributions The contributions of each author to this article were as follows: MP: conceptualiza-
tion, methodology design, algorithm development, experimental design & analysis, software development.
JP: Conceptualization, methodology design, literature review, critical revision of the manuscript, final
approval of the version to be published. All authors have reviewed and approved the final version of the
manuscript and have agreed to be accountable for all aspects of the work.

Funding Open access funding provided by Northeastern University Library. This work was partially
supported by the National Science Foundation through grants CCF-2006661 and CAREER award DMS-
1943758. The research presented in this work is partially supported by the National Science Foundation
through grants CCF-2006661 and CAREER award DMS-1943758. The funding source had no role in the
study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Data availability Links to the software and data used for the experiments can be found at: https://github.
com/peekxc/move_schedules.

Declarations

Conflict of interest The authors declare that they have no competing interests that could influence the
interpretation or presentation of the research findings. There are no financial or personal relationships with
individuals or organizations that could bias the outcomes of this work.

Ethical Approval Not applicable.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

https://github.com/peekxc/move_schedules
https://github.com/peekxc/move_schedules
http://creativecommons.org/licenses/by/4.0/

Move schedules: fast persistence computations in coarse dynamic settings

A Appendix

A.1 Algorithms

A.1.1 Reduction algorithm

The reduction algorithm, also called the “standard algorithm,” is the most widely used
modality for computing persistence.While there exists other algorithms for computing
persistence, they are typically not competitive with the reduction algorithm in practice.
We outline the reduction pseudocode in Algorithm 4.

Algorithm 4 Reduction Algorithm (pHcol)
Require: D = (m × m) filtration boundary matrix
Ensure: R is reduced, V is full rank upper triangular, and R = DV

1: function Reduction(D)
2: (R, V) ← (D, I)

3: for j = 1 to m do
4: while ∃ i < j such that lowR(i) = lowR(j) do
5: λ ← pivotR(j)/pivotR(i)

6: (colR(j), colV (j)) −= (λ · colR(i), λ · colV (i))
7: end while
8: end for
9: return (R, V)

10: end function

The algorithm begins by copying D to a newmatrix R, to be subsequently modified
in-place. After V is set to the identity, the algorithm proceeds with column operations
on both R and V , left to right, until the decomposition invariants are satisfied. Since
each column operation takes O(m) and there are potentially O(k) columns in D with
identical low entries (line 4 in 4, observe that the reduction algorithm below clearly
takes O(m2k) time. Since there exist complexes where k ∼ O(m), one concludes the
bound of O(m3) is tight, though this seems to only be true on pathological inputs.
A more refined analysis by Edelsbrunner et al. (2000) shows the reduction algorithm
scales by the sum of squares of the cycle persistences.

Move Algorithms

As we have covered the moves algorithm extensively in Sect. 2.3, we now record
the algorithmic components of both MoveRight and MoveLeft. Though conceptually
similar, note that there is an asymmetry between MoveRight and MoveLeft: moving
a simplex upwards in the filtration requires removing non-zero entries along several
columns of a particular row in V so that the corresponding permutation does not render
V non-upper triangular. The key insight of the algorithm presented in Busaryev et al.

123

M. Piekenbrock, J. A. Perea

(2010) is that R can actually be maintained in all but one column during this procedure
(by employing the donor column). In contrast, moving a simplex to an earlier time
in the filtration requires removing non-zero entries along several rows of a particular
column of V . As before, though R stays reduced during this cancellation procedure
in all but one column, the subsequent permutation to R requires reducing a pair of
columns which may cascade into a larger chain of column operations to keep R
reduced. This is due to the fact that higher entries in columns in R (above the pivot
entry) may very well introduce additional non-reduced columns after R is permuted.
Since these operations always occur in a left-to-right fashion, it is not immediately
clear how to apply a donor columnkind of concept. Fortunately, likemove right,we can
still separate the algorithm into a reduction and restoration phase—see Algorithm 2.
Moreover, since R is reduced in all but one column by line 6 in Algorithm 2, we can
still guarantee the number of low entries to reduce in R will be at most |i − j |. For a
supplementary description of the move algorithm, see Busaryev et al. (2010).

A.1.2 LCS-Sort

Here we record explicitly the schedule construction algorithm outlined in Sect. 3.3.
The algorithm is simple enough to derive using the rules discussed in section 3.3
(namely, equation (12), but nonetheless for posterity’s sake, we record it here for the
curious reader; the pseudocode is given in Algorithm 5.

