
Journal of Applied and Computational Topology (2024) 8:175–192
https://doi.org/10.1007/s41468-023-00144-7

Yarn ball knots and faster computations

Dror Bar-Natan1 · Itai Bar-Natan2 · Iva Halacheva3 · Nancy Scherich4

Received: 23 September 2021 / Revised: 23 August 2023 / Accepted: 31 August 2023 /
Published online: 28 October 2023
© The Author(s) 2023

Abstract
We make use of the 3D nature of knots and links to find savings in computational
complexitywhen computing knot invariants such as the linking number and, in general,
most finite type invariants. These savings are achieved in comparison with the 2D
approach to knots using knot diagrams.

Keywords Knot theory · Finite type invariants · Vassiliev invariants

Mathematics Subject Classification 57K16

Contents

1 Introduction . 176
1.1 Motivation . 176
1.2 Yarn balls and pancakes . 176
1.3 Computational complexities of knot invariants . 178
1.4 2D versus 3D algorithms . 179
1.5 Further directions . 180

B Iva Halacheva
i.halacheva@northeastern.edu
https://sites.google.com/site/ivahalacheva3/

Dror Bar-Natan
drorbn@math.toronto.edu
http://www.math.toronto.edu/drorbn

Itai Bar-Natan
itaibn@math.ucla.edu

Nancy Scherich
nscherich@elon.edu
http://www.nancyscherich.com

1 University of Toronto, Toronto, Canada

2 University of California, Los Angeles, Los Angeles, USA

3 Northeastern University, Boston, USA

4 Elon University, Elon, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41468-023-00144-7&domain=pdf
http://orcid.org/0000-0002-1333-6094

176 D. Bar-Natan et al.

2 Grid knots and linking number . 181
2.1 Linking number . 182

3 Finite type invariants . 183
4 Combinatorial results . 188
References . 192

1 Introduction

1.1 Motivation

A recurring question in knot theory is “Do we have a 3D understanding of a knot
invariant?".Weoften think about knots as planar diagrams and compute invariants from
the diagrams. In this paper, we consider computation from a planar diagram to be a
“2D" understanding of the invariant. For example, Kauffman (1990) gave a description
of the Jones polynomial using planar diagrams, bringing the understanding of this
invariant to 2D.1 Witten (1989) developed Chern-Simons theory, a 3-dimensional
topological quantum field theory, partially in order to understand the Jones polynomial
in a 3D way. However, this theory does not seem to lead to easier computations of the
invariant. So, while the Chern-Simons theory description is 3D, from the point of view
of this paper, it is (at least computationally) still an incomplete 3D understanding of
the Jones polynomial.

The complexity of planar knot diagrams is often measured by their number of
crossings, denoted by n in this paper, and the computational complexity of a knot
invariant is typically described in terms of n. Three-dimensionally, planar diagrams
can be seen as projections of knots embedded in “pancakes"—very flat and wide
subsets of R3, as in Fig. 1A. This pancake description of a knot is somewhat artificial
and does not realistically describe knots that occur in nature. For example, knotted
DNA is shaped much more like the ball of yarn in Fig. 1B, than the pancake knot in
(A).

The point of view we present in this paper is that knots are three-dimensional and
the best way to understand a knot should be three-dimensional. In the subsequent sec-
tions, we propose some new language to aid the knot theory community in discussion
surrounding current understanding of an invariant.

1.2 Yarn balls and pancakes

For complexity measurements in this paper, we measure only polynomial degree (i.e.
we ignore constants and log(n) terms). We write f (n) ∼ g(n) to mean there exist
natural numbers c, k, N so that for all n > N , we have that

1

c
g(n)(log(n))−k < f (n)

(1)
< cg(n)(log(n))k .

1 In some sense, the original description of the Jones polynomial (Jones 1985), by Vaughan Jones and using
braids, is 1D. For, while the full 3D rotation group SO(3) acts on 3D space, and the 2D rotation group
SO(2) acts on planar diagrams, no continuous symmetries are left when one comes down to braids.

123

Yarn ball knots and faster computations 177

Fig. 1 A A planar diagram of a
knot in a pancake (knot diagram
by Piccirillo 2020). B A yarn
ball

For example, for us, n4 ∼ 5.4 n4(log(n))8. If the inequality (1) holds true, we write
g � f . Also, we write g � f to mean that for all constants c and k, and for all large
enough n we have that c f (n)(log(n))k < g(n).

Given a knot, i.e. a particular embedding of S1 into 3-space, a knot invariant by
definition will output the same value for different diagrams of the knot (i.e. differ-
ent planar projections). However, the complexity of computing the invariant using a
particular algorithm may differ depending on the number of crossings n in the input
diagram. So, we will measure the computational complexity of an invariant using the
number of crossings of the input diagram, rather than the minimal crossing number of
the knot type (the knot considered up to ambient isotopy). Similarly, if we start with a
3D presentation of a knot, in a yarn ball or a grid as discussed in Sect. 2, the complexity
of an invariant will be measured by the volume V of the input knot, described below,
and not by the minimal volume of the knot type.

The comparison between 3D computational complexity and 2D complexity of a
knot invariant relies on the comparison of V to V 4/3. The quantity ∼ V 4/3 is the
number of crossings in a generic projection of a yarn ball knot. We describe this result
here and formalize the concepts of a pancake knot and yarn ball knot.

Definition 1.1 A pancake is a thickened disk in R
3 with radius greater than 2 and

constant height 2. A pancake knot is a knot contained in a pancake.

Planar diagrams of knots are projections of pancake knots in R3.

