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Abstract
We implement an algorithm RSHT (random simple-homotopy) to study the simple-
homotopy types of simplicial complexes, with a particular focus on contractible
spaces and on finding substructures in higher-dimensional complexes. The algorithm
combines elementary simplicial collapses with pure elementary expansions. For tri-
angulated d-manifolds with d ≤ 6, we show that RSHT reduces to (random) bistellar
flips. Among the many examples on which we test RSHT, we describe an explicit
15-vertex triangulation of the Abalone, and more generally, (14k + 1)-vertex trian-
gulations of a new series of Bing’s houses with k rooms, k ≥ 3, which all can be
deformed to a point using only six pure elementary expansions.

Keywords Simple-homotopy theory · Simplicial collapse and anticollapse · Pure
elementary expansion · Bistellar flip

Mathematics Subject Classification 57Q10 · 57Q15 · 57-04 · 57Q35 · 57M05

1 Introduction

Astandard task in topology is to simplify a given presentation of a topological space. In
general, this task cannot be performed algorithmically: Even the simplest homotopic
property, contractibility, is undecidable in dimensions d ≥ 4 (while open for d = 2, 3);
cf. (Tancer 2016, Appendix). Nevertheless, here we propose a simple randomized
algorithm tomodify triangulationswhile keeping the simple-homotopy type of a space.
The algorithm can be used as a heuristic to study simply-connected complexes, or,
more generally, complexes whose fundamental groups have no Whitehead torsion.
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We shall see that in several contractible examples the heuristics works very well.
The algorithm is also of interest when applied to manifolds or complexes of arbitrary
topology, as we discuss below.

Our work builds on that ofWhitehead, who in 1939 introduced a discrete version of
homotopy theory, called simple-homotopy theory (Whitehead 1939). An elementary
collapse is a deletion from a simplicial complex of a free face, i.e., of a non-empty face
that is properly contained in only one other face, along with that face it is contained in.
Elementary collapses are deformation retracts, and thus maintain the homotopy type;
the same is true for their inverse moves, elementary anticollapses. Two simplicial
complexes are of the same simple-homotopy type if they can be transformed into one
another via some sequence of collapses and anticollapses, called a formal deformation
(Whitehead 1939).

Equivalently, two simplicial complexes are of the same simple-homotopy type if
there exists a third complex that can be reduced to both the original ones via suitable
sequences of elementary collapses (Hog-Angeloni and Metzler 1993, p. 13). The
size of the third complex (or, using the former definition, the length of the formal
deformation) cannot be bounded a priori, because the simple-homotopy type cannot
be decided algorithmically. In fact, by a famous result ofWhitehead, having the simple-
homotopy type of a point is equivalent to being contractible (Whitehead 1939) and
thus undecidable.

In contrast, it is possible to decide algorithmically whether a given complex is
collapsible, i.e., whether it can be reduced via collapses onto a single vertex. This
decision problem was recently proved to be NP-complete by Tancer (2016). The
advantage of the collapsibility notion is that all intermediate steps in the reduction
are simplicial complexes of smaller and smaller size, hence very easy to encode and
work with. The drawback is that collapsibility is strictly stronger than contractibility:
Many “elementary” contractible complexes, like the dunce hat (Zeeman 1964) or
Bing’s house with two rooms (Bing 1964), are not collapsible.

In 1998, Forman introduced a second way to study contractibility combinatorially.
His discrete Morse theory (Forman 1998, 2002) is a tool to reduce simplicial com-
plexes using a mix of collapses and facet deletions. The advantage is that all simplicial
complexes (contractible or not) can now be reduced to a vertex, possibly by using a
relatively large number of facet deletions. The drawback is that even if one starts with a
simplicial complex, the intermediate steps in the reduction sequence are typically non-
regular CW complexes, and thus harder to handle. By only focusing on the count of
facet deletions (the so-called “discrete Morse vector”) it is possible to use randomness
to produce fast implementations (Benedetti and Lutz 2014), but at the cost of failing
to recognize many contractible complexes. See Joswig et al. (2022), Adiprasito et al.
(2017), Lofano and Newman (2021), for computational and theoretical obstructions.

In this paper, we go back to Whitehead’s original idea, and propose a third sim-
plification method based on collapses in combination with certain expansions (see
below and Remark 3.1). Our randomized heuristic random simple-homotopy (RSHT ;
see Sect. 3) has two advantages: First, all intermediate steps are indeed simplicial com-
plexes; and second, at the moment we do not know of a single contractible complex
for which our heuristics has probability zero to succeed in recognizing contractibility;
cf. Remark 3.2.
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Here is the idea. We perform elementary collapses until we get stuck. Then we
select a top dimensional face � uniformly at random, and for all d-faces �′ adjacent
to � via a (d − 1)-dimensional face (a ridge), we check if the subcomplex induced on
the d + 2 vertices of � ∪ �′ is a pure d-dimensional ball. This test is very fast. If for
some �′ the answer is positive, we glue onto our complex the full (d + 1)-simplex σ

on the vertices of � ∪ �′. If for several �′s the answer is positive, we simply choose
one uniformly at random.

This gluing step is called a pure elementary (d + 1)-expansion, and it is also
classical from the topological perspective, compare (Hog-Angeloni andMetzler 1993,
Chapter I). After this step, wemay collapse away the newly introduced (d+1)-simplex
σ together with any d-face τ of it. To avoid undoing the pure elementary expansion,
we must select a τ that was already present in the complex we got stuck at before the
pure elementary expansion. This first elementary collapse after the pure elementary
expansion is called “(CC) step” below (see Sect. 3). The combination “pure elementary
expansion + (CC) step”, known in the topological literature as “transient move” (Hog-
Angeloni and Metzler 1993), maintains both the dimension and the simple-homotopy
type: In fact, any pure elementary expansion can be viewed as a composition of back-
to-back elementary anticollapses.

Whitehead proved that for every contractible complex there is a formal deformation
that reduces it to a single point (Whitehead 1939). It is not known if there is also a
formal deformation to a point in which one performs anticollapses (or specific types of
expansions) “onlywhen stuck”, i.e., only to intermediate complexeswithout free faces.
If this is true, then indeed any contractible complexwould have a positive probability to
be recognized by our heuristics. Of course, we cannot in any case expect any universal
upper bound on the number of elementary anticollapses needed, or else wewould have
found an algorithm that recognizes contractibility.