Algorithm 5 Schedule construction algorithm
Require: Fixed p̄ ∈ Sm , LIS L of p̄, and heuristic h
Ensure: [m] = sd ◦ sd−1 ◦ · · · ◦ s1 ◦ p̄ for output sequence S = (si)di=1,
1: function Schedule(p̄, L, h = greedy) � See 3.4.1 for heuristic discussion
2: (S, D) ← (∅, [m] \ L)

3: while D is not empty do
4: Select an element k ∈ D using heuristic h � e.g. equation (18)
5: kpred ← max{� ∈ L | � ≤ k} � O(log logm) using U
6: ksucc ← min{� ∈ L | � ≥ k} � O(log logm) using U
7: (i, i p, in) ← (p̄−1(k), p̄−1(kpred), p̄−1(ksucc)) � O(1)
8: j ← arbitrary j ∈ [i p, in) if i < i p else j ∈ (i p, in] � O(1)
9: (S,D,L) ← (S ∪ (i, j), D \ k, L ∪ k) � O(log logm)

10: p̄−1 ← p̄−1 ◦ m−1
i j where mi j is given by (8) � O(m)

11: end while
12: return S
13: end function

The high level idea of the algorithm is to first construct the LCS between two
permutations p, q ∈ Sm . To do this efficiently, one re-labels q �→ ι to the identity
permutation ι = [m] and applies a consistent re-labeling p �→ p̄. This relabeling
preserves the LCS distance and has the additional advantage that q̄ = ι = [m] is

123

Move schedules: fast persistence computations in coarse dynamic settings

a strictly increasing subsequence, and thus computing the LCS between p, q ∈ Sm
reduces to computing the LIS L of p̄. By sorting p̄ �→ ι by operations that (strictly)
increase the size of L, we ensure that the size of the corresponding schedule is exactly
m − |L|.

The algorithmic steps are as follows: given a LIS L has been computed from p̄,
since L is strictly increasing, the only elements left to permute are in L\ p̄, which
we denote with D. After choosing any σ ∈ D, one then applies a cyclic permutation
to p̄ that moves σ to any position that increases the size of L. To do this efficiently,
we use a set-like data structure U that supports efficient querying the successor and
predecessor of any given s ∈ p̄ with respect to L (such as a vEB tree). The simplified
pseudocode also uses the inverse permutation p̄ to query the position of a given element
σ ∈ p̄, although a more efficient representation can be used via an implicit treap of the
displacements array; see Sect. 3.4.2. After σ is inserted intoL, we update p̄, its inverse
permutations p̄−1, D and U prior to the next move. The final set of permutations to
sort p̄ → ι (or equivalently, p �→ q) are stored in an array S, which is then returned
for further use.

A.2 Greedy Counter Example

In this sectionwe give a simple counter-example showing that the strategy that greedily
chooses valid move permutations {mi j } minimizing the quantity

costRV (mi j) =
j∑

l=i+1

1 (vl(i) �= 0) +
m∑

l=1

1 (lowR(l) ∈ [i, j] and rl(i) �= 0)

can lead to arbitrarily bad behavior.A pair of filtrations is given below, each comprising
the 1-skeleton of a 3-simplex. Relabeling (K , f) to the index set f : K → [m] and
modifying (K , f ′) accordingly yields the permutations:

(K , f) = {a b c d u v w x y z} = 1 2 3 4 5 6 7 8 9 10

(K , f ′) = {a b c d x y z u v w} = 1 2 3 4 8 9 10 5 6 7

The values colored in red corresponds to LCS(f , f ′). For this example, the edit dis-
tance is d = m − |LCS(f , f ′)| implies exactly 3 moves are needed to map f �→ f ′.
There are six possible valid schedules of moves:

S1 = mxu,myu,mzu S3 = myu,mxy,mzu S5 = mzu,mxz,myz

S2 = mxu,mzu,myz S4 = myu,mzu,mxy S6 = mzu,myz,mxz

where the notation mxy represents the move permutation that moves x to the position
of y. The cost of each move operation and each schedule is recorded in Table 2.