Definition 1.2 A yarn ball knot in R3 is a knotted tube of uniform width 1 in a 3-ball
of diameter L , such that the volume of the knot (i.e. the volume of the tube) is ∼ L3.
L is called the diameter of the yarn ball knot.

An equivalent notion of a yarn ball knot is a knot embedded in a grid, which we
discuss further in Sect. 2. Theorems 2.1 and 3.3 are proved using knots embedded in
a grid.

A yarn ball knot in a 3-ball of volume V has by definition volume and length both
∼ V . Most knots appearing in nature are yarn ball knots, as for example the knotted
ball of yarn in Fig. 2.

By projecting the yarn ball knot in a generic direction onto a disk, and shrinking
the width of the tube to ε, we attain a planar knot diagram. The number of crossings of
this projection can be estimated by subdividing the disk into 1×1 squares, as in Fig. 2.
For a sufficiently complicated knot, heuristically we expect most such 1 × 1 squares
will have L layers of strands above them, and one can expect these strands to cross
around ∼ (L

2

) ∼ L2 times in the projected square. Since there are ∼ L2 squares, the

123

178 D. Bar-Natan et al.

Fig. 2 Projection of a yarn ball knot to a disk of diameter L . To count the crossings in the projection,
subdivide the disk into 1× 1 squares. Each square will have ∼ L

2 strands crossing each other, for a total of

∼ (L
2
) ∼ L2 crossings in that square

total crossing number of this projection is around n ∼ L2L2 = L4 = V 4/3. We assert
that at worst, a knot of volume V can always be projected with ∼ V 4/3 crossings.

Since we aim to have a 3D understanding of knot invariants, we study knots in the
shape of the yarn ball as opposed to the pancake. We see that to describe a yarn ball
knot of volume (or length) V as a planar diagram, we would need ∼ V 4/3 crossings.
Since V � V 4/3, for large values of V it requires many more bits to describe a yarn
ball knot via its projection rather than directly as a yarn ball.

1.3 Computational complexities of knot invariants

We use the notation Cζ (3D, V) and Cζ (2D, n) to denote the asymptotic time com-
plexities of computing an invariant ζ via different dimensional methods (3D or 2D)
and sizes of input.

Definition 1.3 Let ζ be a knot invariant. The worst-case complexity of computing ζ

on a knot given by a planar diagram with n crossings is denoted by

Cζ (2D, n).

The worst-case complexity of computing ζ on a knot given as a yarn ball of volume
V is denoted by

Cζ (3D, V).

However, these abstract complexities, while well defined, are unknown and often
unknowable. In practice, one works with a known upper bound for the complexity
coming from a current best known algorithm. To reflect thismore practical perspective,
we define FKTζ (kD, n), or fastest known time.

ss

Definition 1.4 Let ζ be a knot invariant. FKTζ (kD, n) is the computational complex-
ity of the current fastest algorithm known to compute ζ with k-dimensional input of
size n.

123

Yarn ball knots and faster computations 179

FKTζ (kD, n) is dependent on our current understanding of the computational
problem, as the current known fastest algorithm may be improved or supplanted by
a better one. In analogy, a current world record may be broken by a faster athlete.
To summarise, Cζ (kD, n) has a fixed value, which can however be very difficult
to determine, while the value of FKTζ (kD, n) depends on the current best known
algorithm and so can be computed using that knowledge. By these definitions, we
always have that Cζ (kD, n) ≤ FKTζ (kD, n).

1.4 2D versus 3D algorithms

Given a yarn ball K of volume V , we can always compute an invariant ζ on K by
first projecting to the plane2, obtaining a planar diagram with ∼ V 4/3 crossings,
and then computing ζ using our best 2D techniques. Hence always, Cζ (3D, V) ≤
Cζ (2D, V 4/3). It is interesting to know when 3D techniques can do even better. Our
first main result is to show that for the link invariant the linking number, there is a 3D
computation technique whose worst-case complexity is faster than every worst-case
2D technique.

Theorem 2.1. (Proof in Sect. 2) Let lk denote the linking number of a 2-component
link. Then Clk(2D, n) ∼ n while Clk(3D, V) ∼ V .

The linking number of a link is an example of a finite type invariant. Finite type
invariants underlie many of the classical knot invariants, for instance they give the
coefficients of the Jones, Alexander, and more generally HOMPFLY-PT polynomials
(Birman and Lin 1993; Bar-Natan 1995a). We prove the following computational
bounds for all finite type invariants.

Theorem 3.2. (Proof in Sect. 3) If ζ is a finite type invariant of type d then Cζ (2D, n)

is at most ∼ nd .

Theorem 3.3. (Proof in Sect. 3) If ζ is a finite type invariant of type d then Cζ (3D, V)

is at most ∼ V d .
The actual complexities Cζ (2D, n) for some specific though ‘special’ finite type

ζ ’s, such as the coefficients of the Alexander polynomial, are known to be much
smaller. However, for generic ζ ’s, these theorems suggest that 3D techniques will be
more computationally efficient than 2D ones.We suspect the upper bounds in Theorem
3.2 and 3.3 can be improved by closer consideration of the counting arguments used
in the proofs. However, we view these theorems as a significant starting point that we
hope to improve upon in the future and encourage our readers to do the same.

To capture the comparison between the complexity of 2D and 3D techniques, we
introduce the following terminology.

Conversation Starter 1. A knot invariant ζ is said to be computationally 3D, or C3D,
if

FKTζ (3D, V) � FKTζ (2D, V 4/3).

