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Abstract
The Eden Model in R

n constructs a blob as follows: initially a single unit hypercube
is infected, and each second a hypercube adjacent to the infected ones is selected
randomly and infected. Manin, Roldán, and Schweinhart investigated the topology of
the Eden model in R

n by considering the possible shapes which can appear on the
boundary. In particular, they give probabilistic lower bounds on the Betti numbers of
the Eden model. In this paper, we prove analogous results for the Eden model on any
infinite, vertex-transitive, locally finite graph: with high probability as time goes to
infinity, every “possible” subgraph (with mild conditions on what “possible” means)
occurs on the boundary of the Eden model at least a number of times proportional to
an isoperimetric profile of the graph. Using this, we can extend the results about the
topology of the Eden model to non-Euclidean spaces, such as hyperbolic n-space and
universal covers of certain Riemannian manifolds.
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1 Introduction

In 1961, Murray Eden proposed a stochastic model to simulate the growth of a bac-
terial colony or tumor on flat surfaces, known as the Eden growth model, as follows.
Tessellate R

n with unit cubes. Choose a starting cube to “infect” as the origin. Then,
at each time step, choose a new cube at random to infect out of those adjacent to the
infected cubes.

By the Cox–Durrett shape theorem Cox and Durrett (1981), the growth of the Eden
model is ball-like (rather than fractal, as one might guess). That is, over time, the
model (after rescaling by t−1/n) converges to a specific convex set in R

n . However,
this leaves a region near the boundary of the convex set, of thickness ∼ √

t−1/n , in
which the model can behave in very complicated ways. Understanding the topology
of the Eden model is one way of measuring the amount of complexity in this region,
along with e.g. the area of the boundary studied by Damron et al. (2018).

In previous work by Manin et al. (2023), the homology of the Eden model near
the boundary in R

n was studied in detail. For every 1 ≤ k ≤ n − 1, they proved an
asymptotic lower bound for the kth Betti number βk(t) of the Eden model at time t .
More specifically, they showed that there is a constant C = C(n, k) > 0 such that

βk(t) ≥ Ct
n−1
n

with high probability as t → ∞. This work has recently been strengthened in some
cases and extended to other first-passage percolation models by Damron et al. (2022)
(Fig. 1).

The definition of the Eden model naturally extends from the cubical lattice in R
n

to other graphs. Cayley graphs of groups are a natural setting because like the cubical
lattice, which is a Cayley graph of the group Z

n , they are homogeneous: they look
the same from the point of view of every vertex. Such generalized models have been

Fig. 1 A demonstration of the Eden growth model after 100, 500, and 1500 time steps respectively. This
demonstration is written in the Wolfram Language, and is available here https://demonstrations.wolfram.
com/TumorGrowthModel/
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Local behavior of the Eden model on graphs and tessellations…

studied in the context of first-passage percolation on Cayley graphs, mostly in the
past decade, although interest in percolation on Cayley graphs more generally dates
back earlier Benjamini and Schramm (1996). This work has uncovered a contrast
based on the growth of the group. Many of the phenomena first discovered for first-
passage percolation in Z

n generalize to Cayley graphs of virtually nilpotent groups
(equivalently, by Gromov’s theorem, groups of polynomial growth), but often not to
those of groups of higher growth (Benjamini and Tessera 2015; Auffinger and Gorski
2023;Gorski 2022). For example, the shape theoremhas an analogue forCayley graphs
of virtually nilpotent groups, but in groups of exponential growth no such convergence
result can hold (Benjamini and Tessera 2015). Moreover, first-passage percolation in
hyperbolic groups exhibits bi-infinite geodesics, a feature conjectured not to occur in
Z
n (Benjamini and Tessera 2017).
In this paper, we generalize the results of Manin et al. (2023) beyond R

n . We first
study the Eden model A(t) on an infinite, locally finite, connected, vertex-transitive
graph T . This class includes Cayley graphs, but also other examples such as Diestel–
Leader graphs which are not Cayley graphs and not even quasi-isometric to a Cayley
graph (Diestel and Leader 2001; Eskin et al. 2012). Subsets of a graph do not have
higher-dimensional topology; instead, we prove that certain local patterns occur many
times on the perimeter of the Eden model with high probability. To be precise:

Theorem 1.1 Let T be an infinite, locally finite, connected, vertex-transitive graph
where each vertex has degree d. Let S be any connected subgraph of T which satisfies
the following:

• S is contained in the R-ball centered at a vertex x of T ,
• S contains the inner boundary of this R-ball (all vertices at distance R from x).

Let A(t) denote the Eden model on T at time t. There is a constant C(R, d) > 0
so that with high probability as t → ∞, there are at least CF(t) disjoint R-balls in
T whose intersection with A(t) is isomorphic to S.

Here F(N ) is the isoperimetric profile of T : the minimal boundary of a set of N
vertices in T . This is a quasi-isometry invariant (up to a multiplicative constant) of
T closely related to the Følner function studied e.g. in Erschler (2003). Notably, the
actual boundary of A(t) may grow much faster than the isoperimetric profile. For
example, for amenable groups of exponential growth, such as solvable groups which
are not virtually nilpotent, even the perimeter of a ball grows faster. Specifically, if
T is a lattice in the three-dimensional Lie group SOL, then the perimeter of a ball is
linear in its volume since both are exponential in the radius, but F(N ) ∼ N/ log N .
It would be interesting to strengthen the bound for such groups.

The proof of Theorem 1.1 uses the reformulation of the Eden model as a first-
passage percolation model with passage times distributed according to the exponential
distribution. Our proof uses the memorylessness of the exponential distribution, and
another direction for further study is to prove similar results for other distributions,
perhaps using the methods of Damron et al. (2022).

We apply Theorem 1.1 to obtain topological results similar to those of Manin et al.
(2023). Those results consider the Eden model as defining a random domain in R

n

consisting of a union of cubical tiles. Therefore, to generalize them, one looks for other
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spaces that admit natural tessellations. The best-known (and, in a precise sense, most
symmetric) such space is hyperbolic space: for example, for any pair (r , s), the regular
r -gon tessellates either the Euclidean plane, the sphere, or the hyperbolic plane with s
meeting at every vertex. Although they are harder to classify, all higher-dimensional
hyperbolic spaces also admit infinite families of inequivalent tessellations by convex
polyhedra, making this setting considerably richer than the Euclidean one, where there
are only finitely many types of tessellation. The Eden model on such a tessellation is
defined similarly to the usual Euclidean Eden model: one starts with a single infected
cell, and at each time step, one chooses a random adjacent tile to infect.

Theorem 1.2 Consider a regular tessellationof the hyperbolic n-spaceH
n by compact,

convex tiles. (Here, regular means that the symmetry group of the tessellation acts
transitively on the cells.) Let A(t) be the Eden model at time t on this tessellation, and
let βk(t) denote the kth Betti number of A(t). Then for every 1 ≤ k ≤ n− 1, there are
constants C > c > 0 depending on k and the tessellation such that

ct ≤ βk(t) ≤ Ct

with high probability as t → ∞.

Here the growth is linear since hyperbolic spaces have a linear isoperimetric inequal-
ity: the perimeter of every set of tiles is linear in its volume.

We also discuss a generalization that encompasses both the hyperbolic and
Euclidean settings. We can think of the unit cubes of the Eden model on R

n as funda-
mental domains of the universal cover of T n . Similarly, the tiles of many hyperbolic
tessellations are fundamental domains of the universal cover of a hyperbolic manifold.
For any compact manifold M , we define a similar Eden model which builds random
subsets—unions of adjacent fundamental domains—of the universal cover of M . We
prove a result similar to Theorem 1.2 for the class of manifolds with non-positive
sectional curvature. This class includes the Euclidean (curvature zero) and hyperbolic
(constant curvature−1) cases, but also a large class of tessellations ofmanifolds which
do not admit any constant curvature metric, such as symmetric spaces of noncompact
type, as well as countless examples with less local symmetry.

Theorem 1.3 Let M be a closed Riemannian manifold of non-positive sectional cur-
vature, and let A(t) be the Eden model at time t on the universal cover ˜M. Let βk(t)
denote the kth Betti number of A(t)with coefficients inZ/2Z, and let F(N ) denote the
isoperimetric profile of theCayley graphofπ1(M).1 Then for every1 ≤ k ≤ dim M−1
there is a constant C = C(M, k) > 0 such that

βk(t) ≥ CF(t)

with high probability as t → ∞.
In particular, if M is negatively curved, then βk(t) grows linearly in t (since growth

of the lower bound matches that of the trivial upper bound).

1 We show in Appendix A that the isoperimetric profiles of two Cayley graphs of the same group differ
only by a multiplicative constant.
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Local behavior of the Eden model on graphs and tessellations…

In this case, unlike in Theorem 1.2, we don’t give a matching upper bound.
Moreover, if the fundamental domainswe choose (or their intersections) themselves

have topology, then the lower bound in Theorem 1.3 may in fact be trivial, in the
sense that it holds for every subset of T consisting of t fundamental domains. One
might even worry that this is true for all possible choices of fundamental domain, and
therefore our results are completely uninteresting. To forestall this objection, we show
that if M has constant curvature, one can choose a tessellation (by Voronoi cells) for
which any nonempty intersection of cells is contractible. It would be interesting to
construct tessellations with this property in a more general setting, perhaps even for
any aspherical manifold:

Conjecture 1.4 If M is an aspherical manifold, there is a compact set K in its universal
cover ˜M such that translates of K under the deck action of π1(M) cover ˜M and any
nonempty intersection of these translates is contractible.

If this condition is satisfied, then the union of a set of translates of K is homotopy
equivalent to the nerve of the covering by tiles; in other words, the topology is deter-
mined by the lattice of intersections and not any local information about K .

2 Preliminaries

In this section we collect some background knowledge required to read the rest of the
paper.

Graph theory

One of the main settings in which we will study the Eden model is graphs. More
specifically, we will consider the Eden model on infinite, connected, locally finite,
vertex-transitive graphs. Here, locally finite means that each vertex in the graph has
finite degree, and vertex-transitivemeans that for any vertices v,w in our graph, there
is a graph automorphism sending v to w. Informally, vertex-transitive graphs “look
the same” at each vertex. One large class of infinite, connected, locally finite, vertex-
transitive graphs is given by the Cayley graph of any infinite, finitely-generated group
with respect to a finite generating set.

The Eden model on an infinite, connected, locally finite, vertex-transitive graph is
defined as follows: at time t = 0, an arbitrary vertex of the graph is infected (it does
not matter which one, since the graph is vertex-transitive). Then, at each integer time,
a vertex adjacent to at least one of the previously infected vertices is randomly chosen
(with equal probability) and infected. For a given graph, we will use A(t) to denote
the Eden model on the graph at time t .

Note that every infinite, connected, locally finite, vertex-transitive graph has a well-
defined degree d, such that each vertex in the graph has degree d. This follows from
the fact that the graph is locally finite and vertex-transitive, hence each vertex has the
same finite degree. This gives us an analogue of the dimension of Euclidean space for
graphs.
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Furthermore, we can consider each infinite, connected, locally finite, vertex-
transitive graph as a metric space, by endowing it with the graph metric: the distance
between any two vertices is the length of the shortest edge path between them. Since
our graph is always connected, such a path always exists. The closed balls in the graph
metric will be important to our results.

Geometric group theory

The language and techniques of geometric group theory occur frequently in this paper,
so we briefly collect the most important ones here. The proofs of the results in this
section can be found in standard books on geometric group theory, such as Clay and
Margalit (2017), Druţu and Kapovich (2018), or Löh (2017).