Note the greedy strategy which always selects the cheapest move in succession
would begin by moving x or z first, since these are the cheapest moves available,
which implies one of S1, S2, S5, S6 would be picked on the first iteration. While the

123

M. Piekenbrock, J. A. Perea

Table 2 Move schedule costs
Cost of each permutation

1st 2nd 3rd Total

S1 2 3 1 6

S2 2 2 4 8

S3 4 2 2 8

S4 4 3 3 10

S5 2 2 4 8

S6 2 5 3 10

cheapest schedule S1 is in this candidate set, an iterative greedy procedure would pick
either S2 or S5, depending on the tie-breaker—thus, a greedy approach picking the
lowest-cost move may not yield an optimal schedule. Indeed, as the most expensive
schedule S6 is in initial iterations candidate set, we see that a greedy-procedure with
an arbitrary tie-breaker could potentially yield a maximal-cost schedule.

A.3 Crossingminimization

Conceptually, one way to view (15) is as a crossing minimization problem over a set of
k−1 bipartite graphs. To see this, consider two permutations: p andmi j ◦ p, wheremi j

is a move permutation. Drawing (p,mi j ◦ p) as a bipartite graph (U , V , E), observe
that there are |i − j | edge crossings in the graph, and thus minimizing (15) is akin to
a structured variation of the k-layered crossing minimization problem. This is shown
in an example below.

Example Let p = (1 2 3 4 5 6 7 8 9) and q = (9 4 2 7 1 8 6 3 5). An example of
three possible schedules, S1, S2, and S3 sorting p into q is given in the figure below.

Each column represents the successive application of a move mi j in the schedule,
and the edges track the movement of each element of the permutation. Red vertices
track the LCS under each permutation. All three schedules were generated from the
same LCS(p, q) = (4 7 8) and each schedule transforms p �→ q in d = 6 moves.
In this example, S1 matches the minimal number of crossings amongst all possible
schedules, since Kτ (p, q) = 21.

123

Move schedules: fast persistence computations in coarse dynamic settings

We note that the problem we seek to solve is more structured than crossing minimiza-
tion, as we are restricted to performing valid cyclic permutations (i.e. permutations
which increase the size of the LIS).

A.4 2-parameter persistence

We now describe the reparameterization between the bigraded Betti numbers and the
set of “critical lines” Lesnick andWright (Lesnick 2012) used to create their interactive
2d persistence algorithm, beginningwith point-line duality. LetL denote the collection
of all lines in R

2 with non-negative slope, L ⊂ L the collection of all lines with non-
negative finite slope, and L◦ the collection of all affine lines with positive finite slope.
Define the line and point dual transforms D� and Dp, respectively, as follows:

D� : L → [0,∞) × R Dp : [0,∞) × R → L
y = ax + b �→ (a,−b) (c, d) �→ y = cx − d

(19)

The transforms D� and Dp are dual to each other in the sense that for any point
a ∈ [0,∞) × R and any line L ∈ L, a ∈ L if and only if D�(L) ∈ Dp(a). Now, for
some fixed line L , define the push map pushL(a) : R

2 → L ∪ ∞ as:

pushL(a) �→ min{v ∈ L | a ≤ v} (20)

The push map satisfies a number of useful properties. Namely:

1 For r < s ∈ R
2, pushL(r) ≤ pushL(s)

2 For each a ∈ R
2, pushL(a) is continuous on L◦

3 For L ∈ L◦ and S ⊂ R
2, pushL induces an ordered partition SL on S

Property (1) elucidates how the standard partial order on R
2 restricts to a total order

on L for any L ∈ L, whereas Properties (2) and (3) qualify the following definition:

Definition 4 (Critical Lines). For some fixed S ⊂ R
2, a line L ∈ L◦ is defined to

be regular if there is an open ball B ∈ L◦ containing L such that SL = SL ′ for all
L ′ ∈ B. Otherwise, the line L is defined as critical.

The set of critical lines crit(M) with respect to some fixed set S ⊂ R
2 fully character-

izes a certain planar subdivision of the half plane [0,∞)×R. This planar subdivision,
denoted byA(M), is thus entirely determined by S under point line duality. A corollary
fromLesnick andWright (2015) shows that if the duals of two lines L, L ′ ∈ L are con-
tained in the same 2-cell inA(M), then SL = SL ′ , i.e. the partitions induced by pushL
are equivalent. Indeed, the total order on SL is simply the pullback of the total order
on L with respect to the push map. Since A(M) partitions the entire half-plane, the
dual to every line L ∈ L is contained within A(M)—the desired reparameterization.