2 The projection itself can be computed quickly, in time ∼ V 4/3, and for all interesting ζ , this extra work
is negligible. (The computation can be performed by going over all crossing fields in a grid presentation of
the knot, as described in Sect. 2.)

123

180 D. Bar-Natan et al.

In other words, ζ is C3D if substantial savings can be made to the computation of ζ

on a yarn ball knot, relative to the complexity of computing ζ by first projecting the
yarn ball to the plane.

As discussed above, the notion of an invariant being computationally 3D that we
use here is dependent on the current knowledge of the invariant. As our understanding
grows and our computational techniques get better, an invariant might become C3D,
or lose its C3D status. However, the question of whether an invariant is C3D, as we
understand it at a given time, still has merit as it measures our understanding, as a
community, of knot theory as a 3D subject. With this new terminology, Theorem 2.1
could be restated as

Theorem 2.1. (restated) The linking number of a 2-component link is C3D.
The results of Theorems 3.2 and 3.3 naively suggest that finite type invariants are

also C3D, but the theorems only give one sided bounds. Yet, we believe that our naive
conclusion remains valid, at least in the form “most finite type invariants are C3D”.

The opinion in this paper is that in general knot invariants should be C3D. Unfor-
tunately, as of the time this paper is written, very few knot invariants are known to
be C3D. Are the Alexander, Jones, or HOMFLY-PT polynomials C3D? Why or why
not? Are the Reshetikhin-Turaev invariants C3D? Are knot homologies C3D? While
we seem to have a weak understanding of these fundamental invariants from a 3D
perspective, this is cause for optimism; there is still much work to be done.

1.5 Further directions

The above ideas admit a further generalization or extension. Instead of using compu-
tational complexity to compare 2D and 3D understandings of invariants, we can also
use the notion of the maximal value of other quantities relating to the size of the knot,
which motivates the next conversation starter.

Conversation Starter 2. If η is a stingy quantity (i.e. we expect it to be small for
small knots), we say η has savings in 3D, or has ‘S3D’ if

Mη(3D, V) � Mη(2D, V 4/3),

where Mη(kD, s) is the maximum value of η on all knots described k-dimensionally
and of size s.

For example, the hyperbolic volume is a stingy quantity–the more complicated a
knot is, the more complicated its complement in S3 will be, which makes the question
of putting a hyperbolic structure on it harder. We expect hyperbolic volume to have
savings in 3 dimensions.

Conjecture (D. Bar-Natan, van der Veen) Hyperbolic volume has S3D.
The genus of a knot is another example of a stingy quantity, but we do not know

if the genus of a knot has S3D, or not. If a knot is given in 3-dimensions, is the best
way to find the genus truly to compute the Seifert surface from a projection to 2D, at a
great cost? The genus is by all means a 3D property of a knot, and it seems as though
it should be best computed in a 3D manner.

123

Yarn ball knots and faster computations 181

Fig. 3 Two examples of grid knots. The left grid knot has L = 3 and 64 labeled arcs, and the right has
L = 5 and 216 labeled arcs

Fig. 4 The grid in (B) shows a slightly askew top down view of the grid from (A). (C) highlights two
crossing fields, F1 and F2, of a grid

We hope that these conversation starters will encourage our readers to think about
more 3D computational methods. The remaining two sections of this paper are dedi-
cated to proving Theorems 2.1 and 3.3.

2 Grid knots and linking number

To emphasize the 3D nature of knots, we think of them as yarn ball knots, instead
of as pancake knots. An equivalent notion is “grid knots” (see also Baldridge and
Lowrance 2012). A grid knot (or link) of size L is a labeled parameterized knot or
link embedded as a subset of a grid with side length L . The arcs of a grid knot are
enumerated in order of the parametrization of the knot along the unit grid segments
of the grid lines. For a grid link, the link components are enumerated, and each arc of
the link is labeled by a pair (c, p), where c is the arc’s component enumeration, and p
is the arc’s parametrization enumeration. Some examples of grid knots are shown in
Fig. 3. Figure4A, B shows an example of a 4× 4× 4 grid from different perspectives.

The process of converting an oriented yarn ball knot of length/volume V to a grid
knot is as follows. Replace the yarn by an approximation along grid lines with grid

123

182 D. Bar-Natan et al.

spacing say 1
10 ’th the unit width of the yarn. Rescale so that the grid squares are unit

length again. Starting at any corner of the grid knot, label the arcs of the knot in order
according to the orientation. The resulting knot is bounded in a box of size ∼ 103V ,
and this process takes ∼ V computation steps. To convert a grid knot to a yarn ball
knot, scale the grid so the distance between neighbouring grid points is say 3 or 5
units. Replace the arcs of the knot with yarn of width 1 and round out the corners.
This process takes time proportional to the length of the knot. When computing an
invariant of a yarn ball knot, first converting the knot into a grid knot adds a negligible
amount of computation time.

For the remainder of this paper, we conventionally view grids with the slightly
askew top-down view as in Fig. 4B. From this perspective, all of the crossings of a
grid knot occur in triangular crossing fields of the grid—highlighted in Fig. 4C. The
grid lines in the x, y directions are colored in green and red, and the grid lines in the
vertical direction are colored blue. From the askew top down perspective as in Fig. 4B,
we keep the convention that “/" grid lines are called “green", “\" grid lines are called
“red", and horizontal grid lines are called “blue". All of the crossings in a crossing field
occur between green and red grid lines. The vertical blue grid lines never participate
in a crossing.