Definition 2.1 Given a group G with a finite generating set S, the Cayley graph
Cay(G, S) has vertex set G and an edge between g and h iff gh−1 ∈ S ∪ S−1.

We quickly prove a recognition theorem for Cayley graphs:

Lemma 2.2 Let T be a connected, locally-finite graph with |T | > 1, and suppose
G is a group acting on T by graph isomorphisms (for each g, x 
→ gx is a graph
isomorphism of T ). If the action of G on T is free and transitive, then T is a Cayley
graph for G.

Proof Pick a vertex x ∈ T . Since G acts transitively and freely on T , each vertex of
T can be written uniquely as gx for some g ∈ G.

Let

S = {g ∈ G : x, gx are adjacent}.

Since T is connected and locally-finite, S is nonempty and finite. We claim that S
generates G.

First, note that since x 
→ g−1x is a graph isomorphism, gx and hx are adjacent if
and only if x and g−1hx are adjacent. In other words, gx, hx ∈ T are adjacent if and
only if g−1h is in S. (Note that this also shows S = S−1.)

Let h ∈ G be an arbitrary nonidentity element. Since T is connected, there exists
a path in T from x to hx . In other words, there exist vertices g1x, g2x, . . . , gnx ∈ T
such that x and g1x are adjacent, gi x, gi+1 are adjacent for all i ∈ {1, . . . , n− 1}, and
gnx is adjacent to hx . By the previous paragraph, we have

g1, g
−1
i gi+1, g

−1
n h ∈ S

for all i ∈ {1, . . . , n − 1}. We have

h = g1(g
−1
1 g2)(g

−1
2 g3) · · · (g−1

n h),

which proves any element in G can be written as the product of elements in S, hence
S generates G.
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So, we can define the Cayley graph Cay(G, S). Let f : Cay(G, S) → T be the
map sending g ∈ Cay(G, S) to gx . This is a bijection, since each vertex of T can be
written uniquely as gx for some g ∈ G.

Furthermore, since g, h ∈ Cay(G, S) are adjacent iff g−1h ∈ S ∪ S−1 = S,
and gx, hx ∈ T are adjacent iff g−1h ∈ S, we conclude that g, h are adjacent iff
f (g) = gx and f (h) = hx are adajcent, hence f is a graph isomorphism. ��
Equipping Cay(G, S) with the graph metric, we obtain a metric space associated

with G. While the Cayley graphs of a group G with respect to different generating
sets S, S′ are usually not isometric, they are metrically equivalent in a weaker sense:

Definition 2.3 Let X , Y be metric spaces and let C ≥ 1 and K ≥ 0 be constants. A
function f : X → Y is a (C, K )-quasi-isometry if

• (Quasi-isometric embedding) For any x, x ′ ∈ X ,

1

C
dY ( f (x), f (x ′)) − K ≤ dX (x, x ′) ≤ CdY ( f (x), f (x ′)) + K .

• (Coarse surjectivity) For any y ∈ Y , there exists some x ∈ X such that
dY ( f (x), y) ≤ K .

If for some C and K there is a (C, K )-quasi-isometry f : X → Y , then X and Y are
quasi-isometric. This is an equivalence relation.

Proposition 2.4 Given a group G and two finite generating sets S, S′, the map
f : Cay(G, S) → Cay(G, S′) sending g to g is a quasi-isometry.

As a consequence of this proposition, a finitely generated group G is well-defined as
a metric space up to quasi-isometry, and so we can talk about groups being quasi-
isometric to one another or to other spaces.

Definition 2.5 A metric space X is proper if closed balls in X are compact.

Definition 2.6 A metric space X is a geodesic space if for any x, y ∈ X , there exist
a, b ∈ R with a ≤ b and an isometric embedding γ : [a, b] → X such that γ (a) = x
and γ (b) = y. Such an isometric embedding is called a geodesic.

Note that a geodesic in this metric sense is a shortest path between any of its
points. This does not always coincide with the variational definition of a geodesic
in Riemannian geometry. However, in a complete Riemannian manifold, a metric
geodesic is always a Riemannian geodesic; conversely, there is always a shortest
Riemannian geodesic between two points and this shortest path is always a metric
geodesic. In particular, every complete Riemannian manifold is a geodesic space.

Definition 2.7 Let G be a group and X a metric space. A group action G � X is
geometric if it satisfies the following properties:

• It acts by isometries: for each g ∈ G, the map X → X sending x to g · x is an
isometry.
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• It is cocompact: the quotient X/G is a compact space.
• It is properly discontinuous: for any compact K ⊆ X , there are only finitely many

g ∈ G such that K ∩ g · K �= ∅.
A central result in geometric group theory is the Milnor–Schwarz Lemma, which

states the following:

Theorem 2.8 (Milnor–Schwarz) If G acts geometrically on a proper geodesic space
X, then G is finitely generated, and for any finite generating set S of G and any x ∈ X
the map fx sending g ∈ G to g · x ∈ X is a quasi-isometry from Cay(G, S) to X.

One important source of geometric group actions come from fundamental groups
of manifolds. Let M be a compact, connected Riemannian manifold, and equip the
universal cover ˜M with the unique Riemannian metric such that the covering map
p : ˜M → M is a local isometry. Then, the action of π1(M) on ˜M by deck transfor-
mations is geometric (Löh (2017), Corollary 5.4.10).

Another source of geometric group actions come from lattices of isometries of
hyperbolic n-space, which will be discussed in more detail in the next subsection.

Hyperbolic geometry

Hyperbolic n-spaceH
n is the unique (up to isometry) simply-connected n-dimensional

Riemannian manifold of constant sectional curvature −1. There are multiple models
of n-dimensional hyperbolic space, but the one we use in this paper is the Poincaré
disc model: we view H

n as the open unit ball in R
n with Riemannian metric

ds2 = 4(dx21 + · · · + dx2n )

(1− (x21 + · · · + x2n )
2)2

.

Much of the material in this subsection can be found in (Druţu and Kapovich (2018),
Chapter 4).

Hyperbolic spaces are particularly symmetric: for every x, y ∈ H
n and every

orthogonal transformation L : TxHn → TyHn , there is an isometry f : H
n → H

n

such that f (x) = y and Dfx = L . Since isometries take geodesics to geodesics, each
such isometry is unique. Therefore, there is a bundle structure

O(n) → Isom(Hn)
p−→ H

n,

where the map p sends an isometry f to f (x), for an arbitrary basepoint x .
In particular, the group of isometries fixing x is isomorphic to O(n). Moreover,

these subgroups are conjugate for every choice of x . Therefore, to understand them,
it is enough to consider the isometries fixing the origin in the Poincaré disk model.
These are exactly the orthogonal transformations ofR

n , since the Poincaré disk metric
is rotationally invariant. The fixed set of each such transformation is a linear subspace
of R

n ; its intersection with the Poincaré disk is isometric to a lower-dimensional
hyperbolic space inside H

n . We state this as a lemma:
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Lemma 2.9 For every nontrivial isometry of hyperbolic space, the fixed set, if
nonempty, is a hyperbolic subspace of lower dimension.

As a Lie group, the isometry group is isomorphic to O+(n, 1), an index 2 subgroup
of the group of linear isometries of the quadratic form

x21 + · · · + x2n − x2n+1.

Definition 2.10 A lattice � in Isom(Hn) is a discrete subgroup � < Isom(Hn), where
Isom(Hn) is given the compact-open topology. We say � is a cocompact or uniform
lattice if the quotient Isom(Hn)/� is compact.

If� is a cocompact lattice of isometries ofH
n , then the action of� onH

n is geomet-
ric. This is a special case of a more general fact: if M is a homogeneous Riemannian
manifold, and � is a cocompact lattice in Isom(M), then � acts geometrically on M
(Druţu and Kapovich (2018), p. 142).

Cocompact lattices in H
n are abundant, with infinitely many distinct types in every

dimension n ≥ 2, as demonstrated by work of Borel, Mostow, and Gromov and
Piatetski-Shapiro among others; see (Druţu and Kapovich (2018), Chapter 12) for an
overview.

In this paper we use such lattices to obtain tilings of H
n by convex sets called

Voronoi cells, on which we can then define a version of the Eden model. The full
construction is given in Sect. 4.

Homology and cohomology

We use standard tools from homology theory which can be found in any algebraic
topology textbook such as Hatcher (2002). Our results hold for homology both with
integer coefficients and with coefficients in any field.

First-passage percolation and the Edenmodel

First-passage percolation (FPP) is a well-studied family of stochastic growth models;
see Auffinger et al. (2017) for an extensive survey of FPP on Z

n , and Benjamini and
Tessera (2015), Benjamini and Tessera (2017) for some results on other Cayley graphs.
In our proof in the following sections, we will make use of a kind of equivalence, first
noticed by Richardson (1973), between the Eden model and a specific FPPmodel: site
FPP with exponentially distributed passage times. While our results can be interpreted
equally as applying to the Eden model and to this FPP model, the proof requires
working with the FPP model.

We first define site FPP on a graph T = (V , E). Every vertex of T is called a site.
Every site p is assigned an independent and identically distributed (i.i.d.) number ρp

called the passage time. The passage time determines the following: if the first site
adjacent to p gets infected at time t , then at time t+ρp, the site p is infected. A graph
with passage times assigned to each vertex, together with an initial vertex which is
infected at time 0, determines the infected region at every time t > 0. We usually call
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this region the FPP ball at time t to emphasize its similarity to a ball around the initial
vertex with respect to a randommetric. A probability distribution on ρp determines an
FPP model, which is a distribution on the set of functions V → [0,∞) determining
the passage times of each site.

We choose our i.i.d. passage times from an exponential distribution with mean 1.
The exponential distribution is memoryless, that is,

P(X > t + s|X > s) = P(X > t).

In particular, if at time t a site p is located at distance 1 from the infected region, the
additional time required to infect p is again distributed exponentially with mean 1,
and does not depend on the passage times of any other site.

Moreover, the probability of two sites adjacent to A having the same passage time
is zero (that is, two sites are never filled in simultaneously). Therefore, for a creature
that can only tell the order in which events happen, but not the duration between them,
the site FPP model with exponentially distributed passage times will be statistically
indistinguishable from the Eden growth model. In this sense, an Eden model is just an
FPP model with time rescaled. This correspondence was first observed by Richardson
(1973). Therefore, in the remainder of this paper, we will consider the FPPmodel with
exponentially distributed (μ = 1) passage times, as it is easier to work with than the
Eden model itself.

One possible issue is this. We will prove several results that state that an event hap-
pens with high probability, that is, that the probability approaches 1 as time increases.
We will prove this with respect to FPP time, but would like to state it with respect
to Eden time. In Sect. 7, we justify this discrepancy by showing that in any infinite,
connected, locally finite, vertex-transitive graph, as Eden time grows, FPP time also
grows without bound with high probability. (In a Euclidean grid, this follows from the
shape theorem, but in general, the relationship may be considerably looser.)

3 The Edenmodel on graphs

While the homology of the Eden model on graphs is not very interesting, we can
instead generalize one of the main results shown inManin et al. (2023), a consequence
of which is the lower bound on homology. In Manin et al. (2023), it is proved that for
a given “nice” subset of R

n built up from unit hypercubes, with high probability we

can find at least Ct
n−1
n copies of this subset on the boundary of the Eden model in R

n .
In this section, we will show an analogous result for graphs.

First, we introduce some definitions.