However, we shall see in Sects. 5 and 6 that in many key examples the number of
pure elementary expansions needed is relatively low. As a benchmark series, we build
Bing’s house with k rooms, a one-parameter generalization of the aforementioned
Bing’s house with two rooms. For all k ≥ 3, we prove that Bing’s house with k rooms
can be collapsed by adding only six further tetrahedra, cleverly chosen (Theorem 5.2).
Of course, since our algorithm is randomized, there is no guarantee that precisely those
tetrahedra will be selected as (successive) pure elementary expansions. But even with
a quick attempt consisting of 104 runs, our algorithm is able to reduce Bing’s house
with seven rooms (which is a 2-complex on 99 vertices) to a point by adding only 41
tetrahedra; see Table 1.

Random simple-homotopy (RSHT) works with simplicial complexes of arbitrary
dimension, but it is of particular interest when applied to triangulations of low-
dimensional manifolds. When d ≤ 6, we show (in Theorem 4.4) that on any (closed)
d-manifold RSHT has basically the same effect of performing bistellar flips, also
known as Pachner moves, which are the standard ergodic moves that allow to trans-
form into one another any two PL homeomorphic triangulations of the same manifold
(Pachner 1987).

In Sect. 6, we discuss how RSHT can be used to reach interesting small (or even
vertex-minimal) triangulations and subcomplexes “hidden” inside triangulated mani-
folds. For the sake of applications, one should declare right away thatRSHT is designed
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to focus on the (simple-)homotopy, and not the homeomorphism type. So in case we
start with a collection of points in 10-space, say, which all lie “approximately” on a
Möbius strip, the effect of performing RSHT on the Čech complex of the point set
would be to detect an S1, and not a Möbius strip. Yet, RSHT is capable of detecting,
for example, closed surfaces or higher-dimensional closed manifolds in data, beyond
just determining their homologies.

It takes considerable effort to build examples of contractible complexes for which
RSHT does not practically succeed in revealing contractibility, if interrupted after a
million steps, say. Respective examples, showcased in the last Sect. 6.4 of our paper,
are based on the Akbulut–Kirby 4-spheres (Akbulut and Kirby 1985) and triangula-
tions thereof (Tsuruga and Lutz 2013). The homeomorphism type of these “tangled”
triangulations of S4 is notoriously difficult to recognize.

2 Pure elementary expansions

Any two simple-homotopy equivalent complexes are homotopy equivalent. The con-
verse is true for complexes whose fundamental group has trivial Whitehead group (see
Cohen (1973) or Mnev (2014) for the definition), but false in general: Counterexam-
ples in dimension two can be obtained by triangulating the cell complexes in Lustig
(1991), while counterexamples in dimension three or higher had been known to exist
long before (Milnor 1966).

It is an easy consequence of the theory of Gaussian elimination for integer matrices
that the Whitehead group of the trivial group is trivial. Therefore, any two homotopy-
equivalent simply-connected complexes are also simple-homotopy equivalent.

More generally, it is known that the Whitehead group of a group G is trivial if G is

• Z (Higman 1940), Z⊕Z (Bass et al. 1964), and more generally, any free Abelian
group (Bass et al. 1964),

• any of the cyclic groups Z2, Z3, Z4, Z6 (Cohen 1973),
• any subgroup of the braid group Bn (Farrell and Roushon 2000), or of any Artin
group of type An , Dn , F4, G2, I2(p), Ãn , B̃n , C̃n , or G(de, e, r) for d, r ≥ 2
(Roushon 2020),

• any free product of groups listed above, so in particular Z ∗ Z or any free group
(Stallings 1965),

• and further cases (Grenier-Boley 2007); in fact, the Farrell–Jones conjecture
implies that any torsion-free group should appear in the present list (Lück et al.
2017).

Any two homotopy-equivalent complexes whose fundamental group appears in the
list above are of the same simple-homotopy type.

Whitehead’s work allows us to be more specific on the dimension (although not
on the number) of the intermediate complexes involved in the definition of simple-
homotopy equivalence, as follows. An elementary collapse is called an i-collapse if the
dimension of the two faces removed are i −1 and i . Similarly, an i-anticollapse is one
that adds a pair of faces of dimension i − 1 and i . The order of a formal deformation
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will be the maximum i for which i-collapses or i-anticollapses are involved in the
sequence.

Theorem 2.1 (Whitehead 1939, Theorems 20 & 21). Let K and L be two homotopy-
equivalent simplicial complexes. If the Whitehead group of their fundamental group
is trivial, then there is a formal deformation from K to L whose order does not
exceed max{dim K , dim L} + 2. If, in addition, L is a deformation retract of K , and
dim K > 2, then there is a formal deformation from K to L whose order does not
exceed dim K + 1.

The conjecture that the last statement of the previous theorem might hold also for
the case dim K = 2 goes under the name of “Generalized Andrews–Curtis conjec-
ture”, and represents a major open problem in combinatorial topology. It is, however,
generally believed to be false (Hog-Angeloni and Metzler 1993).

Based onWhitehead’swork,wewould now like to perform “randomanticollapses”.
Yet, if we wish to add a (d +1)-dimensional face σ to K in an elementary anticollapse,
then all d-faces of σ need to be present in K already, except for a single d-face τ .
However, it is not difficult to construct contractible d-complexes K that do not allow
any (d + 1)-anticollapses; cf. (Lofano and Newman 2021). In these cases, lower-
dimensional faces need to be addedfirst.Computationally, this brings an extra difficulty
to the introduction of a random model. To bypass this difficulty, we adopt a different
set of moves.

Definition 2.2 Let K be a d-dimensional complex. A pure elementary (d + 1)-
expansion is the gluing of a (d + 1)-dimensional simplex σ to K in case σ intersects
K in a d-ball.