There are 2L2 triangular crossing fields; 2 at each of the (L − 1)2 interior corners,
and one along each exterior corner except two corners, which is 2L + 2(L − 1), for a
total of 2(L − 1)2 + 2L + 2(L − 1) = 2L2.

2.1 Linking number

For a two-component linkL, the linking number ofL, denoted lk(L), is a classical link
invariant thatmeasures how the two components are linked. Fromaplanar projection of
L, lk(L) can be computed as follows: Only counting “mixed” crossings that involve
both components (the over strand is from one component and the under strand is
from the other component), lk(L) is one half the difference of the number of positive
crossings and the number of negative crossings. Using this 2D method for a planar
diagramwith n crossings, computing lk requires∼ n steps—one for every crossing3—
which shows that Clk(2D, n) ∼ n. Using grid links, we provide a 3D algorithm that

computes lk in time ∼ V , and since n = V
4
3 � V , this proves that lk is C3D.

Theorem 2.1 Clk(3D, V) ∼ V , while Clk(2D, n) ∼ n, so lk is C3D.

Proof It is clear that Clk(3D, V) � V and Clk(2D, n) � n: if that wasn’t the case, it
would mean that lk could be computed without looking at parts of the yarn (in the 3D
case, for the length of the yarn is ∼ V) or at some of the crossings (in the 2D case,
for there are n crossings). But this is absurd: changing any crossing could change the
linking number, and likewise, slightly moving any piece of yarn. Also, the standard
“sum of signs over crossings” formula for lk shows that Clk(2D, n) � n.

So we only need to prove that Clk(3D, V) � V . Let L be a grid link with size L
and volume V = L3. There are 8 possible “mixed” crossing types in L according to
the orientations of the two strands, whether the green or red strand crosses on top.

3 Notice that in the worst case, and presumably also typically, the number of mixed crossings is ∼ n.

123

Yarn ball knots and faster computations 183

Fig. 5 The 8 crossing types,
where “/” strands are green and
“\” are red. For later use we label
these crossings x1 through x8
(color figure online)

The linking number is computed by counting how many crossings of each of the 8
types are in the grid knot, adding these numbers together (with signs) and dividing by
2. We further break this down by counting how many crossings of each type occur in
a single crossing field, then sum over all the crossing fields.

We show here how to count instances of the first crossing listed in the diagram
above where we assume the green strand comes from the link component labeled 1,
and the red strand from the link component labeled 2.

The other seven cases are counted similarly and with the same computational com-
plexity.

Fix a crossing field Fk and letG be a subset of the green arcs of the grid link labeled
(1, p), for any p, in Fk and let R be a subset of the red edges of the grid link in Fk
labeled (2, p), for any p. For any such crossing field Fk , we can define a height map
on the sets R andG, denoted z : R,G → [0, L], which gives the vertical strand height
in Fk .

Within the fixed Fk , to count the number of times a green strand crossed over a red
strand, we need to count the number of pairs {(r , g) ∈ R × G : z(r) < z(g)}. To do
this, line up the elements of R and G in increasing order based on their z-value, as
shown below.

If there is a pair (r , g) of R × G such that z(r) = z(g), there is a convention for
which order to place the dots on the line. If we are counting greens over red, put the
green dot first, and red dot second, as shown in Fig. 6. If we count red crossing over
green, put the red dot first and green dot second. Start with rb = c f = 0 (“reds before"
and “cases found") and with the place holder ∇ before the leftmost dot. Slide ∇ from
left to right, incrementing rb by one each time ∇ crosses a red dot and incrementing
c f by rb each time ∇ crosses a green dot. The value of c f is the desired number of
pairs that we wished to count. An example of the computation is shown in Fig. 6.

For a fixed crossing field Fk , this computation can be carried out in time∼ L . There
are∼ L2 crossing fields and 8 types of colored orientation crossing types, which yields
an overall computation time of ∼ L3 = V . 	

3 Finite type invariants

A Gauss diagram of an n-crossing knot diagram parameterized by an interval I is
given by the interval I along with n arrows. Each arrow corresponds to one of the n
crossings and connects a point in the parameter space I which parametrizes the top
of the crossing to a point which parametrizes the bottom of the crossing. Each arrow

123

184 D. Bar-Natan et al.

Fig. 6 On the left is a portion of a grid knot passing through a crossing field where the green strands cross
over the red strands. On the right, we show an example of the algorithm to count the number of crossings
in this crossing field (color figure online)

Fig. 7 A An example of the
Gauss diagram of a tangle
diagram. B A 2-arrow
subdiagram of a Gauss diagram

is also decorated with a sign corresponding to the sign of the crossing. We give an
example of a Gauss diagram in Fig. 7.

A d-arrow subdiagram of a Gauss diagram D is a Gauss diagram consisting of a
subset of d arrows from D. This subdiagram corresponds to a choice of d crossings in
the knot diagram represented by theGauss diagram.An example is shown in Fig. 7. The
spaceGD = 〈Gauss diagrams〉 is theQ-vector space of all formal linear combinations
of Gauss diagrams. We will denote the subspace of Gauss diagrams with d or fewer
arrows by GDd = 〈Gauss diagrams〉d .

Gauss diagrams play an important role in the theory of finite type, or Vassiliev,
invariants (Vassiliev 1990, 1992). Any knot invariant V taking numerical values can
be extended to an invariant of knots with finitely many double points (i.e. immersed
circles whose only singularities are transverse self-intersections), using the following

locally defined equation:
The above should be interpreted in the setting of knot diagrams which coincide

outside of the given crossing. A knot invariant is a finite type invariant of type d if it
vanishes on all knot diagrams with at least d +1 double points (Birman and Lin 1993;
Bar-Natan 1995a).