Definition 3.1 (Boundary). Let A = (VA, EA) be a subgraph of a graph T = (V , E).
Then the boundary ∂A of A is

∂A = {w ∈ V \VA : ∃v ∈ A, (v,w) ∈ E .}
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This definition, although it is convenient for our results, is non-standard: the bound-
ary ∂edgeA of A is usually defined to be the set of edges connecting vertices in A to
vertices outside A. However, it is not hard to see that

|∂A| ≤ |∂edge(A)| ≤ deg T |∂A|.

That is, the two notions of perimeter (size of the boundary) differ by at most a mul-
tiplicative constant, which means that many ideas are unaffected by substituting one
for the other, such as the definition of non-amenability below.

Definition 3.2 Let T = (V , E) be a connected, locally finite graph with the graph
metric d. Given a vertex x ∈ T and a subgraph A of T , we let

d(A, x) = min{d(x, v) : v ∈ A}.
BR(A) = {v ∈ T : d(A, v) ≤ R}
DR(A) = {v ∈ T : d(A, v) = R}.

When the subscript is too long, we will sometimes use B(A, R) and D(A, R) to
denote the same sets. Note that ∂A = D1(A), and that in general we have ∂BR(A) =
DR+1(A).

The isoperimetric inequality in R
n , states that given a fixed amount of volume, the

shape with the least perimeter that encloses at least that much volume is a sphere,
hence any shape has perimeter greater than or equal to that of a sphere of the same

volume. The term t
n−1
n in the lower bound on the homology of the Euclidean Eden

model derives from this isoperimetric inequality. Our generalization to graphs involves
defining a corresponding notion of isoperimetry for graphs.

Definition 3.3 The Følner isoperimetric profile F : N → N of a graph T = (V , E)

is defined by

F(n) = min {|∂A| : |A| ≥ n}

where A is any subgraph of T with size at least n.

This definition is nonstandard in two ways. Firstly, it is not defined in terms of
the more standard edge boundary. However, one can verify that if Fedge is the Følner
isoperimetric profile defined in terms of the edge boundary, then by the fact that

|∂A| ≤ |∂edge(A)| ≤ deg T |∂A|

we also have

F(n) ≤ Fedge(n) ≤ deg T · F(n).

The first inequality follows from choosing A such that |∂edge(A)| = Fedge(n), and the
second follows from choosing A such that |∂A| = F(n). Since ultimately we are only
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concerned with the isoperimetric profile up to a multiplicative constant, this means
the two are interchangeable for our purposes.

Secondly, F is defined ranging over all subgraphs of size at least n, whereas it is
more common to define F ranging over all subgraphs of size exactly n. The reason
we choose to define it this way is so that F becomes a nondecreasing function, which
is necessary for certain arguments to go through.

Proposition 3.4 Let T be an infinite vertex-transitive graph. Then

F(m + n) ≤ F(m) + F(n).

In particular, if k and n are positive integers, we have F(kn) ≤ kF(n).

Proof From the definition of F , there exist subgraphs Am, An of T with |Am | = m,
|An| = n which attain the minimum for F , i.e. |∂Am | = F(m) and |∂An| = F(n).
Furthermore, since T is infinite and vertex-transitive, we can choose Am, An ⊆ T so
that d(Am, An) ≥ 3. In particular, Am ∩ An = ∅ and |∂Am | ∩ |∂An| = ∅.

Now take A = Am ∪ An . Then |∂A| = |∂Am | + |∂An| = F(m) + F(n), and
|A| = m + n. Therefore, by the definition of F ,

F(m + n) ≤ |∂A| = F(m) + F(n).

The second statement follows by induction on k. ��
Examples 3.5 (a) The classical isoperimetric inequality implies that the isoperimetric

profile of the Cayley graph of Z
d is Cn

d−1
d for some constant C .

(b) In any regular tree, the isoperimetric profile is linear in n.
(c) In general, a graph whose isoperimetric profile is bounded below by a linear

function is called non-amenable. This is one of many equivalent definitions of
non-amenability, due to Følner (1955). Let ˜M be a complete manifold of negative
sectional curvature and let � be a group acting on ˜M geometrically. Then ˜M is a
hyperbolic metric space (Löh 2017, Example 7.2.3), and� is a Gromov hyperbolic
group. In particular, this means that � is non-amenable (Löh (2017), Corollary
9.1.11) and therefore the isoperimetric profile of � is bounded below by a linear
function. This is related to the fact that ˜M also has a linear isoperimetric profile
(in the Riemannian sense).

The main result of this section is Theorem 1.1, which we restate here:

Theorem 3.6 Let T be an infinite, locally finite, connected, vertex-transitive graph
where each vertex has degree d. Let S be any connected subgraph of T which satisfies
the following:

• S is contained in an R-ball BR(x) = {v ∈ T : d(v, x) ≤ R} whose center x is a
vertex of T ,

• S contains DR(x) ⊂ BR(x).

Let A(t) denote the Eden model on T at time t. There is a constant C(R, d) > 0 so
that with high probability as t → ∞, there are at least CF(|A(t)|) disjoint R-balls
in T whose intersection with A(t) is isomorphic to S.
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Note that since T is connected, we can assume d ≥ 2.
To prove Theorem 3.6, we proceed as follows. We first show that at any time t ,

we can put �(F(|A(t)|)) disjoint R-balls adjacent to A(t), in the sense that these
balls touch A(t) at the boundary, but they do not intersect with A(t). This is proven
in Lemma 3.9. In particular, we can find �(F(|A(t − 2)|)) such balls adjacent to
A(t − 2). Lemma 3.10 shows that this implies we can find �(F(|A(t)|)) many such
balls adjacent to A(t−2). Finally, Lemma 3.14 shows that at time t , a positive fraction
of these balls will intersect with A(t) in a translate of S.

Remark 3.7 Further in the paper, we actually use a slight strengthening of Theorem3.6.
Fix a base vertex v0 of T and suppose that for every v ∈ T we have fixed a graph
automorphismφv : T → T that takes v0 to v. Thenwe can chooseCF(|A(t)|) disjoint
balls such that whenever v is the center of one of them, then BR(v) ∩ A(t) = φv(S).
One can see that this is true by tracing through the proof of the theorem.

We first give a rough estimate of the volume of R-balls in our graph:

Lemma 3.8 Let T be an infinite vertex-transitive graph of degree d ≥ 2, and let BR(x)
denote the ball of radius R centered at x ∈ T . Then |BR(x)| ≤ dR+1.

Proof Recall that DR(x) denotes the set of points in T at distance R from x . Note that
for each R ≥ 1, every point in DR(x) is distance one from some point in DR−1(x),
and therefore

DR(x) ⊆
⋃

y∈DR−1(x)

B1(y).

Since each vertex has degree d, we have |B1(y)| = d for all y, and hence

|DR(x)| ≤
∣

∣

∣

∣

∣

∣

⋃

y∈DR−1(x)

B1(y)

∣

∣

∣

∣

∣

∣

≤ |DR−1(x)| · d.

Since |D0(x)| = 1, by induction we have |DR(x)| ≤ dR for all R. It follows that

|BR(x)| =
∣

∣

∣

∣

∣

R
⋃

i=0

Di (x)

∣

∣

∣

∣

∣

≤ 1+ d + d2 + · · · + dR = dR+1 − 1

d − 1
≤ dR+1.

��
Lemma 3.9 There is a constant C1(R, d) > 0 such that we can find C1F(|A(t)|)
disjoint balls of radius R which are adjacent to but do not intersect A(t).

Proof We use A as a shorthand notation for A(t). As before, DR(A) denotes the set
of points in T whose distance from A is exactly R.

As noted above, we have DR+1(A) = ∂BR(A), and we have |A| ≤ |BR(A)|
(because A ⊆ BR(A). So, by definition of the Følner isoperimetric profile,

|DR+1(A)| = |∂BR(A)| ≥ F (|BR(A)|) ≥ F (|A|) .
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Now consider the set of all possible centers of R-balls which are adjacent to but do
not intersect A(t). These are exactly the points of DR+1(A). We now pick the centers
of our balls by a greedy procedure. First, pick any x1 ∈ DR+1(A) as the center of our
first R-ball. Then any vertex v with d(v, x1) ≤ 2R in the graph metric is no longer an
available candidate to be the center of another such R-ball (since we need the R-balls
to be disjoint). At worst, we have removed Vol(B2R) ≤ d2R+1 points of DR+1(A)

from the candidate pool. Repeatedly applying this argument, we see that we can put
at least

⌈ |DR+1(A)|
d2R+1

⌉

≥
⌈

F(|A|)
d2R+1

⌉

≥ d−(2R+1)F(|A|)

disjoint balls of radius Rwhich are adjacent to but do not intersect A(t). This completes
the proof with C1 = d−(2R+1). ��
Lemma 3.10 Let G (we use G to denote a graph here since we use T to denote a tree
in the proof) be an infinite, connected, locally finite, vertex-transitive graph of degree
d, and let A(t) be the ball at time t in the mean 1 exponentially distributed FPP model
on G. There is a constant C2 > 0 depending on d such that

F(|A(t)|) ≤ C2F(|A(t − 2)|)

with high probability as t → ∞.

Proof We will show that there is a constant C2 such that

|A(t)| ≤ C2|A(t − 2)| (3.11)

with high probability as t → ∞. Without loss of generality, we can assume C2 is
an integer (otherwise take its ceiling). Since F is nondecreasing by definition and
subadditive by Proposition 3.4, (3.11) implies that

F(|A(t)|) ≤ F(C2|A(t − 2)|) ≤ C2F(|A(t − 2)|),

completing the proof.
To prove (3.11), we will show that there is a constant ε > 0 such that with high

probability as t → ∞ we have

|A(t + ε)| ≤ |A(t)| + |∂A(t)|. (3.12)

In particular we have |A(t + ε)| ≤ (d+ 1)|A(t)|. Then taking C2 = (d+ 1)�2/ε� does
the trick.

To prove (3.12), we first consider a rooted tree T of degree d − 1 whose nodes
are equipped with i.i.d., exponentially distributed passage times with mean 1. Choose
ε > 0 such that for any node p′ ∈ T , we have

P(ρp′ < ε) = 1

d + 1
.
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Fig. 2 An illustration of how we couple sites in A(t + ε) − A(t) with nodes in
∐

x∈∂A(t) Tx . For every
x ∈ ∂A(t), a tree Tx rooted at x is mapped into A(t+ε). A path γ ′ : [0, 1] → ∐

x∈∂A(t) Tx is illustrated in
the figure, identified with f (γ ′) : [0, 1] → G. The same two sites in G can be connected by multiple paths
in different trees, since f : ∐

x∈∂A(t) Tx → G is not injective. However, each path from some x ∈ ∂A(t)
to another vertex y is associated with a unique path in Tx rooted at x

Let T (ε) ⊆ T be the maximal subtree of T containing the root whose nodes all have
passage time less than ε. Then the expected size E of T (ε) satisfies the recurrence
relation

E = 1

d + 1
(1+ (d − 1)E).

Solving this we get E = 1
2 .

Nowwe start to prove (3.12). Fix t > 0.We give a coupling between the distribution
of passage times on a collection of (d − 1)-ary rooted trees and the distribution of
passage times for sites in G outside A(t). We describe this coupling by assigning
passage times to sites in G using the passage times on the collection of trees. With
every x ∈ ∂A(t) we associate a tree Tx and a graph homomorphism fx : Tx → G.
This map sends the root ox of the tree to x , and it sends the d − 1 vertices adjacent to
ox to d − 1 different vertices adjacent to x , avoiding the one vertex contained in A(t);
and from there the map is defined inductively so that the d vertices adjacent to a given
v are mapped to all d vertices adjacent to fx (v). Thus we obtain a map

f :
∐

x∈∂A(t)
Tx → G

such that the root ox of Tx is mapped via f to x ∈ ∂A(t), and every path in G\A(t)
connecting a vertex in ∂A(t) to another vertex in G\A(t) corresponds to a unique
rooted path in

∐

x Tx .
See Fig. 2 for an intuitive picture for this construction.
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Now we assign passage times to sites in G\A(t). To each x ∈ ∂A(t) we assign the
passage time of ox . To define the passage time for other vertices, we first give a couple
of definitions:

• The passage time along a path in a graph is the sum of the passage times of all
the vertices of the path, including endpoints.