A pure elementary (d+1)-expansion combines together in a singlemove one (d+1)-
anticollapse plus all the lower-dimensional anticollapses that have to be performed
first. Hence a sequence of pure elementary expansions and elementary collapses can
be rewritten as a formal deformation. Whenever we run out of collapsing steps, we
perform exactly one pure elementary (d + 1)-expansion, and then switch back to
elementary collapses. When the complex is reduced to a point, we stop—or else
after max_step number of steps we output the (simplified) simplicial complex that is
reached.

3 Implementation of random simple-homotopy

AlgorithmRSHT provides a description of the random simple-homotopy procedure in
pseudocode. The actual implementation can be found on GitHub at (Lofano 2021) as
a polymake (Gawrilow et al. 1997) extension. It is based on the two different types
of basic operations: random collapses (C) and random pure elementary expansions
(E) plus collapsing steps (CC) that ensure that a pure elementary expansion is not
undone immediately by the next regular collapsing step (C). The step (S) allows facet
subdivisions in case no other pure elementary expansions are available.

Random collapses (C) are discussed as part of random discrete morse theory in
Benedetti and Lutz (2014). A fast implementation of random collapses in polymake
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Algorithm RSHT: Random Simple-Homotopy
Input: connected simplicial complex K ; let K ′ be a copy of K to be modified
Output: simplified simplicial complex K ′
while dim(K ′) �= 0 and i <max_step do

while K ′ has free faces do
(C): perform a random elementary collapse

if dim(K ′) = d �= 0 and there are induced pure d-balls on d + 2 vertices then
(E): perform a random pure elementary (d + 1)-expansion
(CC): perform an elementary collapse deleting the newly added

(d + 1)-face and one of its d-faces that was already in K ′
else

(S): perform (E) + (CC) on a d-facet with d + 1 vertices
i++

return K ′

is described in Joswig et al. (2022). Hence, it remains to implement random pure
elementary expansions (E).

While collapses in polymake can be carried out fast in the Hasse diagram of K ,
there is no explicit implementation in polymake to expand theHasse diagram of K to
include the faces of a (d + 1)-simplex σ that is added in a pure elementary expansion.
Thus, for every pure elementary expansion we recompute the Hasse diagram for K +σ

and then proceed with random collapses in the new Hasse diagram of K +σ . For var-
ious input examples of non-collapsible, contractible complexes, relatively few pure
elementary expansions are needed (see Sects. 5 and 6); thus the extra cost for recom-
puting Hasse diagrams stays low.

Remark 3.1 Pure elementary expansions are not the only operations to modify a given
complex K by expanding it. Another more general possibility would be to glue addi-
tional (d + 1)-simplices to K along induced contractible subcomplexes (of mixed
dimension). This provides more options to modify K , but at the price of having to
check subcomplexes for contractibility.Aswe experienced after runningvarious exper-
iments, this seems expensive without any advantage. We therefore decided to stick to
pure elementary expansions. In fact, checking whether an induced subcomplex on
d + 2 vertices is a pure d-ball is very fast: It can be achieved by a lookup in the Hasse
diagram.

Remark 3.2 By Whitehead’s Theorem 2.1, we might be forced to first go up by two
dimensions (and not just by one as we do in Algorithm RSHT) to find a formal
deformation from a complex K to some homotopy equivalent complex L . This could
be incorporated in the algorithmbyperforming not only single pure elementary (d+1)-
expansions followed immediately by collapses, but by allowing sequences of pure
elementary (d+1)-expansions followed by pure elementary (d+2)-expansions before
switching back to collapses. In principle, this procedure could be set up in a simulated
annealing fashion (Björner and Lutz 2000; Kirkpatrick et al. 1983) as a generalized
way to what we do here; but for the examples we study in the subsequent Sects. 5 and
6, we shall restrict ourselves to the basic algorithm RSHT, as this already works well.
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Fig. 1 Pure elementary expansions as bistellar flips

Fig. 2 Reduction of the degree of the edge r

4 Bistellar flips and artifacts

Pure elementary (d + 1)-expansions have (at least for d-manifolds of low dimension
d ≤ 6) a clear interpretation in terms of bistellar flips. In fact, let K be a d-complex.
In a pure elementary (d +1)-expansion, some (d +1)-simplex σ is glued to K along a
d-ball consisting of 1 ≤ k ≤ d +1 of the d-faces of σ ; let r be the intersection of these
k faces. If r is contained in no further d-face of K , then after adding σ , collapsing it
away with one of the k d-faces, and collapsing further lower-dimensional faces, we
are left with a complex K ′ that is obtained from K via a bistellar move; cf. (Björner
and Lutz 2000). If instead r is contained in more than k d-faces of K , then in passing
from K to K ′ the facet degree of r is decreased by one.

Example 4.1 If we glue a tetrahedron σ to a 2-complex K along a 2-disk in ∂σ , the
disk can either consist of 1, 2, or 3 triangles. In the first case, the complex K ′ resulting
after the collapses is a subdivision of K . (The triangle τ of K is subdivided using
the unique vertex of σ not in K ; see Fig. 1, left.) In the second case, if r is the edge
common to the two triangles of ∂σ in which σ intersects K and r is contained in
exactly these two triangles of K , then r is flipped to yield K ′; see Fig. 1, right. In the
third case, the transition from K to K ′ “undoes” a subdivision.

Example 4.2 Let K be 2-dimensional and let σ be a tetrahedron glued to K along two
triangles whose intersection is r , and suppose that this r is contained in exactly three
triangles of K . Then after the addition of σ and its removal, r will be contained in two
of the triangles of K ′.