Let ϕd : {knot diagrams} → GDd be the map that sends a knot diagram to the sum
of all of the subdiagrams of its Gauss diagram which have at most d arrows. A Gauss
diagram with n arrows has

∑d
i=1

(n
i

)
subdiagrams with d or fewer arrows. Because

(n
i

) ∼ ni , a Gauss diagram with n arrows has
∑d

i=1

(n
i

) ∼ ∑d
i=1 n

i ∼ nd subdiagrams
with d or fewer arrows. So ϕd evaluated at a knot diagram with n crossings will be a
sum of ∼ nd subdiagrams. The map ϕd is not an invariant of knots, but, every finite
type invariant factors through ϕd , as described in the following theorem.

123

Yarn ball knots and faster computations 185

Theorem 3.1 (Goussarov et al. 2000, see also Roukema 2007) A knot invariant ζ is of
type d if and only if there is a linear functional ω on GDd such that ζ = ω ◦ ϕd .

A corollary of Theorem 3.1 is that any type d invariant can be computed from an n-
crossing planar diagram D in the time that it takes to inspect all

(n
d

)
size d subdiagrams

of D for the purpose of computing ϕd :

Theorem 3.2 (see also (Bar-Natan 1995b)) If ζ is a finite type invariant of type d then
Cζ (2D, n) is at most ∼ nd . 	

Next, we prove that in fact finite type invariants can be computed more efficiently
from a 3D presentation:

Theorem 3.3 If ζ is a finite type invariant of type d then Cζ (3D, V) is at most V d .

Proof Let ζ be a finite type invariant of type d and let K be a grid knot with side
lengths L viewed as a diagram from the top-down perspective as in Fig. 4. By Theorem
3.1, ζ(K) = ω ◦ ϕd(K), for some linear functional ω. Since GDd is a fixed finite-
dimensional vector space, the complexity of computing ω does not depend on K or
V . Thus, to prove the theorem, it suffices to show that ϕd(K) can be computed in time
V d .

By definition, ϕd(K) = ∑
cDD where D ranges over all possible Gauss diagrams

with at most d arrows, and cD is the number of times D occurs as a subdiagram
in the Gauss diagram for K . The diagram D has arrows decorated with a ± sign
corresponding to ± crossings in K . In a grid knot, there are 8 different realizations
of oriented crossings depending on the colorings of the strands, which are shown in
Fig. 5.

To compute the coefficient cD , we need to count the number of times D occurs as
a subdiagram of K . Since K is a grid knot, we will subdivide this count by further
specifying what type of ± crossing is associated to each ± arrow in D. To do this, we
need to consider a more detailed labeling of Gauss diagrams. Let LGDd = 〈Labeled
Gauss Diagrams〉d be the space of Gauss diagrams with at most d arrows where each
arrow is decorated with a label in {x1, . . . , x8}. These labels will denote the crossing
type of an arrow. LGDd is large but finite dimensional, and for each diagram D ∈ GDd

with � arrows, there are 8� related diagrams Dχ ∈ LGDd where χ ∈ {x1, . . . , x8}� is
a sequence specifying the labelling of the arrows of Dχ . Thus, cD can be computed
by

cD =
∑

χ

cDχ

where χ ranges over all sequences in {x1, . . . x8}�. The coefficient cDχ is the number
of times Dχ occurs as a subdiagram of K where an arrow j in Dχ with label χ j

corresponds to a crossing in K of type χ j .
To compute ϕd(K) it suffices to compute cDχ for every Dχ ∈ LGDd . The follow-

ing argument will compute cDχ and will be repeated for every Dχ ∈ LGDd . Such

123

186 D. Bar-Natan et al.

Fig. 8 An example of a labeled
Gauss diagram with d = 2

repetition will not contribute to the complexity of ϕd up to∼ as LGDd is a fixed finite
dimensional space independent of K .

Let Dχ ∈ LGDd be a labeled Gauss diagram with � ≤ d arrows. The most
computationally difficult case is when � = d, so we will count instances of diagrams
with � = d and all other counts will be similar and easier. We count all instances of
Dχ that fall into specific crossing fields of the grid knot K .

Number each arrow of Dχ with j ∈ {1, . . . , d}, in the order in which the arrows
first occur from left to right in Dχ . As a labeled Gauss diagram, each arrow j of Dχ is
also decorated with χ j ∈ {x1, . . . , x8} which specifies the crossing type associated to
arrow j . We also label the ends of the arrows. Following the example in Fig. 8, label
the head of arrow j with α(j) ∈ {1, . . . , 2d} and each tail by β(j) ∈ {1, . . . , 2d} in
increasing order according to the parametrization. We will count the occurrences of
Dχ in K by scanning the grid knot in the following way:

1. We consider all possible d-tuples F = (Fk1, . . . , Fkd) of crossing fields in K .
For such a tuple, the j th arrow in Dχ gets assigned the crossing field denoted Fk j . This
choice specifies that the arrow j corresponds to a crossing of type χ j which occurs in
the crossing field Fk j in the grid knot diagram for K (if such a crossing exists in Fk j ,
see Example 3.4). There are ∼ L2 choices of crossing fields for each of the d arrows,
so there ∼ L2d possible choices of crossing field tuples for Dχ .