• Given a vertex y ∈ G\A(t), the passage time from A(t) to y is the minimal
passage time along any path from any vertex of ∂A(t) to y.

• Given avertex z ∈ ∐

x Tx , the passage time to just before z is the sumof the passage
times of the vertices along the unique simple path from x to z, not including z.

Then to every remaining y ∈ G\A(t), we assign the passage time of ỹ, where ỹ
minimizes the passage time to just before ỹ among all vertices in f −1(y).

Since the choice of ỹ does not depend on the passage time of ỹ, the resulting passage
time of y is exponentially distributed with mean 1 and independent of all other passage
times. Therefore this indeed defines a coupling.

Lemma 3.13 For every y ∈ G\A(t), if the passage time from A(t) to y is ρ, then there
is a ỹ ∈ f −1(y) such that the passage time from ỹ to the root of the tree containing it
is at most ρ.

Proof We prove this for every y ∈ G\A(t) by induction on the passage time from
A(t) to y. For every site x ∈ ∂A(t), its passage time is the passage time of ox , so the
statement is true. Now let y ∈ G\A(t) be another site, let ỹ ∈ Tx be the site that it
is coupled to and consider the path which realizes the passage time from A(t) to y
(the “shortest path”). By induction, the passage time from A(t) to the second-to-last
vertex of this path is greater than the passage time to just before ỹ. Therefore, by the
definition of the coupling, the passage time from A(t) to y is greater than the passage
time from ox to ỹ. ��
In particular, if y ∈ A(t + ε)\A(t), then there is some Tx and some ỹ ∈ f −1(y) ∩ Tx
such that the passage time from ox to ỹ is at most ε. Therefore ỹ is contained in the
subtree Tx (ε) of Tx , which is again the maximal subtree of Tx containing the root
whose nodes all have passage time less than ε. It follows that

A(t + ε)\A(t) ⊆ f
(
∐

x∈∂A(t)
Tx (ε)

)

.

Wedetermined above thatE(|Tx (ε)|) = 1
2 . Since the |Tx (ε)| are i.i.d. randomvariables,

the law of large numbers implies that with high probability as t → ∞,

∣

∣

∣

∐

x∈∂A(t)
Tx (ε)

∣

∣

∣ ≤ |∂A(t)|.

This proves (3.12). ��
By Lemma 3.9, at time t − 2, we can find N ≥ C1F(|A(t − 2)|) disjoint R-balls

B1, . . . , BN that are adjacent to but do not intersect A(t − 2). By Lemma 3.10,

N ≥ C1F(|A(t − 2)|) ≥ C1C
−1
2 F(|A(t)|).
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Lemma 3.14 Let S be as in the statement of Theorem 3.6. There is a C3 = C3(R, d) >

0 such that with high probability as t → ∞, the number of values of j , for 1 ≤ j ≤ N,
such that B j ∩ A(t) is isomorphic to S is at least C3(R, d)C1C

−1
2 F(|A(t)|). Here, the

B j are disjoint R-balls B1, . . . , BN that are adjacent to but do not intersect A(t − 2),
whose existence is guaranteed by Lemma 3.9.

Proof Let p be a site that is not contained in A(t − 2). Denote its passage time by ρp.
By the memorylessness of the exponential distribution, these passage times ρp are all
i.i.d. Let S j be a translate of S inside Bj . Now let X j be the event that for all p ∈ Bj ,

ρp ≤ d−R−1 ≡ ε if p ∈ S j

ρp ≥ 3 if p ∈ Bj − S.

Then all the X j are also i.i.d. and the probability that X j occurs is positive since

P(X j ) = P(ρp ≤ ε)|S| · P(ρp ≥ 3)|Bj−S j |

≥ min
{

P(ρp ≤ ε), P(ρp ≥ 3)
}|Bj |

≥ min
{

P(ρp ≤ ε), P(ρp ≥ 3)
}dR+1

> 0.

Taking C3(R, d) = 1
2 min

{

P(ρp ≤ ε), P(ρp ≥ 3)
}dR+1

> 0 as our constant, by the
lawof largenumbers,with highprobabilityweknowas leastC3(R, d)C1C

−1
2 F(|A(t)|)

of the X j will occur.
Suppose X j occurs. Let p be a vertex of A(t − 2) which is adjacent to Bj . Since

S j is connected and (since it contains the whole outer layer of Bj ) contains a vertex
adjacent to p, every point of S j is connected to p by a path γ of length at most
dR+1 − 1. So the time it takes for all points in S to get infected is at most

∑

q∈γ

ρq ≤ �(γ )ε ≤ (dR+1 − 1)ε = dR+1 − 1

dR+1 < 1.

Therefore, for t − 1 < s < t + 1, we know A(s) will contain all points of S j and no
points in Bj − S j . In particular, when s = t , we know A(t) will contain all points of
S j and no points of Bj − S j . Since we have shown that at least C3C1C

−1
2 F(|A(t)|)

of such events will occur with high probability, this concludes the proof. ��
Taking C = C3C1C

−1
2 completes the proof of Theorem 3.6.

4 The Edenmodel on hyperbolic tessellations

Wehave established our key technical result Theorem3.6. In the following two sections
we demonstrate how Theorem 3.6 can be applied to obtain topological information
about the Eden model on hyperbolic tessellations, parallel the results of Manin et al.
(2023). Later, we will give a further generalization of these results.
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General setup

Denote the n-dimensional hyperbolic space by H
n . A tessellation of H

n is a covering
by a finite set of isometry classes of tiles: compact sets Kα with nonempty interior
such that a point is in the boundary of Kα if and only if it is shared with some other
Kβ .

We construct a large family of regular tessellations (ones using one isometry type
of cell) using Voronoi cells of orbits of lattices. Let � ⊂ Isom(Hn) be a cocompact
lattice.

Lemma 4.1 There is a point x ∈ H
n with trivial stabilizer with respect to the action

of �.

Proof For every non-identity element g ∈ �, let Xg be its fixed set. By Lemma 2.9,
each Xg is either empty or a hyperbolic subspace of lower dimension. Since � is
countable, the union of all the Xg is a strict subset of H

n . ��
Now pick a point x ∈ H

n with trivial stabilizer, and consider the orbit Ox of x under
the action of �. The Voronoi cell of an element xα ∈ Ox is the set

Vα = {

y ∈ H
n : ∀xβ ∈ Ox d(y, xα) ≤ d(y, xβ)

}

.

Clearly, the Voronoi cells associated to Ox are closed and isometric, since they are
translates of each other under the action of �. We will show that they are compact,
convex, and the tiles of a tessellation.

Lemma 4.2 The Voronoi cells associated to Ox have bounded diameter, hence they
are compact.

Proof Since � is a cocompact lattice, by definition there is a compact set K ⊂ H
n

such that
⋃

g∈� g · K = H
n . In particular, h · x ∈ K for some h ∈ �. Then K has

bounded diameter D. Since every point y ∈ H
n is contained in g · K for some g ∈ �,

y is at distance at most D from gh · x . Therefore every point in the Voronoi cell Vα is
at distance at most D from xα . By the triangle inequality, diam(Vα) ≤ 2D. ��
Lemma 4.3 Voronoi cells associated with Ox are the tiles of a tessellation.

Proof Let {Vα} be the set of Voronoi cells associated with Ox . It suffices to show two
things:

(1) The Vα cover H
n .

(2) If a point y ∈ H
n is contained in Vα ∩ Vβ for some α �= β, then y ∈ ∂Vβ .

To see (1), notice that Ox is a closed set. Therefore for any y ∈ ˜X there is a closest
point of Ox .

To prove (2), consider a point y ∈ Vα ∩ Vβ and consider a minimal geodesic
γ : [0, 1] → ˜X from y to xα . We claim that γ ((0, 1]) does not intersect Vβ . Indeed,
suppose that z = γ (t) were contained in Vβ . Then d(z, xβ) ≤ d(z, xα).
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Suppose first that d(z, xβ) < d(z, xα). But this would then mean that

d(y, xβ) ≤ d(y, z) + d(z, xβ) < d(y, z) + d(z, xα) = d(y, xα),

which contradicts the fact that y ∈ Vα .
Now suppose that d(z, xβ) = d(z, xα). But then concatenating γ |[0,t] with a min-

imal geodesic from z to xβ would give a shortest path from y to xβ . Since H
n is a

complete Riemannian manifold, this shortest path is a geodesic. But since γ |[0,t] is
an initial segment of this geodesic, the geodesic is in fact γ and xα = xβ , again a
contradiction.

Since the sequence {γ (1/n)}n∈N converges to y and consists of points outside Vβ ,
y is in the boundary of Vβ . ��
Definition 4.4 A set � ⊆ H

n is said to be convex if for any pair x, y ∈ �, the unique
geodesic connecting x to y is contained in �.

Definition 4.5 Let p, q ∈ H
n . Then their bisector B(p, q) is the set

B(p, q) = {

x ∈ H
n : d(p, x) = d(q, x)

}

.

Lemma 4.6 Let p, q ∈ H
n. Then B(p, q) is a totally geodesic subspace.

Proof We use the upper half-plane model of H
n . We can always apply an elliptic

isometry to rotate p around q so that they differ only in the x1-coordinate. Then
B(p, q) is an n − 1-dimensional hyperplane with constant x1-coordinate, which is a
totally geodesic subspace in H

n . Since isometries preserve geodesics, this concludes
the proof. ��

In Beem (1975), it is shown that the converse of this statement is also essentially
true: if the bisector of any pair of points in a Riemannian (or pseudo-Riemannian)
manifold M is totally geodesic, then M has constant curvature.

The next result tells us that the Voronoi cells constructed above are convex when
˜X = H

n :

Lemma 4.7 Suppose that {Vα} is the set of Voronoi cells generated by a discrete set
of points {xα} in H

n. Then any nonempty intersection of the Vα is a convex set, and
therefore contractible.

Proof Since the intersection of convex sets is always convex, it suffices to prove that
a single Vα is convex. Now notice that

Vα =
⋂

β �=α

{y ∈ H
n : d(y, xα) ≤ d(y, xβ)}.

Write Hα,β = {y ∈ H
n : d(y, xα) ≤ d(y, xβ)}. It suffices to prove that each Hα,β is

convex.
To do this, we use the convexity of B(xα, xβ) = ∂Hα,β . Suppose that the shortest

path γ : [0, 1] → H
n between y, z ∈ Hα,β has a point outside of Hα,β , say γ (t).
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Fig. 3 An example of a
tessellation of H

n by Voronoi
cells is the regular hyperbolic
tiling of type (n,m), which is a
tiling where m regular n-gons
share a vertex. This image by
DmitryBrant https://dmitrybrant.
com/2007/01/24/hyperbolic-
tessellations shows a (7, 3)
regular tiling in blue and its dual
graph T in red (color figure
online)

Then there must be two points s < t < s′ such that γ (s), γ (s′) ∈ B(xα, xβ). But then
the shortest path between γ (s) and γ (s′) lies in B(xα, xβ). Substituting this for the
portion of γ between s and s′ creates a path between y and z which is shorter than γ ,
a contradiction. ��

Hyperbolic Edenmodels

We have shown that Voronoi cells of an orbit Ox of an action of � on H
n are convex

fundamental domains. The generalization of the Eden model on a tessellation of H
n

is then clear: pick a tile to start with; then at every time step, randomly choose a tile
adjacent to the infected region to infect next. Here we say two tiles are adjacent if
they share an (n − 1)-dimensional face. We will use A(t) to denote the Eden model
at time t .