In Fig. 2, the tetrahedron 1234 is glued from below to the three triangles 123,
124, and 125 (as part of K ). Then the free triangle 124 is used to collapse away the
tetrahedron 1234, yielding the four triangles 123, 125, 134, and 234. This can be
interpreted as a generalized bistellar flip on the triangles 123 and 124 (of K ), yielding
the triangles 134 and 234—in the presence of the triangle 125 and by keeping the
triangle 123.
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If, in a pure elementary 3-expansion, some tetrahedron is glued on top of two
adjacent triangles �1, �2 of a triangulated 2-manifold, then, after collapsing away the
tetrahedron together with �1, the resulting triangulation will still contain �2 and (as a
free face) the edge e = �1 ∩ �2. This edge e is thus the only free (1-)face; hence, it
will be selected in the incoming (C) step of RSHT. As a result, the combination (E) +
(CC) + (C) is a proper bistellar flip—and the diagonal of the two initial triangles gets
flipped. In the case of a subdivision, the combination (E) + (CC) is a proper bistellar
flip as well. Thus, it remains to inspect the case when a subdivision is undone. After
the addition of a tetrahedron (E) and the deletion of one of the initial three triangles
along with the tetrahedron in the (CC) step, the other two initial triangles remain, and
we have (two) free edges for two further (C) steps. In contrast to the previous cases,
after the two (C) steps, the resulting triangulation is not a surface yet—as we still have
the intersection vertex of the three initial triangles as a free vertex that is connected to
the modified triangulated surface by an edge. That is, the result of (E) + (CC) + (C)
+ (C) is a triangulated surface with an additional edge sticking out. This edge is then
collapsed away in another (C) step.

This situation generalizes as follows:

Lemma 4.3 Let K be a triangulation (without free faces) of a d-manifold M and
suppose that the (d + 1)-simplex σ = [0, 1, . . . , d + 1] intersects K in a pure d-ball
B with 1 ≤ k ≤ d + 1 d-facets on the d + 2 vertices 0, 1, . . . , d + 1 of σ so that
(w.l.o.g.) B = [0, 1, . . . , d − k + 1] ∗ ∂[d − k + 2, d − k + 1, . . . , d + 1]. We add
σ (and its faces) to K and, by step (CC) of RSHT, ban those facets of σ as free faces
that do not contain [0, 1, . . . , d − k + 1].
• If k ≤ 7, then running RSHT on K ∪ σ until no further free faces are available

yields a triangulation K ′ = K − B + B ′ of M with

B ′ = ∂[0, 1, . . . , d − k + 1] ∗ [d − k + 2, d − k + 1, . . . , d + 1],

i.e., K ′ is obtained from K by a bistellar flip.
• If k > 7 (which can occur for d > 6 only), then running RSHT on K ∪ σ until no

further free faces are available might terminate in a non-pure simplicial complex
K ′′ that is the union of a triangulation of M with a contractible, but non-collapsible
lower-dimensional complex on the vertices d − k + 2, d − k + 1, . . . , d + 1.

Proof Step (CC) of RSHT implies that our first collapsing move will remove a facet
of B along with the added (d + 1)-simplex σ . At any consecutive collapsing step (C),
the faces involved in the collapses will be of the form [0, 1, . . . , d − k + 1] ∗ τ , where
τ ∈ ∂[d − k + 2, d − k + 1, . . . , d + 1] (because our starting complex K had no free
faces). The restriction of the collapsing sequence to ∂[d −k +2, d −k +1, . . . , d +1]
gives us a valid collapsing sequence of the simplex [d − k + 2, d − k + 1, . . . , d + 1],
where the first collapsing move is induced by the initial step (CC). Now:

• If k ≤ 7, the simplex [d − k + 2, d − k + 1, . . . , d + 1] has at most seven
vertices; and by (Bagchi and Datta 2005) every contractible simplicial complex
with k ≤ 7 vertices is collapsible, i.e., the collapsing sequence induced by RSHT
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on [d − k + 2, d − k + 1, . . . , d + 1] will terminate at a single point. It follows
that K ′ = K − B + B ′.

• If k > 7, then the collapsing sequence on [d − k + 2, d − k + 1, . . . , d + 1]
might get stuck on a contractible, but non-collapsible subcomplex of dimension at
least two (Crowley et al. 2003; Lofano and Newman 2021), and thus the resulting
complex K ′ need not be pure. ��
In the special case when d = 7 and k = 8 we might get stuck on a modified

manifold triangulation union, say, a complex [0] ∗ D ⊆ [0] ∗ ∂[1, . . . , 8], with D an
8-vertex triangulation of the dunce hat; cf. (Benedetti and Lutz 2013). The resulting
complex K ′ = K − B + B ′+[0]∗ D then deviates from the modification via a bistellar
flip, K − B + B ′, by the additional cone [0] ∗ D with apex [0] over the (contractible)
dunce hat D in the 2-skeleton of ∂[1, . . . , 8]. The complex K ′ = K − B + B ′ +[0]∗ D
deformation retracts to K − B + B ′, but has no free faces. We regard the contractible
complex [0] ∗ D as an artifact of the modification.

Theorem 4.4 (Reduction of pure elementary (d +1)-expansions to bistellar flips). Let
K be a triangulation of a d-manifold M with d ≤ 6. Any pure elementary (d + 1)-
expansion followed by collapses (as long as free faces are available) induces a bistellar
flip on K .

Proof The statement follows from Lemma 4.3 and the fact that the maximum number
of facets of a pure d-ball on d + 2 vertices is d + 1. ��
Corollary 4.5 (Manifold stability). Let K be a (not necessarily pure) simplicial com-
plex. If we run RSHT on K and at some point reach a simplicial complex K ′ that
triangulates a d-manifold with d ≤ 6, then from then on, whenever there are no free
faces in the further run of RSHT, the respective temporary complex K̃ is a d-manifold
as well, and K̃ is bistellarly equivalent to K ′.

Toavoid lower-dimensional artifacts [0, 1, . . . , d−k+1]∗N ⊆ [0, 1, . . . , d−k+1]∗
∂[d−k+2, d−k+1, . . . , d+1] in themodification K ′ = K −B+B ′+[0, 1, . . . , d−
k +1]∗ N of a triangulated manifold K , involving a contractible, non-collapsible com-
plex N for d ≥ 7 and k ≥ 8, we should switch to bistellar flips K ′ = K − B + B ′ once
we know that K is a manifold. Quite often, this is not clear a priori—in fact, testing
whether K is a manifold is an undecidable problem for d ≥ 6; cf. (Joswig et al. 2022).

In practice (Joswig et al. 2022), on a 7-simplex it is nearly impossible to get stuck
with random collapses. On the 8-simplex, only about 0.0000012% of the runs of
random collapses get stuck. But in higher dimensions, the situation changes dramati-
cally: For example, for the 25-simplex, contractible but non-collapsible substructures
are encountered in 92% of the runs.