To connect this construction back to persistence, one requires the definition of
bigraded Betti numbers. For our purposes, the i th-graded Betti number of M is simply
a function βi (M) : R

2 → N whose values indicate the number of elements at each
degree in a basis of the i th module in a free resolution for M—the interested reader

123

M. Piekenbrock, J. A. Perea

is referred to Lesnick and Wright (2015); Carlsson and Zomorodian (2009) for a
more precise algebraic definition. Let S = suppβ0(M) ∪ suppβ1(M), where the
functions β0(M), β1(M) are 0th and 1st bigraded Betti numbers of M , respectively.
The main mathematical result from Lesnick and Wright (2015) is a characterization
of the barcodes BL(M), for any L ∈ L, in terms of a set of barcode templates T
computed at every 2-cell in A(M). More formally, for any line L ∈ L and e any
2-cell in A(M) whose closure contains the dual of L under point-line duality, the
1-parameter restriction of the persistence module M induced by L is given by:

BL(M) = {[pushL(a), pushL(b)) | (a, b) ∈ T e, pushL(a) < pushL(b)} (21)

Minor additional conditions are needed for handling completely horizontal and vertical
lines. The importance of this theorem lies in the fact that the fibered barcodes are
completely defined from the precomputed barcode templates T —once every barcode
template T e has been computed and augmented onto A(M), B(M) is completely
characterized, and the barcodes BL(M) associated to a 1-D filtration induced by any
choice of L can be efficiently computed via a point-location query on A(M) and a
O(|BL(M)|) application of the push map.

A.4.1 Invariant computation

Computationally, the algorithm from Lesnick and Wright (2019) can be summarized
into three steps:

1 Compute the bigraded Betti numbers β(M) of M
2 Construct a line arrangement A(M) induced by critical lines from (1)
3 Augment A(M) with barcode templates Te at every 2-cell e ∈ A(M)

Computing (1) takes approximately ≈ O(m3) using a matrix algorithm similar to
Algorithm4 (Lesnick andWright 2019). Constructing and storing the line arrangement
A(M) with n lines and k vertices is related to the line segment intersection problem,
which known algorithms in computational geometry can solve in (optimal) output-
sensitive O((n + k) log n) time (Boissonnat and Preparata 2000). In terms of space
complexity, the number of 2-cells in A(M) is upper bounded by O(κ2), where κ is a
coarseness parameter associated with the computation of β(M).

There are several approaches one can use to compute T , the simplest being to run
Algorithm 4 independently on the 1-D filtration induced by the duals of some set of
points (e.g. the barycenters) lying in the interior of the 2-cells ofA(M). The approach
taken by Lesnick and Wright (2015) is to use the R = DV decomposition computed
at some adjacent 2-cell e ∈ A(M) to speed up the computation of an adjacent cell
e′ ∈ A(M). More explicitly, define the dual graph ofA(M) to be the undirected graph
G which has a vertex for every 2-cell e ∈ A(M) and an edge for each adjacent pair of
cells e, e′ ∈ A(M). Each vertex inG is associated with a barcode template T e, and the
computation of T now reduces to computing a path � on G which visits each vertex at
least once. To minimize the computation time, assume the n edges of G are endowed
with non-negative weights W = w1, w2, . . . , wn whose values wi ∈ R+ represent
some notion of distance which is proportional to the computational disparity between

123

Move schedules: fast persistence computations in coarse dynamic settings

adjacent template computations. The optimal path �∗ that minimizes the computation
time is then theminimal length path with respect toW which visits every vertex ofG at
least once. There is a known 3

2 -approximation that can be computed efficiently which
reduces the problem to the traveling salesman problem on a metric graph (Christofides
2022), and thus can be used so long as the distance function between templates is a
valid metrics. Lesnick (2012) use the Kendall distance between the push-map induced
filtrations, but other options are available—for example, any of the combinatorial
metrics we studied in Sect. 3.4.

References

Abboud, A., Backurs, A., Williams, V.V.: Tight hardness results for lcs and other sequence similarity
measures. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 59–78
(2015). IEEE

Adams, H., Emerson, T., Kirby, M., Neville, R., Peterson, C., Shipman, P., Chepushtanova, S., Hanson, E.,
Motta, F., Ziegelmeier, L.: Persistence images: a stable vector representation of persistent homology.
J. Mach. Learn. Res. 18, 1–35 (2017)

Baik, J., Deift, P., Johansson, K.: On the distribution of the length of the longest increasing subsequence of
random permutations. J. Am. Math. Soc. 12(4), 1119–1178 (1999)

Bauer, U.: Ripser: efficient computation of vietoris-rips persistence barcodes. J. Appl. Comput. Topol. 5,
1–33 (2021)