We can view each tile Vα as the vertex α of a graph T , and we stipulate that there
is an edge from α to β in T if and only if

dim(Vα ∩ Vβ) = n − 1

in H
n (Fig. 3).

Lemma 4.8 A closed ball in H
n intersects finitely many compact tiles of any tessella-

tion.

Proof Let d denote the maximum diameter of all the tiles, since there are finitely many
isometry classes. Similarly, let v denote the minimal volume of a tile. If a closed ball
B(y, r) intersects a tile V , then the ball B(y + d, r) contains V . Therefore the ball
B(y, r) contains at most v−1 Vol B(y + d, r) tiles. ��

We will also use the following well-known result to prove that T is a Cayley graph
for �:

Lemma 4.9 (Thom’s transversality theorem). Let P be a smooth manifold and M be
a smooth submanifold of manifold N. Let C∞

�M
(P, N ) denote the set of all smooth
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maps P → N that are transversal to M. Then C∞
�M

(P, N ) is a dense subspace of
C(P, N ) with the compact-open topology.

This result was originally obtained in Thom (1954). The proof of a slightly weaker
version can be found in (Kosinski (1993), chapter IV.2).

Lemma 4.10 Suppose that � acts transitively on the tiles of a tessellation by convex,
compact tiles. Then the graph T is a Cayley graph for �.

In particular, this means that T is infinite, locally finite, connected, and vertex-
transitive.

Proof By Lemma 2.2, it suffices to prove that T is locally finite and connected and �

acts freely and transitively on T by graph isomorphisms.
The action of � on T is induced by an action by isometries on H

n , which takes
(n − 1)-dimensional intersections to (n − 1)-dimensional intersections. Therefore �

acts by graph homomorphisms. Moreover, the action is free since we chose x to have
trivial stabilizer and transitive since the centers of cells are exactly the orbit of x under
�.

By Lemma 4.8, there are finitely many tiles that intersect any closed ball, hence T
is locally finite.

To show that T is connected, let us pick α, β ∈ T . We want to show that there is a
path in T that starts at α and ends at β. This amounts to showing that in H

n , we can
find a path starting in Vα and ending in Vβ that only travels between adjacent tiles, i.e.,
it avoids any intersections of dimension ≤ n− 2. Since H

n is path-connected, we can
certainly find a smooth path γ : [0, 1] → H

n starting in Vα and ending in Vβ . Take
an open ball B that contains Vα , Vβ , and the image of γ . By Lemma 4.8, there are
finitely many intersections of dimension≤ n−2 inside B, each of which is contained
in a hyperplane Hn−2 of dimension n − 2.

Now we claim that we can perturb the path γ to a new path γ ′ in B which is
transversal to the finitely many hyperplanes of dimension n−2 mentioned above, and
whose endpoints still lie in Vα and Vβ . Since for every point u ∈ γ ′ ∩Hn−2, we have

dim([0, 1]) + dimHn−2 = n − 1 < n = dimH
n,

transversality implies that γ ′ ∩Hn−2 = ∅, so γ ′ is the path that we want. Let

ε = min{d(γ (0), ∂Vα), d(γ (1), ∂Vβ), d(γ ([0, 1]), ∂B)}.

By Lemma 4.9, we may perturb γ by less than ε/2 to a new path γ (1) such that it is
transversal to the first hyperplane, i.e. γ (1) � Hn−2

1 . Then, inductively, at j-th step, let
d j = min{d(γ ( j−1),Hn−2

1 ), . . . , d(γ ( j−1),Hn−2
j−1)}. We perturb γ ( j−1) by less than

min(d j , ε/2 j ) such that γ ( j) � Hn−2
j . Note that we can perturb γ ( j−1) in such that

way that it stays transversal to all the previous hyperplanes, i.e., γ ( j) � Hn−2
k for

all k ≤ j . Since there are only finitely many such hyperplanes, say N of them, this
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process must terminate. In the end, we will obtain a path γ ′ such that γ ′ � Hn−2
k for

all 1 ≤ k ≤ N , and we can control the total perturbation by

d(γ, γ ′) < ε

(

1

2
+ 1

4
+ 1

8
+ · · · + 1

2N

)

< ε.

Hence the starting point of γ ′ is in Vα and the ending point of γ ′ is in Vβ , as desired.
Moreover, since the image of γ ′ still lies in B, it does not hit any new (n − 2)-
dimensional intersections. ��

By the Milnor–Schwarz lemma, it follows that the map T → H
n which sends

each α 
→ xα is a quasi-isometry. Moreover, since � acts on hyperbolic space, it is
non-amenable by Example 3.5(c), that is, its isoperimetric profile function is bounded
below by a linear function.

The main result of this section is:

Theorem 4.11 Let A(t) be the Eden model at time t on a Voronoi tessellation of H
n

whose centers are an orbit of the action of a lattice �. Let 1 ≤ k ≤ n − 1 and let
βk(t) denote the kth Betti number of A(t), i.e. βk(t) = rank Hk(A(t)). Then there are
constants C > c > 0 depending on k and the tessellation such that

c|A(t)| ≤ βk(t) ≤ C |A(t)|

with high probability as t → ∞.

Remark 4.12 In the proof we use only that we have a regular tessellation ofH
n by con-

vex compact tiles. Thus we prove the slightly more general statement in Theorem 1.2.

Here is a rough sketch of the proof. ByTheorem3.6, there is a constantC(R, d) > 0
(where d is the degree of the graph T constructed above) so that for any connected
subgraph S that satisfies certain hypotheses, the intersection of A(t) with at least
C |A(t)| disjoint R-balls is isomorphic to S, with high probability as t → ∞. Each
such subgraph S will correspond to a union of Voronoi cells in H

n , which we denote
by S. This means that we can find at least C |A(t)| copies of S along the periphery of
the Eden model A(t) at time t . Then to prove Theorem 4.11, it suffices to construct,
for each 1 ≤ k ≤ n− 1, an S such that each copy of S contributes at least 1 to the kth
Betti number βk . The next section will be devoted to the construction of such an S.

There is one subtlety. Theorem 3.6 lets us find many copies of the subgraph S in
T , and moreover (as shown in the proof) there is a graph automorphism of T sending
any of these subgraphs to any other. But in H

n , we will need copies of S (as geometric
realization in H

n) to be homeomorphic, which cannot be guaranteed by the existence
of such a graph automorphism unless the automorphism is induced by the group action
ofG. Thereforewemust use themodification of Theorem 3.6 discussed in Remark 3.7.

Upper bound

The upper bound of Theorem 4.11 is essentially trivial, in the sense that it holds for
every union of tiles, not just those generated by the Eden model. Consider any union
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U ofm tiles of our tessellation. The set of tiles forms what is known as a good cover of
U : each tile as well as any nonempty intersection of tiles is contractible, because our
tiles are convex. This means that the homology of U is the same as the homology of
the nerve N of the good cover, since by Leray’s nerve theorem the nerve of the good
cover N is homotopy equivalent to U . Every tile intersects the same finite number of
other tiles, say r . Therefore, for every k, the number of k-simplices of N is at most
( r
k+1

)

m. This is an upper bound for the rank of Hk(U ).

5 Constructing hyperbolic handles

We now construct S with the properties described above for 1 ≤ k ≤ n − 2. The case
k = n − 1 involves a simpler S, so we address it separately in the proof below.

We use the Poincaré disc model of H
n . In this model, Hn is identified with the open

unit disc in R
n , with metric

ds2 = 4(dx21 + · · · + dx2n )

(1− (x21 + · · · + x2n ))
2
.

We first construct a copy of S at the origin. Then we can use a deck transformation to
shift S.

Notation

We consider two different metric spaces with distinct, if related, notions of distance.
The first is H

n with the hyperbolic metric d induced by the metric ds2. The second is
the graph T induced by the tessellation, equipped with the graph metric dT . For the
rest this section, we establish the following notational conventions:

• Any subgraph of the graph T will be denoted by calligraphic letters. For example,
the subgraph of T associated with the hyperbolic handle will be denoted by S. A
closed ball of radius R in the graph metric dT centered at x will be denoted by
BR(x).

• For any subgraphA of the graph T , we denote the union of the corresponding tiles
in H

n by 〈A〉.
• A subset of the hyperbolic space H

n will be denoted by ordinary italic letters. The
hyperbolic handle viewed as a subset of H

n (a union of tiles) will be denoted by
S. A closed ball of radius R in the hyperbolic metric (which we denote by d or
dHn ) centered at x will be denoted by BR(x), and its boundary will be denoted by
∂BR(x) = SR(x).

Construction at the origin

We assume without loss of generality that the origin is the center of one of our tiles.
Fix 1 ≤ k ≤ n − 2. Choose a k-dimensional plane Pk through the origin in R

n

and let Pn−k be the plane through the origin perpendicular to Pk . These two planes
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intersect the Poincaré disc H
n . Denote the union of all tiles in H

n that intersect Pk by
Pk . Denote the union of all tiles in H

n that intersect Pn−k but do not intersect Pk by
Pn−k . We claim:

Lemma 5.1 There exists R1 > 0 such that for all vertices α of T satisfying dT (α, 0) ≥
R1, if the tile Vα intersects Pn−k , then Vα ∈ Pn−k .

Proof Let u, v ∈ R
n be two vectors in Pk and Pn−k respectively with Euclidean norm

less than 1, so that they live in the Poincaré disc H
n . Their distance in H

n is given by

dHn (u, v) = 2 ln

(

‖u − v‖ +
√

‖u‖2‖v‖2 − 2 〈u, v〉 + 1
√

(1− ‖u‖2)(1− ‖v‖2)

)

.

Since 〈u, v〉 = 0, as ‖u‖, ‖v‖ → 1, we have d(u, v) → ∞. Therefore as R → ∞, the
hyperbolic distance between Pk\BR(0) and Pn−k\BR(0) also goes to infinity. Since
every Voronoi cell has bounded diameter, there is an R0 > 0 such that whenever Vα

contains a point with hyperbolic distance at least R0 from 0 and Vα intersects Pn−k ,
Vα does not intersect Pk . The Milnor–Schwarz lemma gives us an quasi-isometry
between T and H

n , so taking the constants C > 1, K > 0 from the quasi-isometry
we can set R1 = CR0 + K . ��

Consider the ball BR1(0) in the graph metric. By the proof of the lemma, the union

of tiles 〈BR1(0)〉 ∩ (Pk)c contains the (n − k − 1)-sphere � of radius R0 (in the
hyperbolic metric) inside Pn−k .

Lemma 5.2 Let ε > 0 be given. There are constants R2, R3 > 0 such that

Nε(SR2(0)) ⊂ 〈BR3(0)\BR1(0)〉

where Nε(K ) denotes the closed ε-neighborhood of K .

Proof The lemma says, more or less, that one can nest the R1-ball in the graph metric
inside an R2-ball in the hyperbolic metric, which in turn is nested inside an R3-ball
in the graph metric, with some wiggle room to spare (see Fig. 4). This follows easily
from the fact that the inclusion T ↪→ H

n is a quasi-isometry.
Denote diam(Vα) = λ < ∞. There are C and K such that for every point x ∈

〈BR1(0)〉,

d(x, 0) ≤ CR1 + K + λ.