2. For any d-tuple F of crossing fields, we also assign to each arrow of Dχ a pair of
sets: Bi , associated to the head, and Bi ′ associated to the tail of the arrow. The index
i of Bi will not necessarily match the label j of the arrow, but rather the labelling of
the Bi ’s is according to the order in which the ends of the arrows appear along the
parametrization, as in Fig. 8. Thus, the set Bi associated to the head of arrow j will
have i = α(j), and the Bi ′ associated to the tail of arrow j will have i ′ = β(j).

The sets Bi and Bi ′ for arrow j will depend on both the crossing field Fk j and
the crossing type χ j of the arrow. The crossing type χ j determines whether we count
green strands on top of red, or red on top of green, and which orientation of the strands
to count. In general, Bi will be the set of strands of the knot in Fk j that have the same
color and orientation as the under strand in crossing type χ j . The set Bi ′ will be the
strands of the knot in Fk j that have the same color and orientation as the over strands
in crossing type χ j .

Example 3.4 Suppose χ j = x1 and refer to Fig. 9. The crossing type x1 determines we
are counting green and red arrows both oriented upwards, with green on top. We look
to the crossing field Fk j of our knot diagram for K . In Fk j , if all of the red strands cross
on top, then both Bi and Bi ′ are empty, as the crossings are not compatible with the
x1 type crossing. If the green strands in Fk j cross on top, then the set Bi , associated to
the head of arrow j , will be all of the red strands of the knot in Fk j oriented upwards.

123

Yarn ball knots and faster computations 187

Fig. 9 An example of computing
the sets Bi and Bi ′ for a crossing
of type χi = x1 and two
different crossing fields

The set Bi ′ , associated to the tail of arrow j , will be all of the green strands of the knot
in Fk j oriented upwards.

3.With the crossing fields chosen and the Bi ’s assigned, we look for instances of Dχ

within the grid knot, by choosing a strand bi in each Bi and checking if the collection
of chosen strands {b1, . . . , b2d} is compatible with the parametrization and gives rise
to exactly d crossings in K that recover the diagram Dχ . To check this compatibility,
there are two functions defined on the sets Bi .

• t : ∪Bi → Z gives the order in which the arrow endpoints labeled by the Bi ’s
occur in the parametrization of the grid diagram for K .

• z : ∪Bi → {0, . . . , L} gives the vertical height of the strand in the grid knot.
Notice that for each i , the elements of Bi are strands of the same color inside a
single crossing field, all of which have distinct heights. So z|Bi is injective for
every i .

First, we need the crossings to occur in the correct order along the grid knot accord-
ing to the parametrization. Thismeanswe need t(b1) < t(b2) < . . . < t(b2d). Second,
we need to ensure that the chosen strands for a given arrow in the diagram actually
cross. For an arrow j , bβ(j) needs to be the over strand of the crossing and bα(j) is
the under strand. To get that bβ(j) crosses over bα(j), we need the height of bα(j) to
be lower than the height of bβ(j), i.e. z(bα(j)) < z(bβ(j)). Notice that bα(j) and bβ(j)

can be elements from different Bi ’s.
This problem reduces to the following counting problem: Given α(j), β(j) ∈

{1, . . . , 2d} for j ∈ {1, . . . , d}, the 2d sets Bi with i ∈ {1, . . . , 2d} and functions
t : ∪Bi → Z and z : ∪Bi → {0, . . . , L} such that z|Bi and t are injective, we want to
compute |A| where

A =
{
b ∈ (bi)2di=1 ∈ ∏

i Bi

∣∣∣
∣

t(b1) < t(b2) < . . . < t(b2d),
∀ j ∈ {1, . . . , d}, z(bα(j)) < z(bβ(j))

}
.

In Sect. 4 we will prove Proposition 4.2, which asserts that this computation can be
carried out in time Ld .

Since we had∼ L2d choices of d-tuples of crossing fields, a large but finite constant
number of labeled Gauss diagrams with d or fewer arrows, and for each choice we
have Ld computations to find instances of this diagram in the knot, we get a total
computation time of ∼ L2d Ld = V d as claimed. 	

123

188 D. Bar-Natan et al.

4 Combinatorial results

In this section, we prove Proposition 4.2, which was used in the proof of Theorem 3.3.
We start with the following lemma.

Lemma 4.1 Suppose we have sets Bi , for i ∈ {1, . . . , 2d}, and a map t : ∪Bi → N

such that t |Bi is injective for all i . Let K := max(|Bi |). Then the quantity

N =
∣∣∣∣
∣

{

b = (bi)
2d
i=1 ∈

2d∏

i=1

Bi : t(b1) < t(b2) < . . . < t(b2d)

}∣∣∣∣
∣

can be computed in time ∼ K.

Proof In time ∼ K each of the Bi ’s can be sorted by the values of t on it and replaced
by its indexing interval. So without loss of generality, each Bi is just a list of integers
{1, . . . , |Bi |}, the function t is replaced by increasing functions ti : {1, . . . , |Bi |} → N,
and we need to count

N =
∣∣
∣∣∣

{

b = (bi)
2d
i=1 ∈

2d∏

i=1

{1, . . . , |Bi |} : t1(b1) < t2(b2) < . . . < t2d(b2d)

}∣∣
∣∣∣

For 1 ≤ ι ≤ 2d and 1 ≤ τ ≤ |Bι|, let

Nι,τ =
∣∣∣
∣∣

{

b = (bi)
ι
i=1 ∈

ι∏

i=1

{1, . . . , |Bi |} : t1(b1) < t2(b2) < . . . < tι(bι) ≤ tι(τ)

}∣∣∣
∣∣
,

i.e. Nι,τ is the number of sequences of length ι with increasing t-values that terminate
at a value less than or equal to tι(τ). Also set Nι,0 = 0 for all ι. Then clearly N =
N2d,|B2d |, N1,τ = τ for all τ and for ι > 1,

Nι,τ = Nι,τ−1 + Nι−1,τ ′ ,

where τ ′ = max({0} ∪ {τ ′′ : tι−1(τ
′′) < tι(τ)}). Note that τ ′ can be computed in time

log K ∼ 1 and hence the Nι,−’s can be computed from the Nι−1,−’s in time ∼ K . To
find the N2d,−’s and hence N this process needs to be repeated 2d ∼ 1 times, and the
overall computation time remains ∼ K . 	