Another option to deal with the artifacts would be to run RSHT on lower-
dimensional parts to “melt away” the artifacts. However, in our experiments in Sects. 5
and 6weonly focus on top-dimensional pure elementary expansions, since the terminal
triangulations of the examples we consider are all of dimension d ≤ 6.

In case a general complex K has no free faces and is not a manifold, then a sequence
(E) + (CC) + (C) + …+ (C) until no further collapses are possible might reduce K in
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dimension or can reduce (or increase) the degree of a face in K , as we have seen in
Example 4.2 and Fig. 2. In the latter case, we can regard the sequence as a generalized
bistellar flip. These generalized operations give flexibility in the modification of a
given complex K .

4.1 Selection of expansions and simplification of complexes

We next discuss in more detail how the pure elementary expansions are selected and
whyAlgorithmRSHThas a tendency to simplify simplicial complexes to yield small or
even vertex-minimal triangulations. First, we note that RSHT, apart from temporarily
adding (d+1)-faces in the pure elementary expansion steps (E), never increases the
dimension of the complex.

As outlined in the introduction, for any d-facet of a d-dimensional complex K ,
chosen uniformly at random, we can check for all neighboring d-facets whether the
induced subcomplexes on the combined d + 2 vertices are pure d-dimensional. From
the collection of all available such pure induced d-balls on d +2 vertices, we pick one
uniformly at random for a pure elementary d-expansion step (E). However, in general,
such pure induced d-balls on d +2 vertices need not exist. For example, in the case of
neighborly triangulations of surfaces, the induced subcomplexes on the four vertices
of two adjacent triangles are the two triangles plus the opposite diagonal edge; such
subcomplexes are not contractible. In such a case, the only possible pure elementary
expansion is by picking a facet (uniformly at random) as a pure d-ball and initiating
a subdivision (S). An example of a triangulated 3-sphere on 16 vertices that allows
no bistellar flips (apart from subdivisions of tetrahedra) is given in (Dougherty et al.
2004).

Let K be a triangulated circle S1 with n > 3 vertices. Then K is reduced by
Algorithm RSHT to the boundary of a triangle in n − 3 pure elementary expansion
steps (E), each followed by two collapsing steps (CC) + (C).

In the case of triangulations of S2 with n > 4 vertices, there always are admissible
edge flips, and thus Algorithm RSHT never adds a vertex in a subdivision step (S).
A vertex can get removed in the reversal of a subdivision once the current triangulation
has a vertex of degree 3. However, the boundary of the octahedron has all of its vertices
of degree 4; in fact, there are infinitelymany triangulations of S2 with all vertex degrees
at least four. In any such example, the removal of a vertex is not immediately possible.
But after a suitably long sequence of random edge flips, eventually vertices of degree 3
show up, and the three incident triangles to such a vertex have the chance to get chosen
for an induced pure 2-ball to remove the vertex of degree 3.

Similarly, general complexes K are simplified and reduced in size by collapsing
away collapsible parts andby reversing subdivisions to reduce the number of vertices—
but without a universal guarantee for success (as contractibility is undecidable).
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(a) An 8-vertex triangulation
of the Dunce Hat

(b) Anticollapsing the tetra-
hedron 1367

(c) Collapsing away the tetra-
hedron 1367

Fig. 3 A formal deformation of the dunce hat

5 Classical examples

In this section, we test how theAlgorithmRSHT performs on theDunceHat, on Bing’s
house with two rooms, and on similar, “classical” examples of contractible complexes.
It turns out that the number of pure elementary expansions needed to reduce these com-
plexes to a single vertex is conveniently low: one pure elementary expansion suffices
for an 8-vertex triangulation of the dunce hat; five pure elementary expansions suffice
for a simplicial version of Bing’s house with two rooms; and in general, six tetrahedra
are sufficient to collapse Bing’s house with k rooms (Theorem 5.2). Triangulations
of these examples can be found online at the “Library of Triangulations” (Benedetti
and Lutz 2013).

5.1 The dunce hat

The dunce hat (Zeeman 1964) is the most famous example of a contractible, but non-
collapsible complex; cf. (Benedetti andLutz 2013). It is obtained by gluing together the
three edges of a single triangle in a non-coherentway. The dunce hat can be triangulated
as a simplicial complex with eight vertices (see Fig. 3a); and eight vertices is fewest
possible, as every contractible simplicial complex on seven vertices is collapsible
(Bagchi and Datta 2005). No triangulation of the dunce hat is collapsible, since there
are no free edges to start with.

The dunce hat of Fig. 3a admits two (proper) anticollapsing moves, the addition of
the tetrahedron 1245 or alternatively the addition of the tetrahedron 1367. In Fig. 3b
we added 1367. All of the triangles in 1367 are free, since this is now the only tetrahe-
dron present. If we collapse away the triangle 367, we recover the initial complex of
Fig. 3a. If instead we choose to delete the free triangle 136, we obtain the triangulation
displayed in Fig. 3c. This triangulation has a free edge, 16, that allows us to get rid of
the triangle 167. After this elementary collapse, the edge 17 becomes free, allowing
us to remove the triangle 137. But now the edge 13 is free, and it can easily be seen
that the deletion of the triangle 138 paves the way to a full collapse down to a single
vertex.
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Fig. 4 Triangulations Abalone of the Abalone (left) and BH of Bing’s house with two rooms (right)

Lemma 5.1 One pure elementary3-expansion suffices to reduce to a vertex the8-vertex
triangulation of the dunce hat from Fig.3b(a).

In 104 runs, RSHT used on average 2.4145 pure elementary 3-expansions to reduce
the 8-vertex dunce hat to a point; see Sect. 6.1 and Table 1.

5.2 The Abalone

The Abalone (Hog-Angeloni and Metzler 1993), sometimes called Bing’s house with
one room, is another example of a contractible but non-collapsible complex.We are not
aware of any triangulation of this space in the literature, so we present one, Abalone,
with 15 vertices:

127 129 138 139 147 148 149 237
2315 2915 378 3914 31415 457 458 467
469 569 5610 5710 589 6711 61011 7810
7811 8912 8913 81012 81113 81213 91214 91315
101112 111213 121314 131415

Figure4 displays this triangulation, although some diagonals have been omitted for
reasons of pictorial clarity. Essentially, the triangulation consists of a membrane (in
dark) from which two prismatic tunnels (in light) originate at the two empty triangles
1 2 3 and 4 5 6; and the tunnels are separated by the highlighted triangle 81213. The
Abalone is contractible as can be seen by filling in the two tunnels.