Bauer, U., Kerber, M., Reininghaus, J., Wagner, H.: Phat-persistent homology algorithms toolbox. J. Symb.
Comput. 78, 76–90 (2017)

Bergroth, L., Hakonen, H., Raita, T.: A survey of longest common subsequence algorithms. In: Proceedings
Seventh International Symposium on String Processing and Information Retrieval. SPIRE 2000, pp.
39–48 (2000). IEEE

Bespamyatnikh, S., Segal, M.: Enumerating longest increasing subsequences and patience sorting. Inf.
Process. Lett. 76(1–2), 7–11 (2000)

Biedl, T., Brandenburg, F.J., Deng, X.: On the complexity of crossings in permutations. Discret. Math.
309(7), 1813–1823 (2009)

Blelloch, G.E., Reid-Miller, M.: Fast set operations using treaps. In: Proceedings of the Tenth Annual ACM
Symposium on Parallel Algorithms and Architectures, pp. 16–26 (1998)

Boissonnat, J.-D., Karthik, C.S.: An efficient representation for filtrations of simplicial complexes. ACM
Trans. Algorithms TALG 14(4), 1–21 (2018)

Boissonnat, J.-D., Preparata, F.P.: Robust plane sweep for intersecting segments. SIAM J. Comput. 29(5),
1401–1421 (2000)

Boissonnat, J.-D., Snoeyink, J.: Efficient algorithms for line and curve segment intersection using restricted
predicates. Comput. Geom. 16(1), 35–52 (2000)

Buchet, M., Chazal, F., Dey, T.K., Fan, F., Oudot, S.Y., Wang, Y.: Topological analysis of scalar fields with
outliers. In: 31st International Symposium on Computational Geometry, pp. 827–841 (2015). Schloss
Dagstuhl, Leibniz-Zentrum fü Informatik GmbH

Busaryev, O., Dey, T.K., Wang, Y.: Tracking a generator by persistence. Discret. Math. Algorithms Appl.
2(04), 539–552 (2010)

Carlsson, G., Zomorodian, A.: The theory of multidimensional persistence. Discret. Comput. Geom. 42(1),
71–93 (2009)

Carlsson, G., Ishkhanov, T., De Silva, V., Zomorodian, A.: On the local behavior of spaces of natural images.
Int. J. Comput. Vision 76(1), 1–12 (2008)

Chen, C., Kerber, M.: Persistent homology computation with a twist. In: Proceedings 27th European work-
shop on computational geometry, vol. 11, pp. 197–200 (2011)

Chen, C., Kerber, M.: An output-sensitive algorithm for persistent homology. Comput. Geom. 46(4), 435–
447 (2013)

Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. In: Operations
Research Forum, vol. 3, pp. 1–4. Springer, Berlin (2022)

123

M. Piekenbrock, J. A. Perea

Cohen-Steiner, D., Edelsbrunner, H., Morozov, D.: Vines and vineyards by updating persistence in linear
time. In: Proceedings of the Twenty-second Annual Symposium on Computational Geometry, pp.
119–126 (2006)

Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discret. Comput. Geom.
37(1), 103–120 (2007)

De Silva, V., Morozov, D., Vejdemo-Johansson, M.: Dualities in persistent (co) homology. Inverse Prob.
27(12), 124003 (2011)

Delfinado, C.J.A., Edelsbrunner, H.: An incremental algorithm for Betti numbers of simplicial complexes
on the 3-sphere. Comput. Aided Geom. Design 12(7), 771–784 (1995)

Diaconis, P., Graham, R.L.: Spearman’s footrule as a measure of disarray. J. Roy. Stat. Soc.: Ser. B
(Methodol.) 39(2), 262–268 (1977)

Dinu, L.P., Manea, F.: An efficient approach for the rank aggregation problem. Theoret. Comput. Sci.
359(1–3), 455–461 (2006)

Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. In: Proceedings
41st annual symposium on foundations of computer science, pp. 454–463 (2000). IEEE

Kapron, B.M., King, V., Mountjoy, B.: Dynamic graph connectivity in polylogarithmic worst case time. In:
Proceedings of the twenty-fourth annual ACM-SIAM symposium on discrete algorithms, pp. 1131–
1142 (2013). SIAM

Kim, W., Mémoli, F.: Spatiotemporal persistent homology for dynamic metric spaces. Discret. Comput.
Geom. 66, 1–45 (2020)

Kumar, S.K., Rangan, C.P.: A linear space algorithm for the lcs problem. Acta Inf. 24(3), 353–362 (1987)
Labarre, A.: Lower bounding edit distances between permutations. SIAM J. Discret. Math. 27(3), 1410–

1428 (2013)
Landi, C.: The rank invariant stability via interleavings. arXiv preprint arXiv:1412.3374 (2014)
Lee, A.B., Pedersen, K.S., Mumford, D.: The nonlinear statistics of high-contrast patches in natural images.