So we can choose R2 = CR1 + K + λ + ε + 1. Similarly, for every α such that Vα

intersects Nε(SR2(0)),

dT (α, 0) < R3 = C(R2 + λ + ε + 1) + K .

��
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Fig. 4 The hyperbolic handle S

Now we are ready to finish our construction of S. Let J denote the union of all
Voronoi cells contained inside the open R2-ball around 0, excluding those Voronoi
cells which also intersect Pk . Then, we define

S = closure(〈BR3(0)〉\J ).

This set splits into a “spherical shell” outside the hyperbolic R2-ball and a “handle”
inside. Figure4 gives an illustration of this construction. The reasonwe take the closure
at the end is because when we remove J , we remove some parts of boundaries of
Voronoi cells in 〈BR3(0)〉 as well. This way, S corresponds precisely to 〈S〉 for some
subgraph S of T . This subgraph S satisfies the conditions in Theorem 3.6:

Lemma 5.3 The subgraph S is connected, is contained in a ball BR centered at a
vertex of T , and contains the sphere of the same radius and center.

Proof For the latter two conditions it suffices to show that J ∩ 〈∂BR3(0)〉 is empty,
but this is guaranteed by the construction in Lemma 5.2.

For connectedness, we use the same transversality approach from 4.10. First, note
that 〈BR3(0)〉\J is path-connected, because every point x in this set falls into two
categories: either it is a point contained in a Voronoi cell intersecting SR2 ∪ Pk, or it
is a point inside 〈BR3(0)〉 outside of BR2 . In the latter case, taking a path in the graph
connecting the vertex corresponding to the Voronoi cell containing x and the origin,
we see this path must contain some vertex corresponding to a Voronoi cell intersecting
SR2 (because this path can be translated to a piecewise geodesic path in hyperbolic
space from outside BR2 to inside, which must intersect SR2 ).

Therefore, any point in the second category is connected to a point in the first
category by a path, hence it suffices to show points in the first category are connected
to each other by paths. For two such points x and y, we first connect them to points
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on SR2 ∪ Pk by paths in the respective Voronoi cells, and then observe that SR2 ∪ Pk

is path-connected.
Now, given two centers of Voronoi cells in S (which are necessarily also contained

in 〈BR3(0)〉\J ), we can take a path between them in 〈BR3(0)〉\J . Since J is closed
this path has a minimum distance from J . Using the argument in 4.10, we can perturb
this path so that it remains in 〈BR3(0)〉\J , starts and ends in the same Voronoi cells,
and avoids all intersections of dimension ≤ n − 2. Translating this to a path in the
graph we conclude that S is connected. ��

Now we note that the action of an element of � induces both an automorphism
of T and a homeomorphism of H

n which takes tiles to tiles. In particular, for every
point xα ∈ Ox , there is an element g ∈ � such that g(0) = xα . Then the action of g
takes S to a copy Sα centered at xα , and it takes the subgraph S of T to an isomorphic
subgraph centered at α. Applying Theorem 3.6, or rather the variant in Remark 3.7,
we get:

Corollary 5.4 There is a constant C = C(n, �) > 0 such that with high probability,
there are at least C |A(t)| disjoint R-ballsB j in the graph metric such that 〈B j 〉∩ A(t)
is homeomorphic to S.

Proof LetA(t) be the subgraph of T corresponding to A(t). By Remark 3.7, there are
C1(R3, n)F(|A(t)|) disjoint R-balls B j such that A(t) ∩ B j = g · S, where F is the
isoperimetric profile of �. The statement of the corollary follows from the fact that F
is linear. ��

Homology of the hyperbolic Edenmodel

To finish the proof of Theorem 4.11, it remains to show that each S adds at least 1 to
βk(t).

We have shown that at time t , we can find C |A(t)| homeomorphic copies Sα of
the hyperbolic handle, centered at points {xα}α∈J . For each such handle Sα , denote
N+

α = Sα\BR2−ε(zα), where R2 is the radius of the hyperbolic sphere SR2(0) chosen in
the course of constructing S. Similarly, denote N−

α = Sα∩BR2+ε(zα). The overlapping
subsets N+ and N− of S, whose shifted copies are the sets defined here, are marked
in Fig. 4. Now define

M = A(t)\
∐

α∈J
BR2−ε(zα) N =

∐

α∈J
N−

α .

Intuitively, M is the part of A(t) that does not include the handles, plus all disjoint
copies of N+, and N is just disjoint copies of N−. Then

A(t) = int M ∪ int N and M ∩ N =
∐

α

Nε(S
n−1) �

∐

α

Sn−1.

Therefore, since 1 ≤ k ≤ n − 2, we have that Hk(M ∩ N ) ∼= 0.
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Write A for A(t) to simplify notation. The Mayer–Vietoris theorem gives an exact
sequence

· · · → Hk(M ∩ N ) → Hk(M) ⊕ Hk(N )
ψ−→ Hk(A) → Hk−1(M ∩ N ) → · · · ,

and since Hk(M ∩ N ) ∼= 0, the map ψ is injective. Since N = ∐

α(N−
α ), we have

that Hk(N ) ∼= ⊕

α Hk(N−
α ). Therefore, if we can show that for each α, the homology

group Hk(N−
α ) has rank at least 1, this completes the proof of Theorem 4.11. Note

that all the N−
α are isometric, so we just need to understand the homology of the set

N− ⊆ S.
Note that N− is contained in BR2+ε(0)\� because Pk is disjoint from � and

〈BR1(0)〉 contains �. On the other hand, by definition, N− contains SR2+ε ∪
(

BR2+ε(0) ∩ Pk
)

.
Now, note that BR2+ε(0)\� deformation retracts to SR2+ε ∪ (

BR2+ε(0) ∩ Pk
)

. (A
low-dimensional case is the deformation retraction of a solid ball minus a circle lying
on a plane deformation retracting to a sphere union a diameter perpendicular to that
plane. In general as in that case, each point moves out along the line linking it to the
closest point on �.) This deformation retraction restricts to a retraction from N− to
SR2+ε ∪ (

BR2+ε(0) ∩ Pk
)

, and so the inclusion map from SR2+ε ∪ (

BR2+ε(0) ∩ Pk
)

to N− induces an injection on homology. Since our aim is to show that Hk(N−
α ) has

rank at least 1, it suffices to do so for Hk(SR2+ε ∪ (

BR2+ε(0) ∩ Pk
)

).
We apply Mayer–Vietoris once more. For some sufficiently small ε′ > 0, let V be

an open ε′-neighborhood of SR2+ε in SR2+ε ∪
(

BR2+ε(0) ∩ Pk
)

, and letW be an open
ε′-neighborhood of BR2+ε(0)∩ Pk in SR2+ε ∪

(

BR2+ε(0) ∩ Pk
)

. Then V ,W are open
in SR2+ε ∪ (

BR2+ε(0) ∩ Pk
) = V ∪ W , so we may apply Mayer–Vietoris.

We see that V deformation retracts to SR2+ε
∼= Sn−1, W deformation retracts to

a point, and V ∩ W deformation retracts to Sk−1. We have the Mayer–Vietoris exact
sequence

· · · → Hk(V ) ⊕ Hk(W ) → Hk

(

SR2+ε ∪
(

BR2+ε(0) ∩ Pk
))

→ Hk−1(V ∩ W ) → Hk−1(V ) ⊕ Hk−1(W ) → · · · .

We see that Hk(V ), Hk−1(V ), Hk(W ), Hk−1(W ) are all zero, so we have

Hk

(

SR2+ε ∪
(

BR2+ε(0) ∩ Pk
)) ∼= Hk−1(V ∩ W ) ∼= Hk−1(S

k−1) ∼= Z,

completing the proof of Theorem 4.11 for 1 ≤ k ≤ n − 2.
Finally, we address the k = n − 1 case. Here we can simply take our S to be the

union of tiles touching some sufficiently large closed ball BR , minus the interior of the
tile containing the center of the ball. Then the corresponding subgraph S is connected
and satisfies the other conditions of 3.6 by a similar argument as above, hence we can
find sufficiently many copies of it. Via the same Mayer-Vietoris argument it suffices
to show that each copy of S has n−1th homology with rank at least 1, but this follows
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from the fact that S retracts to Sn−1, hence there is a surjection from the n − 1th
homology of S to Hn−1(Sn−1) ∼= Z.

Remark 5.5 Note that throughout this proofwe have used the fact that balls and spheres
in R

n centered at the origin and contained in the unit disk are exactly the balls and
spheres centered at the origin in the disk model for hyperbolic space.

6 Further generalizations

We have shown that in H
n , the Eden model associated with a Voronoi tessellation

satisfies Theorem 4.11. In this section we generalize this theorem to a broader class
of manifolds and actions on them: those with non-positive sectional curvature.

Let X be a compact connected Riemannianmanifold.We endow the universal cover
˜X of X with the Riemannian metric lifted from X , that is, the Riemannian metric that
makes the covering map into a local isometry. The set of homeomorphisms (indeed,
isometries) φ : ˜X → ˜X such that the diagram

˜X
φ

p

˜X

p

X

commutes forms a group under composition. This group is called the deck group of
˜X and is isomorphic to the fundamental group π1(X). This gives an action of π1(X)

by isometries on ˜X .
We want to generalize the Eden model to a tessellation of ˜X whose symmetries are

given by the action of π1(X). In the case that X is the flat torus T n and ˜X = R
n , this

reconstructs the usual Eden model; in the case that X is a hyperbolic manifold, this
gives some of the hyperbolic examples described above. In other cases, we would like
to divide ˜X into similar “grid cubes” or “tiles”.

Voronoi cells and fundamental domains

Often, one defines a fundamental domain in the universal cover ˜X to be a subset which
contains exactly one point from each orbit of π1(X). We modify this slightly: for us,
a (closed) fundamental domain is a closed set D whose translates under the action of
π1(X) cover ˜X and such that for any φ ∈ π1(X),

D ∩ (φ · D) ⊆ ∂D.

The closure of a sufficiently nice fundamental domain in the usual sense fits this
definition. For example, in Euclidean space R

n thought of as the universal cover of a
flat torus, a closed unit cube is a fundamental domain in our sense. An example of a
fundamental domain in the usual sense would be [0, 1)n .
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A fundamental domain on ˜X can be obtained from the following construction. Pick
a point x ∈ ˜X , and consider its orbit Ox under the action of π1(X). An element in Ox

is of the form φ · x for some φ ∈ π1(X). As before, the Voronoi cell of an element
xα ∈ Ox is the set

Vα = {

y ∈ ˜X : ∀xβ ∈ Ox d(y, xα) ≤ d(y, xβ)
}

.

Clearly, the Voronoi cells associated toOx are translates of each other under the action
of π1(X). In addition:

Lemma 6.1 For any x ∈ ˜X,Voronoi cells associatedwithOx are fundamental domains
in ˜X.

This is proved in exactly the same way as Lemma 4.3.

Lemma 6.2 Voronoi cells in ˜X have bounded diameter: diam(Vα) < ∞. In particular,
since all Voronoi cells are isometric, they must all have the same finite diameter.

Proof Consider Voronoi cells {Vα} centered at points of the orbit Ox . Since X is
compact, it has finite diameter. We will show that diam(Vα) ≤ 2 diam X .

Take a point y ∈ ˜X . Let y′ = p(y) and x ′ = p(x), where p : ˜X → X is the
covering map. Connect y′ to x ′ by a minimal geodesic γ ′ in X . There is a unique lift
γ : [0, 1] → ˜X with γ (0) = y and γ (1) = xα for some xα ∈ Ox . Therefore the
distance from y to the nearest point of Ox is bounded above by d(x ′, y′).