RSHT can reduce the Abalone to a point using only three pure elementary expan-
sions. One way to do so is to free the edge 8 9 of Fig. 4 by first adding the three
tetrahedra 8 9 12 13, 9 12 13 14, and 9 13 14 15, in this order, as anticollapsing moves.
The resulting complex is then collapsible. This can either be verified by hand, or via the
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random_discrete_morse algorithm (Benedetti and Lutz 2014) implemented in
polymake (Joswig et al. 2022): The three tetrahedra fill in the prism between the
triangle 8 12 13 and the (formerly empty) triangle 9 14 15. By collapsing away this
prism, the edge 8 9 becomes free so that the (dark) membrane around the empty tri-
angle 4 5 6 can be collapsed away, which frees the tunnel originating at this empty
triangle. Its removal then allows to collapse the remaining disk.

We can interpret the anticollapsing moves followed by collapses as operations that
move thewalls of the tunnel so that eventually the obstruction to collapsibility vanishes.

5.3 Bing’s house with two rooms

Bing’s house with two rooms (Bing 1964) is an early example of a contractible space
no triangulation of which is collapsible. For our purposes, we triangulate Bing’s house
as a triangular prism with two floors, two tunnels to reach the floors, and all rectangu-
lar walls subdivided into two triangles each. Figure4 displays the following (small)
triangulation B H with f = (19, 65, 47) (with the list of facets also available online
as example BH at (Benedetti and Lutz 2013)):

125 127 134 139 145 179 236 238
256 278 346 3413 389 3913 4510 4613
41013 41213 5610 61012 61213 7811 7815 7913
7914 71011 71013 71415 8912 8916 81112 81115
81516 91213 91416 101117 101217 111218 111518 111718
121719 121819 141517 141619 141719 151618 151718 161819

RSHT is able to reduce Bing’s house to a point by means of five (successive) pure
elementary expansions (in the upper room, each followed by collapses so that the
outer walls of Bing’s house are moved towards the upper tunnel). Here is a possible
strategy. By successively adding five tetrahedra in the upper room of our Bing’s house
triangulation, we fill in a cubical prism between the horizontal square 7–8–11–10 of
the medium floor and the square 14–15–18–17 of the ceiling. The first two tetrahedra
781115 and 11151718 can be added independently, and their addition are proper
anticollapsing steps. The third tetrahedron 7111517 is a pure elementary expansion,
and the addition of the two final tetrahedra 7101117 and 7141517 are again anticol-
lapsing steps. The newly introduced cubical prism connects the outer vertical square
7–8–15–14 with the vertical square 10–11–18–17 of the upper tunnel. The resulting
complex is collapsible; an explicit collapsing sequence proving this claim is detailed
below.

We start from the outside, by perforating the back square 7–8–15–14. Then we
entirely remove the interior of the cubical prism along with the two triangles 7815
and 71415 of the back square and the two triangles 141517 and 151718 of the
top square. The result is an indented Bing’s house triangulation with two new side
triangles 71017 and 71417. But now the edge 1718 has been freed, and we can use
it to collapse away the subdivided squares of the triangulation one by one. First the
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Fig. 5 Ground floor (left) and room R2 (right) of Bing’s house B H(3) with three rooms

square 10–11–18–17 is collapsed away, which frees the edge 1011. This edge in turn
can be used to remove the horizontal square 7–8–11–10, thus freeing the edge 78.Next,
we remove the squares 1–2–8–7, 2–3–9–8, 1–3–9–7, the vertical wall 3–4–13–9, then
all triangles of the lower floor, then the lower tunnel, to end up with the indented upper
room with empty triangle 101213. This remaining complex is a triangulated disc and
thus collapsible.

5.4 Bing’s house with k rooms

A recent example of a non-collapsible, contractible complex isBing’s house with three
rooms (and thin walls) by Tancer (2016). He introduced the example as a gadget to
prove that the problem of recognizing collapsible complexes is NP-complete. The
basic layout of the example can be found in (Tancer 2016). Here, we give an explicit
triangulation B H(3); and extend this construction to k rooms, B H(k), k ≥ 3.

The starting point for the construction of B H(3) is to have a ground floor with three
triangular holes as depicted in Fig. 5. The floor has the following triangles:

125 1215 146 1410 157 167 1911 1914
11012 11112 11416 11516 235 21315 346 356
4810 8911 81011 91314 131415

Onto the ground floor, we glue three rooms in a coherent way. Room R1 is glued
onto the two regions A and B and uses nine additional vertices, from 17 to 25. Room
R2, depicted in Fig. 5, is glued onto the regions B and C and uses the nine vertices
from 26 to 34. Finally, room R3 is glued onto the regions C and A with further nine
vertices ranging from 35 to 43. The rooms R2 and R3 are cyclic copies of the room
R1, where 9 and 18 are added to the vertex-labels 17 to 25 of room R1, respectively.
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Concretely, the triangles of room R1 are

1217 1917 2318 2518 21718 3419 31819 4820
41920 5621 5721 51821 6722 62122 72123 72223
8924 82024 91725 92425 171821 172022 172024 172123
172123 172425 181921 192022 192122

Those of room R2 are

1226 1426 21333 22634 23334 4827 41027 42627
8928 82728 91329 92829 101130 101230 102730 111231
113031 123032 123132 132933 262730 262931 262933 263032
263132 263334 272830 282931 283031

and those of room R3 are

1435 1935 2338 21337 23738 3442 33842 43543
44243 91336 91436 93536 133637 141539 141639 143639
151640 153940 163941 164041 353639 353840 353842 353941
354041 354243 363739 373840 373940

The three rooms R1, R2, and R3 are then all glued to the upper side of the ground
floor. Since the vertices of the upper layer of a room are distinct from the vertices of
the upper layers of the other two rooms, there is no conflict for the chosen gluing to
the same side. To enter the interior of a room, one has to first pass through the tunnel
from above of the room to the left, before the room itself can be entered from below
through the lower left empty triangle.