Int. J. Comput. Vision 54(1), 83–103 (2003)
Lesnick, M., Wright, M.: Computing minimal presentations and bigraded betti numbers of 2-parameter

persistent homology. arXiv preprint arXiv:1902.05708 (2019)
Lesnick, M., Wright, M.: Interactive visualization of 2-d persistence modules. arXiv preprint

arXiv:1512.00180 (2015)
Lesnick, M.P.: Multidimensional interleavings and applications to topological inference. PhD thesis, Stan-

ford University (2012)
Luo, Y., Nelson, B.J.: Accelerating iterated persistent homology computations with warm starts. arXiv

preprint arXiv:2108.05022 (2021)
Oesterling, P., Heine, C., Weber, G.H., Morozov, D., Scheuermann, G.: Computing and visualizing time-

varying merge trees for high-dimensional data. In: Topological Methods in Data Analysis and
Visualization, pp. 87–101. Springer, NewYork (2015)

Otter, N., Porter, M.A., Tillmann, U., Grindrod, P., Harrington, H.A.: A roadmap for the computation of
persistent homology. EPJ Data Sci. 6, 1–38 (2017)

Perea, J.A., Carlsson, G.: A Klein-bottle-based dictionary for texture representation. Int. J. Comput. Vision
107(1), 75–97 (2014)

Polanco, L., Perea, J.A.: Adaptive template systems: Data-driven feature selection for learning with per-
sistence diagrams. In: 2019 18th IEEE international conference on machine learning and applications
(ICMLA), pp. 1115–1121 (2019). IEEE

The RIVET developers: RIVET. https://github.com/rivetTDA/rivet/
Topaz, C.M., Ziegelmeier, L., Halverson, T.: Topological data analysis of biological aggregation models.

PLoS ONE 10(5), 0126383 (2015)
Ulmer, M., Ziegelmeier, L., Topaz, C.M.: A topological approach to selecting models of biological experi-

ments. PLoS ONE 14(3), 0213679 (2019)
Van Hateren, J.H., van der Schaaf, A.: Independent component filters of natural images compared with

simple cells in primary visual cortex. Proc. Biol. Sci. 265(1394), 359–366 (1998)
Xian, L., Adams, H., Topaz, C.M., Ziegelmeier, L.: Capturing dynamics of time-varying data via topology.

arXiv preprint arXiv:2010.05780 (2020)
Zomorodian, A., Carlsson, G.: Computing persistent homology. Discret. Comput. Geom. 33(2), 249–274

(2005)

123

http://arxiv.org/abs/1412.3374
http://arxiv.org/abs/1902.05708
http://arxiv.org/abs/1512.00180
http://arxiv.org/abs/2108.05022
https://github.com/rivetTDA/rivet/
http://arxiv.org/abs/2010.05780

Move schedules: fast persistence computations in coarse dynamic settings

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Move schedules: fast persistence computations in coarse dynamic settings
	Abstract
	1 Introduction
	1.1 Related work
	1.2 A motivating example
	1.3 Main results
	2 Background
	2.1 The reduction algorithm
	2.2 Vineyards
	2.3 Moves

	3 Our contribution: move schedules
	3.1 Continuous setting
	3.2 Discrete setting
	3.3 Constructing schedules
	3.4 Minimizing schedule cost
	3.4.1 Greedy approach
	3.4.2 Proxy objective
	3.4.3 Heuristic computation

	4 Applications and experiments
	4.1 Video data
	4.2 Crocker stacks
	4.3 Multiparameter persistence
	4.3.1 Fibered barcode
	4.3.2 Natural images dataset
	4.3.3 Accelerating 2D persistence

	5 Conclusion and future work
	A Appendix
	A.1 Algorithms
	A.1.1 Reduction algorithm
	Move Algorithms
	A.1.2 LCS-Sort

	A.2 Greedy Counter Example
	A.3 Crossing minimization
	A.4 2-parameter persistence
	A.4.1 Invariant computation

	References