Proposition 4.2 Given a collection of 2d sets Bi with i ∈ {1, . . . , 2d}, and functions
α, β : {1, . . . , d} → {1, . . . , 2d}, t : ∪Bi → Z and z : ∪Bi → {0, . . . , L} such that
im(α)∪ im(β) = {1, . . . , 2d}, and z|Bi and t |Bi are injective, the size of the following
set can be computed in time ∼ Ld,

A =
{
b ∈ (bi)2di=1 ∈ ∏

Bi

∣∣
∣∣

t(b1) < t(b2) < . . . < t(b2d),
∀ j ∈ {1, . . . , d}, z(bα(j)) < z(bβ(j))

}
.

123

Yarn ball knots and faster computations 189

Fig. 10 The sides of each square
are labeled by binary sequences
which describe the set of integral
pairs within the square. For
example, the square with south
side labeled by 11 and east side
labeled by 10 contains pairs of
the form (z(bα(j)), z(bβ(j)))

with z(bα(j)) =1·2p−1+0

·2p−2 + . . . and z(bβ(j)) =
1·2p−1+1·2p−2 + . . .

Proof Lemma 4.1 shows us how to count elements in the set A without the conditions
on z. We will show that |A| can be computed by writing A as a union of sets with the
t-conditions and one Cartesian condition, so that we can apply Lemma 4.1 to count
elements in each set of the union.

Let p ∈ N so that 2p−1 < L ≤ 2p. Every z-value is in {0, . . . , L} and can be
written as a binary expansion with exactly p binary digits, padding with zeros in front
if needed. For example, if p = 5 the number 2 can be written as 00010. For two binary
numbers z1 and z2 in this form, z1 < z2 if they have the same binary expansions from
left to right up to a point, and in the first place they differ z1 has a 0 and z2 has a 1.
The notation we use to describe this is as follows. Let σ be the binary sequence from
left to right which z1 and z2 share in common. We write z1 = σ0∗ to mean the binary
expansion of z1 read left to right is σ followed by 0 followed by an arbitrary remainder
of 0’s and 1’s. Similarly, we write z2 = σ1∗.

For each j ∈ {1, . . . , d}, if the condition z(bα(j)) < z(bβ(j)) is satisfied, there exists
a binary sequence σ j of length |σ j | < p so that z(bα(j)) = σ j0∗ and z(bβ(j)) = σ j1∗.
This binary structure is key to construct the desired Cartesian conditions to compute
|A|.

For each j ∈ {1, . . . , d}, the relation z(bα(j)) < z(bβ(j)) requires the pair
(z(bα(j)), z(bβ(j))) to be in the triangle below the diagonal shown in Fig. 10. Notice
that in a single pair, (z(bα(j)), z(bβ(j))), the bα(j) and bβ(j) are not necessarily ele-
ments of the same Bi . Since the outputs of z are integral, we can divide the triangle
into a finite number of squares below the diagonal. The sides of the squares in the
triangle are labeled by binary sequences of length less than or equal to p. Each square
is determined by all but the last entry in the sequences labeled on the right and bottom
sides of the square.

Since j can range from 1 to d, there are d relations z(bα(j)) < z(bβ(j)) that must
simultaneously hold. So, we consider d copies of the above triangle, one for each j .
We will write A as a union of sets with the t-conditions and one Cartesian condition
corresponding to a specific square in each of the triangles.

The collection of squares on a subdiagonal all have the same size and are labeled
by binary sequences of the same length. To each subdiagonal, we can associate the

123

190 D. Bar-Natan et al.

Fig. 11 A schematic diagram of
σ̄ = (σ1, . . . , σ4) and
q̄ = (q1, . . . , q4). The
coordinate σ j specifies a square
in the j th triangle, on the
subdiagonal corresponding to
|σ j | = q j

q-value

q = (the length of the binary sequences on the subdiagonal) − 1.

The subdiagonals with q-values 0 and 1 are shown in Fig. 10.
Let σ̄ = (σ j)

d
j=1 be a d-tuple of binary sequences, where the length of σ j is

|σ j | = q j ∈ {0, . . . , p − 1}. As demonstrated in Fig. 11, the coordinates of σ̄ pick
out a specific square in each of the d triangles, (σ j is a binary sequence that labels a
square in triangle j).

The length of σ j , q j , is the q-value for the subdiagonal that contains the square
labeled by σ j . The coordinate (z(bα(j)), z(bβ(j))) is in the square labeled by σ j if
z(bα(j)) = σ j0∗ and z(bβ(j)) = σ j1∗.

For a given σ̄ = (σ j)
d
j=1, we can define Aσ̄ , which collects all the choices of 2d-

tuples of bi ’s that satisfy the t-conditions and for each j satisfy the j th z-condition
inside the square σ j .