The previous triangulation B H(3) of Tancer’s Bing’s housewith three rooms can be
generalized to create a new series of triangulated Bing’s houses B H(k) with k rooms
for all k ≥ 3. Instead of just three regions, start with k regions that have a triangular
hole each, cyclically arranged around a central vertex 1 on the ground floor, and attach
to it k rooms, R1, . . . , Rk , in a coherent way, as before. The resulting triangulation
has face vector

f = (14k + 1, 50k, 36k).

A C++-implementation BH_k.cc by Lofano to generate the examples B H(k) along
with explicit triangulations BH_3, BH_4, and BH_5 can be found online at (Benedetti
and Lutz 2013).

Our next result highlights that in terms of simple-homotopy theory, B H(k) is easy
to understand.
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Theorem 5.2 For any k ≥ 3, Bing’s house with k rooms, B H(k), can be formally
deformed to a point using only six pure elementary expansions.

Proof Since the rooms R1, . . . , Rk are all identical, we extend to B H(k) the labelling
scheme that we used for the ground floor and the rooms of B H(3). First we do all the
expansions in room R1. By adding the following six tetrahedra

2 3 5 18, 3 5 18 19, 5 18 19 21, 3 5 6 19, 5 6 19 21, 6 19 21 22

we fill in the cubical prism between the horizontal square on the vertices 2–3–6–5 of
the main floor and the horizontal square on the vertices 18–19–22–21 of room R1’s
ceiling. We may now start the collapsing sequence from the outside. We perforate the
back square 2–3–19–18 and then remove the whole interior of the prism, along with
the back square 2–3–19–18 and the horizontal square 18–19–22–21 of the ceiling.
Now the edge 21 22 is free. Thus, we can proceed exactly as for Bing’s house with
two rooms: We collapse away the squares 5–6–22–21 and 2–3–5–6, in this order. But
now the edge 23 is free; so we can use it to collapse away room Rk . By induction, we
can thus collapse all the rooms one by one. ��

How does this compare with the experimental results? In 104 runs, RSHT was
always able to reduce Bing’s house with three rooms, B H(3), to a point, using on
average about 148 additional tetrahedra. In the “best run”, only 12 additional tetrahedra
were used. For Bing’s house with k rooms, B H(k), 4 ≤ k ≤ 7, in 104 runs, even in the
best case, RSHT tends to perform a growing number of expansions; see Table 1. This
growing number of used tetrahedra is not surprising, due to the probabilistic model
that we used: When selecting from more rooms, the number of options for possible
expansions gets larger. So if we keep the number of rounds fixed, the chances to pick
the cleverest sequence of pure elementary expansions will get thinner.

6 Experiments on various topologies and substructures

In this section, we explore how our algorithm RSHT performs for further interest-
ing simplicial complexes, whether contractible or not. All timings were taken on an
Intel(R) Core(TM) i7-4720HQ CPU with 2.60 GHz and 16 GB RAM.

6.1 Contractible, non-collapsible complexes

Table 1 lists the number of pure elementary expansions used for the dunce hat and
Bing’s houses described in the previous section, as well as for the contractible complex
two_optima of (Adiprasito 2017) and for some knotted balls (Lutz 2004; Benedetti
and Lutz 2013). Furch’s knotted 3-ball is the only example in this set for which the
runtime is not negligible. In fact, due to the large number of expansions required (to
overcome the knottedness), it took an average of 85s to complete one round of the
algorithm for this 3-ball.

The explanation of Table 2 is as follows. If one starts with a single d-simplex,
with 8 ≤ d ≤ 15, and one tries to collapse it down to a point, sometimes one gets
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Table 2 RSHT run for contractible, non-collapsible complexes obtainedwhen trying to collapse a d-simplex

d # Examples × # Rounds # Expansions # Expansions
(smallest found) (mean)

8 10 × 103 1.0 1.9310

9 10 × 103 1.0 3.6845

10 10 × 103 1.0 8.4502

11 10 × 103 1.1 7.6552

12 10 × 103 2.5 29.4564

13 10 × 103 1.2 38.3988

14 10 × 103 7.9 174.7835

15 10 × 103 36.3 205.1362

stuck in contractible, non-collapsible complexes of intermediate dimension (Lofano
and Newman 2021). For each initial d-simplex we recorded 10 such examples, and on
each one of these 10 examples we let RSHT run for 103 rounds. In each of the rounds,
RSHTwas able to reduce the respective examples to a point: In columns three and four
of Table 2, we recorded the smallest found and average numbers of pure elementary
expansions used. With the increase of the dimension, the runtime started to become
an issue. For the largest examples, with d = 15, it took on average around 25s to
complete one round.

6.2 Submanifolds and non-manifold substructures in manifolds

If we remove a facet from a triangulation of the d-dimensional sphere Sd , the resulting
simplicial complex is a triangulated d-ball, and thus has the simple-homotopy type
of a point by Whitehead’s Theorem 2.1. In case the initial d-manifold Md is not a
sphere, the removal of a simplex from a triangulation yields a simplicial complex that,
depending on Md , may deform to a submanifold or to a non-manifold substructure
in Md . Table 3 provides results for some classical examples:

Starting with the vertex-minimal triangulation ofRP3 with 11 vertices, and remov-
ing a facet, in 104 runs of RSHT it took on average 25.2510 expansions to reach the
6-vertex triangulation of RP2. From RP4 to RP3 it took 885.5957 expansions. From
CP2 to S2 no expansions were used around half of the times; the average number
of expansions needed was 2.3543. Finally, it took 30.0784 expansions to reach S4

from HP2. For the Poincaré homology 3-sphere (Björner and Lutz 2000), the RSHT
algorithm found a 2-dimensional Z-acyclic 2-complex on 10 vertices (the boundary
of the identified dodecahedron) using 2031.732 expansions in less than two minutes
per run.