It follows that for any y and z located in the same Voronoi cell Vα , there is a path
from y to z through xα of length at most 2 diam X . ��

The Edenmodel on˜X

We generalize the Eden model to this setting the same way we did for hyperbolic
tessellations: pick a Voronoi cell to start with; then at every time step, randomly
choose a Voronoi cell adjacent to the infected region to infect next. So that our model
generalizes the Euclidean and hyperbolic ones, we say that two Voronoi cells are
adjacent if their intersection is (n−1)-dimensional in the sense of Lebesgue covering
dimension. We will use A(t) to denote the Eden model at time t .

As before, we view each Voronoi cell Vα as the vertex α of a graph T , with an edge
from α to β in T if and only if

dim(Vα ∩ Vβ) ≥ n − 1.

Lemma 6.3 The graph T is a Cayley graph for π1(X).

In particular, this means that T is infinite, locally finite, connected, and vertex-
transitive.
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Proof The proof is similar to that of Lemma 4.10. Since π1(X) acts freely and transi-
tively on T by graph isomorphisms, by 2.2 it suffices to prove that T is locally finite
and connected. The proof of local finiteness is the same as for Lemma 4.10.

It remains to show that T is connected. Let U be a nonempty, non-full subset of the
vertices of T . We will show that there is at least one edge between U and Uc. Denote
the union of fundamental domains corresponding to vertices in a setA by 〈A〉. Then

˜X = 〈U〉 ∪ 〈Uc〉

and 〈U〉 and 〈Uc〉 both have nonempty interior. Choose points y ∈ int〈U〉 and z ∈
int〈Uc〉 and let V be a neighborhood homeomorphic to R

n of a simple curve between
y and z. By (Engelking (1978), Theorem 1.8.12),

dim(V ∩ 〈U〉 ∩ 〈Uc〉) ≥ n − 1.

On the other hand,

〈U〉 ∩ 〈Uc〉 =
⋃

α∈U ,β∈U c

Vα ∩ Vβ.

Since this is a countable union, and indeed a finite union if we restrict to any compact
subset of ˜X , by (Munkres (2000), Corollary 50.3), for some α and β, Vα ∩ Vβ is at
least (n − 1)-dimensional. ��

Now suppose that X has non-positive (but not necessarily constant) sectional cur-
vature, K ≤ 0. Among other nice properties, this condition guarantees that every pair
of points x, y ∈ ˜X is connected by a unique geodesic. We will show the following
generalization of Theorem 4.11:

Theorem 6.4 Let X be a compact connected manifold of non-positive sectional cur-
vature. Let A(t) be the Eden model at time t on a tessellation of ˜X by Voronoi cells
of an orbit π1(X) · x. Let 0 ≤ k ≤ n − 1 and let βk(t) denote the kth Betti number
of A(t), i.e. βk(t) = rank Hk(A(t)). Then there is a constant C = C(X , k) > 0 such
that

βk(t) ≥ CF(|A(t)|)

with high probability as t → ∞, where F : N → N is the isoperimetric profile of
π1(X).

Here the isoperimetric profile of π1(X) is the isoperimetric profile of its Cayley
graph for any finite generating set. Since all such Cayley graphs are quasi-isometric,
this is well-defined up to a multiplicative constant, as shown in Theorem A.4. In the
case that X has not just non-positive but negative sectional curvature, the fundamental
group π1(X) is Gromov hyperbolic and therefore non-amenable (see Example 3.5(c)).
It follows that we again have a linear lower bound.

The proof of this theorem is very similar to that of Theorem 4.11. In fact, the only
steps at which we use hyperbolicity are the construction of Pk and Pn−k and the
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Fig. 5 Illustration of the map expp

proof of Lemma 5.1, which use the Poincaré disc model explicitly. We replace this
machinery by using the exponential map at a point x ∈ ˜X .

The Exponential Map

Let M be a complete Riemannian manifold and let p ∈ M . Given a tangent vector
v ∈ TpM , by the Hopf–Rinow theorem, there is a unique geodesic γv in M with
γv(0) = p and γ ′

v(0) = v. Then the exponential map expp : TpM → M is defined
by

expp(v) = γv(1).

If M is non-positively curved and simply connected, then the Cartan–Hadamard the-
orem states that since there is a unique geodesic between p and any other point, the
exponential map is a diffeomorphism.Moreover, the derivative of the exponential map
at the origin of the tangent space is the identity: d(expp)0 = id.

Alternatively, we may reparametrize all of our geodesics with unit speed. Let ηv be
the unit speed parametrization of γv . Since the geodesic equation ∇γ̇v γ̇v = 0 implies
that γv is a curve of constant speed, we see that γv(1) = ηv(|v|) (Fig. 5). Therefore, we
can equivalently think of the exponential map as the map expp : TpM → M defined
by

expp(v) = ηv(|v|).

Now take M to be ˜X and the point p to be the center x of one of our Voronoi
cells. By construction, ˜X is simply connected, complete, and has non-positive sec-
tional curvature. Choose two orthogonal vector subspaces Hk and Hn−k ⊆ Tx ˜X of
the corresponding dimensions. Define submanifolds Pk = expp(H

k) and Pn−k =
expp(H

n−k) in ˜X . Since the geodesic ηv(t) only depends on the direction of the tan-
gent vector v, the geodesic ray from the origin in R

n in the direction v/|v| will be
mapped onto the geodesic ηv in ˜X . As in the hyperbolic construction, let Pk be the

123



D. M. Hua et al.

Fig. 6 Illustration of the proof of Corollary 6.6

union of all Voronoi cells that intersect Pk and Pn−k be the union of all Voronoi cells
that intersect Pn−k but not Pk .

We state the following result (which is a consequence of the Rauch comparison
theorem) without proof:

Lemma 6.5 (Law of cosines). Let (M, g) be a complete simply connected Riemannian
manifold with non-positive sectional curvature, and consider a geodesic triangle in
M whose side lengths are a, b, and c with opposite angles A, B, and C respectively.
Then we have

a2 + b2 − 2ab cos(C) ≤ c2.

This gives the following result:

Corollary 6.6 There exists R1 > 0 such that for all verticesα of T satisfyingdT (α, 0) ≥
R1, if the Voronoi cell Vα intersects Pn−k , then Vα ∈ Pn−k . Here 0 is the Voronoi cell
centered at x.

Proof Choose R0 = diam(Vα)/
√
2. Choose y ∈ Pk and z ∈ Pn−k such that d(x, y)

and d(x, z) are both greater than R0. Then consider the geodesic triangle spanned by
x , y, and z. Since the exponential map takes lines through the origina to geodesics, the
unique geodesic from x to y is the image of a straight line segment contained in Hk .
Similarly, the geodesic from x to z is the image of a straight line segment in Hn−k .
Moreover, since d(expp)0 = id, it preserves the angle between geodesics through x .
Hence our triangle has a right angle at x , and by the law of cosines,

d(x, y)2 ≥ d(x, p)2 + d(y, p)2 > 2R2 = diam(Vα)2.

Therefore, if d(x, xα) > R0 and Vα intersects Pn−k , then Vα ∈ Pn−k . Since T → ˜X
is a quasi-isometric embedding by the Milnor–Schwarz lemma, there is an R1 such
that if d(0, α) > R1, then d(x, xα) > R0 (Fig. 6). This completes the proof. ��

We have now constructed the first layer of the shell BR1(p) in Fig. 4, a handle
centered at x . The rest of the construction and proof works the same way it did in the
hyperbolic case.
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Remark 6.7 Note that the image of a ray from the origin in the tangent space under
expp is the unique geodesic emanating from p in that direction, and furthermore that
when restricted to this ray expp is an isometry. So, we see that every ball (set of points
distance ≤ R from p) or sphere (set of points exactly distance R in the p) centered at
p in ˜X is the image under expp of a corresponding ball/sphere centered at the origin in
the tangent space. Therefore, the union of a sphere in ˜X and the part of the hyperplane
expp(H

k) contained in the sphere is just the image under expp of the union of a sphere
and a hyperplane portion in the tangent space. Since expp is a diffeomorphism, the
two have the same homology, and so the proof of the hyperbolic case works here as
well.

Discussion

There is no obvious obstruction to generalizing the theorem further tomanifolds which
don’t have non-positive curvature. While our particular construction of handles with
the required topological properties does not generalize, there doesn’t seem to be a
good reason why such handles cannot be constructed. We therefore conjecture that
Theorem 6.4 holds for any manifold X .

Another notion worth discussing is the nontriviality of our results. For example, if
every Voronoi cell Vα had a k-handle of its own, then the inequality βk(E) ≥ CF(|E |)
would hold for every union of Voronoi cells. In that case, Theorem 6.4 would not
distinguish the Eden model from an arbitrary set of cells.

For hyperbolic tessellations, we know that this is never the case because Voronoi
cells are convex. In fact, since all intersections ofVoronoi cells are convex and therefore
contractible, a union of such cells is homotopy equivalent to its Čech complex. In other
words, the homology of such a union is determined by the lattice of intersections.

Nevertheless, it seems reasonable to suggest that for any manifold X , one can find
fundamental domains in the universal cover that have this property:

Conjecture 6.8 If X is an aspherical closed manifold, then the action of π1(X) on
˜X admits a closed fundamental domain D such that any nontrivial intersection of
translates of D under the π1(X)-action is contractible.

7 The relationship between FPP and Eden time

Consider the exponential-time FPP model A(t). As previously discussed, it is equiv-
alent to the Eden model up to time rescaling. In this section, we show (informally
speaking) that as the Eden time |A(t)| approaches infinity, so does the FPP time t .
Therefore, when we show a statement holds with high probability for the geometric
and topological behavior of the FPP model, this is also the case for the Eden model.

Lemma 7.1 The size |A(t)| of the Eden Model on a regular tree of vertex degree n at
(FPP) time t satisfies the recurrence relation

E(|A(t)|) = 2− e−t + (n − 1)
∫ t

0
e−s

E(|A(t − s)|) ds.
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Proof We can view an n-ary tree as a root vertex with n disjoint subtrees coming out
of it. Each of these subtrees is an n-ary tree minus one of its subtrees.

In order for a subtree to contribute to |A(t)|, the root vertex of that subtree must be
infected within t seconds. Therefore, the expected contribution from one such subtree
is

∫ t

0
e−s

(

1+ n − 1

n
E(|A(t − s)| − 1)

)

ds.

Here, e−s is the probability density function for the passage time of the root of the
subtree, and 1+ n−1

n E(|A(t− s)|−1) is the expected size of the subtree once the root
of the subtree has been infected: it consists of the root plus n − 1 additional subtrees.

Since there are n such subtrees, we conclude that

E(|A(t)|) = 1+ n
∫ t

0
e−s

(

1+ n − 1

n
E(|A(t − s)| − 1)

)

ds

= 1+ n
∫ t

0
e−s

(1

n
+ n − 1

n
E(|A(t − s)|)

)

ds

= 2− e−t + (n − 1)
∫ t

0
e−s

E(|A(t − s)|) ds.

��

Lemma 7.2 Let A(t) be the Eden model at time t growing on an n-ary regular tree.
There exists a constant C > 0 such that

E(|A(t)|) < Ce(n−1)t

for all t .

Proof Let C be a constant such that

E(|A(t)|) < Ce(n−1)t

for all t ∈ [0, n]. Suppose, for contradiction, that there is a t such that E(|A(t)|) ≥
Ce(n−1)t . Since both sides are continuous in t , there exists some t0 such that
E(|A(t0)|) = Ce(n−1)t0 , and E(|A(t)|) < Ce(n−1)t for all t < t0. Note that we
must have t0 > n.