Aσ̄ =
⎧
⎨

⎩
b̄ = (bi)2di=1 ∈ ∏

Bi

∣
∣∣∣∣∣

t(b1) < t(b2) < . . . < t(b2d),
∀ j ∈ {1, . . . , d}, z(bα(j)) = σ j0∗

and z(bβ(j)) = σ j1∗

⎫
⎬

⎭
. (1)

If we let q̄ = (q j)
d
j=1 ∈ {0, . . . , p − 1}d , we can consider all σ̄ ’s so that the j th

coordinate in σ̄ has length equal to the j th entry in q̄ , or |σ j | = q j . Then for we can
define

Aq̄ =
⋃

σ̄ :∀ j,|σ j |=q j

Aσ̄ , (2)

which collects all the choices of bi that satisfy the t-conditions and satisfy the j th
z-condition inside the diagonal q j . Finally, collecting up all possible Aq̄ ’s gathers

123

Yarn ball knots and faster computations 191

every possible desired choice of bi ’s that satisfy the t-conditions and the z-conditions,
which is the desired set A,

A =
⋃

q̄∈{0,...,p−1}d
Aq̄ . (3)

In essence, we break A into pieces by specifying that the z-condition must be satis-
fied on certain diagonals, the sets Aq̄ . Then we further break down Aq̄ by specifying
that the z-condition must be satisfied in specific squares within the diagonals q̄ , the
sets Aσ̄ .

To compute the size of these sets, first notice from Eq.1 that Aσ̄ can be written as
the set N from Lemma 4.1 with the sets Bi replaced by subsets B ′

i ⊆ Bi , where

B ′
i =

{
b ∈ Bi

∣∣
∣∣

if α(j) = i, then z(b) = σ j0∗
if β(j) = i, then z(b) = σ j1∗

}
,

and where j ∈ {1, . . . , d} is such that either α(j) = i or β(j) = i (exactly one such
j exists and exactly one of the conditions is met as im(α) ∪ im(β) = {1, . . . , 2d}).
We are given that z|Bi is injective, so |z(Bi)| = |Bi | ∼ L ∼ 2p. The elements of

z(Bi) are binary sequences of length p. In the new subset z(B ′
i), we are constraining

the first |σ j | + 1 = q j + 1 entries of the sequences, so there are p − (q j + 1) free
digits in each element of z(B ′

i). With this, we can approximate the size of B ′
i ,

|B ′
i | = |z(B ′

i)| ≤ 2p−(q j+1) = 2p

2q j+1 ∼ 2p

2q j
∼ L

2q j
≤ L

2min(q j)
.

Using Lemma 4.1 we can compute |Aσ̄ | in time ∼ max |B ′
i | ∼ L

2min(q j)
. In Eq.2,

Aq̄ is written as a union of Aσ̄ ’s where there are 2
∑

qi possible choices for σ̄ . So, |Aq̄ |
can be computed in time ∼ 2

∑
qi

(
L

2min(q j)

)
= 2

∑′ qi L , where
∑′ denotes “sum with

the smallest summand omitted”. The worst case is when in q̄ = (q j)
d
j=1 all but one

of the entries are p − 1 and one (the one omitted in
∑′) is unconstrained, and in that

case the complexity is (2p−1)d−1L ∼ Ld .
Lastly, from Eq.3, A is the union of Aq̄ ’s where the number of choices for q̄ is

pd ∼ (log2 L)d ∼ 1. So up to ∼, we can compute |A| with at most the complexity of
the most expensive |Aq̄ |, which is ∼ Ld . 	

Acknowledgements This work was partially supported by NSERC grant RGPIN-2018-04350, and by the
Chu Family Foundation (NYC). We would like to thank our anonymous referee for helpful comments.

Funding Open access funding provided by Northeastern University Library.

Declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of
interest.

123

192 D. Bar-Natan et al.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Birman, J.S., Lin, X.-S.: Knot polynomials and Vassiliev’s invariants. Invent. Math. 111, 225–270 (1993)
Baldridge, S., Lowrance, A.: Cube diagrams and 3-dimensional Reidemeister-like moves for knots. J. Knot

Theory Ramif. 21, 1–39 (2012)
Bar-Natan, D.: On the Vassiliev knot invariants. Topology 34, 423–472 (1995)
Bar-Natan, D.: Polynomial invariants are polynomials. Math. Res. Lett. 2, 239–246 (1995)
Goussarov, M., Polyak, M., Viro, O.: Finite type invariants of classical and virtual knots. Topology 39(5),

1045–1068 (2000)
Jones, V.F.R.: A polynomial invariant for knots via von Neumann algebras. Bull. Am. Math. Soc. 12,

103–111 (1985)
Kauffman, L.: An invariant of regular isotopy. Trans. Am. Math. Soc. 312, 417–471 (1990)
Piccirillo, L.: The Conway knot is not slice. Ann. Math. 191(2), 581–591 (2020)
Roukema, F.: Goussarov–Polyak–Viro combinatorial formulas for finite type invariants
Vassiliev, V.A.: Cohomology of Knot Spaces. American Mathematical Society, Providence (1990)
Vassiliev, V.A.: Complements of Discriminants of Smooth Maps: Topology and Applications. Translations

of Mathematical Monographs, vol. 98. American Mathematical Society, Providence, RI (1992)
Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351–399 (1989)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/

	Yarn ball knots and faster computations
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Yarn balls and pancakes
	1.3 Computational complexities of knot invariants
	1.4 2D versus 3D algorithms
	1.5 Further directions

	2 Grid knots and linking number
	2.1 Linking number

	3 Finite type invariants
	4 Combinatorial results
	Acknowledgements
	References