123



Local behavior of the Eden model on graphs and tessellations…

Then by Lemma 7.1,

E(|A(t0)|) = 2− e−t + (n − 1)
∫ t0

0
e−s

E(|A(t0 − s)|) ds

< 2+ (n − 1)
∫ t0

0
e−sCe(n−1)(t0−s) ds

= 2+ C(n − 1)e(n−1)t0

∫ t0

0
e−ns ds

= 2+ C(n − 1)e(n−1)t0

(

1

n
− 1

n
e−nt0

)

< 2+ C(n − 1)e(n−1)t0 · 1
n

< Ce(n−1)t0

= E(|A(t0)|)

where the inequality in the second-to-last line follows from the fact that

2 = 1

n
· 2n <

1

n
en <

1

n
et0 ≤ 1

n
e(n−1)t0 .

This is a contradiction, therefore such a t0 cannot exist. Therefore, we have

E(|A(t)|) < Ce(n−1)t

for all t . ��
Lemma 7.3 Let A(t) be the Eden model on an n-ary regular tree T . Let t denote the
FPP time and let |A(t)| denote the size of the Eden model at (FPP) time t. Then there
is a constant D′ > 0 such that

|A(t)| ≤ (D′)t

with high probability as t → ∞.

Proof The perimeter of a ball of radius k in T has size nk . To obtain an upper bound
on the size of the subtree infected at time t , we compare our instance of the Eden
model to one in which everything within a ball of radius  logn t! immediately gets
infected (everything within this ball has passage time 0) and all other passage times
are unchanged. Clearly, this modified model has a strictly larger infected region at
time t .

On the perimeter of the  logn t!-ball, there are n logn t! < t disjoint subtrees coming
out, each with its root on the perimeter. Each of these subtrees is a regular n-ary tree
minus one of its n primary subtrees (subtrees adjacent to the central vertex). By
Lemma 7.2, the expected size of an n-ary tree at time t is bounded above by CDt ,
where D = e(n−1) > 0. Since each of the subtrees is a n-ary tree minus one of its
main subtrees, its expected size at time t is also certainly bounded above by CDt .
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Then as t → ∞, by the law of large numbers, the total size of the n logn t! subtrees
will converge to n logn t!E < t E < t Dt , where E is the expected size of each subtree.
Thus as t → ∞, with high probability we have

|A(t)| ≤ Vol(B logn t!) + 2n logn t!E < Vol(B logn t!) + 2CtDt .

Now

Vol(B logn t!) =
 logn t!
∑

k=0

nk = n logn t! − 1

n − 1
<

t − 1

n − 1
< t .

Therefore, we get that

|A(t)| < t + 2CtDt ≤ t + (2CD)t < 2t + (2CD)t ≤ (2+ 2CD)t .

Setting D′ = 2+ 2CD concludes the proof. ��
Proposition 7.4 Let t denote the FPP time and let |A(t)| denote the size of the Eden
model at (FPP) time t on an infinite, locally finite, vertex transitive graph G. Then
there exists some constant D > 0 such that

|A(t)| ≤ Dt

with high probability as t → ∞.

Proof Let d = degG. We use basically the same coupling trick we used in the proof
of Lemma 3.10. But this time we couple G with just one (d − 1)-ary tree T , equipped
with exponential i.i.d. passage times with mean 1 on its nodes. The origin o ∈ G of
the infection is assigned passage time 0 since it gets infected instantly. We consider
a rooted d-ary tree T with its root mapped to O via the natural map f : T → G.
For each site p ∈ G, its passage time ρp is defined to be ρ p̃, where p̃ minimizes the
passage time to just before p̃ among all vertices in f −1(p).

As before, this defines a coupling between the Eden models on T and G, since
the only thing that depends on other vertices is which i.i.d. exponentially distributed
weight corresponds to a given site of G. By the same argument as in the proof of
Lemma 3.13, for every site p ∈ G infected at time t , there exists a p̃ ∈ f −1(p) such
that the passage time from p̃ to the root of the tree T is at most t .

Therefore, the Eden model AG(t) on the graph G at time t is in bijection with a
subset of the Eden model AT (t) on the tree at time t . Then Proposition 7.3 implies
that with high probability as t → ∞, we have

|AG(t)| ≤ |AT (t)| ≤ Dt

for some constant D > 0. ��
Corollary 7.5 As a function of the Eden time s, the FPP time t satisfies t ≥ logD s
with high probability.
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Proof Suppose that t ≤ logD s. Then at FPP time logD s, we have

|A(logD s)| ≥ t = DlogD s .

But the probability of this converges to 0 as logD s → ∞. Therefore the probability
that t ≤ logD s converges to 0 as s → ∞. ��
This is the result we needed.
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Appendix A: Quasi-isometry invariance of the isoperimetric profile

In this section, we prove that (up to a natural equivalence relation) the isoperimetric
profile is an quasi-isometry invariant of infinite, locally finite, vertex-transitive graphs.
First, we give some definitions.

Definition A.1 Let T be an infinite, locally finite, vertex transitive graph equippedwith
the graph metric. We define the growth function NT : N → N of G as

NT (n) = |Bn(x)|.

In other words, the growth function returns the size of a (closed) ball of radius n
centered at an arbitrary point in T ; the choice of center x does not matter since G is
vertex-transitive.

Lemma 3.8 shows that for any infinite, locally finite, vertex-transitive graph T
where each vertex has degree d,

NT (n) ≤ dn+1.

We can give some bounds on how much the size of a finite set of vertices of a graph
can change under quasi-isometry.
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Lemma A.2 Let T , W be infinite, locally finite, vertex-transitive graphs equipped with
the graph metric, and f : T → W be a (C, K )-quasi-isometry. Let S ⊂ T be a finite
subset. Then

1

NT (CK )
|S| ≤ | f (S)| ≤ |S|.

Proof The inequality | f (S)| ≤ |S| is true for any function. For the other inequality,
we prove a bound on the size of the preimage f −1(y) of any point y ∈ W .

Suppose x, x ′ ∈ T satisfy f (x) = f (x ′) = y. Since f is a quasi-isometry,

1

C
dT (x, x ′) − K ≤ dW ( f (x), f (x ′)) = 0,

hence

dT (x, x ′) ≤ CK .

It follows that for any point x ∈ f −1(y), all of f −1(y) is contained in the CK -ball
around x . Such a ball contains NT (CK ) points, so we have

| f −1(y)| ≤ NT (CK ).

This means that f sends at most NT (CK ) points in S to the same point in f (S), hence
1

NT (CK )
|S| ≤ | f (S)|, as desired. ��

Now,we define an equivalence relation on functions from the naturals to the positive
reals:

Definition A.3 Let f , g be functions from N to R
+. We write g � f if there is a

constant a > 0 such that

g(n) ≤ a f (n)

for all n ≥ 1. If we also have f � g, we write f ∼ g.

One can check that ∼ is indeed an equivalence relation.
To show that the isoperimetric profile is a quasi-isometry invariant, we want to be

able to take an isoperimetric set (one that has minimal boundary given its size) in one
space and produce something close to isoperimetric in another quasi-isometric space.
While taking a quasi-isometry can “scatter” the points of the isoperimetric set, the
fact that a quasi-isometry is coarsely surjective allows us to overcome this obstacle:
we can take the K -ball around the image of an isoperimetric set to obtain something
close to being isoperimetric. The following theorem formalizes this:

Theorem A.4 Let T ,W be infinite, locally finite, vertex-transitive graphs equipped
with the graph metric. If T ,W are quasi-isometric, then we have FT ∼ FW .
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Proof To differentiate between balls in the two graphs, we will write BT (x, R) and
BW (y, R) for the closed balls of radius R around x ∈ T and y ∈ W , respectively.

Fix some n ≥ 1, and let ST ⊆ T be a subgraph of size n satisfying |∂S| = FT (n).
Let f : T → W be a (C, K )-quasi-isometry. We define

SW =
⋃

y∈ f (ST )

BW (y, K ).

Consider the edge boundary ∂SW . For each y ∈ ∂SW , there exists an x ∈ T such
that dW ( f (x), y) ≤ K (due to f being a quasi-isometry). For each y ∈ ∂SW , we
choose such an x , and let X ⊆ T denote the collection of these x’s.

It is possible that for distinct points y, y′ ∈ ∂SW , we choose the same corresponding
x ∈ X . If this is the case, then both y, y′ are contained in the closed K -ball in
W centered at f (x). Therefore, the maximum number of points y ∈ ∂SW which
correspond to the same point x ∈ X is bounded above by NW (K ) (the size of a closed
K -ball in W ). It follows that

|∂SW | ≤ NW (K )|X |. (A.5)

For each x ∈ X , f (x) is within distance K of a point in ∂SW . Each point in ∂SW
is within distance 1 of a point SW , and each point in SW is within distance K of some
point in f (ST ). Therefore, for each x ∈ X , there exists some x ′ ∈ ST such that

dW ( f (x), f (x ′)) ≤ 2K + 1.

Since f is a (C, K )-quasi-isometry, it follows that

dT (x, x ′) ≤ C(3K + 1).

Therefore, X is contained in the closed C(3K + 1)-neighborhood around ST ; in
other words, we have

X ⊆
⋃

x∈ST
BT (x,C(3K + 1)).

Denote this union by BT (ST ,C(3K + 1)).
On the other hand, we claim that X ∩ ST is empty. Suppose, for a contradiction,

that there exists a point x ∈ X ∩ ST . Since x is in X , there exists some y ∈ ∂SW
such that dW ( f (x), y) ≤ K . However, since x is also in ST , and SW contains all the
points in the closed K -neighborhood around f (ST ), it follows that y is in SW . But
this contradicts the assumption that y ∈ ∂SW .

Since X ∩ ST is empty, we have

X ⊆ BT (ST ,C(3K + 1))\ST .
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For each j , let ∂ j ST = ∂BT (ST , j − 1). Then ∂ j ST contains all the points whose
distance to the nearest point in ST is exactly j , hence we have

BT (ST ,C(3K + 1))\ST =
C(3K+1)

⋃

j=1

∂ j ST .

Moreover, every element of ∂ j+1ST is adjacent to ∂ j ST , which implies that
|∂ j+1ST | ≤ deg(T )|∂ j ST |. Therefore,

∣

∣

∣

∣

∣

∣

C(3K+1)
⋃

j=1

∂ j ST

∣

∣

∣

∣

∣

∣

≤
C(3K+1)

∑

j=1

∣

∣

∣∂
j ST

∣

∣

∣

≤
C(3K+1)

∑

j=1

deg(T ) j−1|∂ST |

≤ deg(T )C(3K+1)FT (n).

Since X is a subset of
⋃C(3K+1)

j=1 ∂ j ST , it follows that

|X | ≤ deg(T )C(3K+1)FT (n) (A.6)

as well. Furthermore, since f (ST ) ⊆ SW , it follows from Lemma A.2 that

n = |ST | ≤ NT (CK )| f (ST )| ≤ NT (CK )|SW |.

Using the fact that FW is sublinear, it follows that

FW (n) ≤ FW (NT (CK )|SW |) ≤ NT (CK )FW (|SW |) ≤ NT (CK )|∂SW |.

Using (A.5) and (A.6), we conclude that

FW (n) ≤ NT (CK )NW (K ) deg(T )C(3K+1)FT (n).

In particular, FW � FT .
Since T and W are quasi-isometric, there also exists a quasi-isometry g : W → T .

The proof above then shows that FT � FW , hence FT ∼ FW . ��
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