The 3-dimensional lens spaces L(p, q), introduced by (Tietze 1908), are well-
known topological spaces with torsion in first homology. Starting from triangulations
of the 3-manifolds L(p, 1) (Brehm and Świa̧tkowski 1993; Lutz 2003) for p ≥ 3,
we aimed for small triangulations of 2-dimensional simplicial complexes that still
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Table 3 RSHT run for manifold triangulations minus a facet

Initial complex Initial f -vector Resulting complex Resulting f -vector

RP3 (Walkup
1970)

(11, 51, 80, 40) RP2 (6, 15, 10)

RP4 (Lutz 1999,
Ch. 3)

(16, 120, 330, 375, 150) RP3 (11, 51, 80, 40)

CP2 (Kühnel and
Banchoff 1983)

(9, 36, 84, 90, 36) S2 (4, 6, 4)

HP2 (Brehm and
Kühnel 1992)

(15, 105, 455, 1365, 3003, S4 (6, 15, 20, 15, 6)

4515, 4230, 2205, 490)

Poincaré 3-sphere
(Björner and
Lutz 2000)

(16, 106, 180, 90) Z-acyclic 2-complex (10, 40, 31)

Table 4 Face vectors of small
substructures with p-torsion of
the lens spaces L(p, 1)

Torsion f -vector

Z3 (8, 24, 17)

Z4 (8, 26, 19)

Z5 (9, 32, 24)

Z6 (9, 33, 25)

Z7 (9, 34, 26)

Z8 (9, 35, 27)

Z9 (9, 36, 28)

Z10 (9, 36, 28)

Z11 (10, 42, 33)

Z12 (10, 42, 33)

Z13 (10, 43, 34)

Z14 (11, 50, 40)

Z15 (11, 50, 40)

have p-torsion. (The case p = 2 has been already considered, since L(2, 1) = RP3.)
Table 4 gives the f -vectors of these smaller complexes; Fig. 6a–c shows resulting small
triangulations d2_n8_3torsion, d2_n8_4torsion, and d2_n8_5torsion
(with facets lists available at (Benedetti and Lutz 2013)) with torsion Z3, Z4, and
Z5, respectively. The example d2_n8_3torsion has the combinatorial symmetry
(2, 3)(4, 8)(6, 7); the example d2_n8_4torsion has symmetry (1, 2)(4, 6)(7, 8).
In (b), the obtained complex is the union of an 8-vertex triangulation of the projective
plane and a Möbius band. The complex d2_n8_5torsion origins from a triangu-
lated disk with identifications highlighted in blue (the “path” 6–5–3–6–5–3–6–5–3–6)
and red (the “path” 6–2–4–7–1–6–2–4–7–1–6).

The following natural problem is open for p ≥ 3:

Question 1 What is theminimal number of vertices nmin(p) for a simplicial 2-complex
with p-torsion?
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(a) Complex d2 n8 3torsion with 3-torsion.

(b) Complex d2 n8 4torsion with 4-torsion. (c) Complex d2 n8 5torsion with 5-torsion.

Fig. 6 Small substructures with p-torsion of the lens spaces L(p, 1)

An earlier construction of a 2-dimensional simplicial complex with 3-torsion as a
sum complex on eight vertices is by Linial, Meshulam, and Rosenthal (2010). Their
example is based on the following collection of subsets of Z8:

X{0,1,3} = { σ ⊂ Z8 : |σ | = 3,
∑

x∈σ

x ≡ 0, 1 or 3 (mod 8) }.

This complex has complete 1-skeleton and face vector f = (8, 28, 21). Three edges
of the complex are free, and after collapsing the respective triangles we reach a 2-
complex with f = (8, 25, 18), which still has one triangle and one edge more than the
example d2_n8_3torsion. By runninng RSHT on the triangulation with 18 trian-
gles repeatedly, we again reach d2_n8_3torsion—or a second non-isomorphic
triangulation with the same f -vector that is obtained from d2_n8_3torsion by
flipping the edge 1–5.

Conjecture 1 The examples d2_n8_3torsion and d2_n8_4torsion have
component-wise minimal f -vectors for complexes with 3- and 4-torsion, respectively.

In the description of the torus S1 × S1 as a square with opposite edges identified,
the removal of the interior of the identified square yields the wedge product S1 ∨ S1 of
two circles S1 that are glued together at a point. In general, if we remove a facet from a
triangulation of a sphere product, the resulting complex is (simple-)homotopy equiva-
lent to the wedge product of the constituting spheres. In the case of S2× S1, the wedge
product S2 ∨ S1 is of mixed dimension. Since in the implementation of RSHT our
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Table 5 RSHT run for triangulations of sphere products minus a facet

Initial complex Initial f -vector Resulting complex Size of the resulting complex

S2 × S1 (12, 48, 72, 36) S2 ∨ S1 ∂�3 ∪ K 1(3.5382)

S3 × S1 (15, 75, 150, 150, 60) S3 ∨ S1 ∂�4 ∪ K 1(7.7617)

S2 × S2 (16, 84, 216, 240, 96) S2 ∨ S2 ∂�3 ∪ ∂�3

S3 × S2 (20, 130, 420, 710, 600, 200) S3 ∨ S2 ∂�4 ∪ K 2(11.5460)

focus is on the top-dimensional faces, RSHT is not further touching lower-dimensional
parts once these are reached via collapses. Thus, the resulting triangulations of S2∨ S1

are of the form ∂�3 ∪ K 1, consisting of the vertex-minimal triangulation of S2 as the
boundary complex ∂�3 of a 3-simplex �3 union a 1-dimensional complex K 1.

Depending on the intersection of K 1 with ∂�3, K 1 either is a path (a 1-dimensional
ball) or a loop (a 1-sphere S1). For a unifieddescription inTable 5,wewrite K 1(4.5382)
to point out that K 1 has (in 104 runs of RSHT) on average 4.5382 edges. Table 5 gives
results for further sphere products, where for the lower-dimensional parts the average
number of facets are listed. The initial triangulations of the sphere products in Table 5
are produced via product triangulations of boundaries of simplices (Lutz 2003).

In a separate experiment, we started with a triangulation of S1 with 10 vertices and
with a triangulation of S2 with 100 vertices as the boundary complex of a random
simplicial 3-polytope, for which 100 points on the round 2-dimensional sphere were
chosen randomly via the rand_sphere client of the software system polymake
(Gawrilow et al. 1997)). The initial triangulation of S2 × S1 has face-vector f =
(1000, 6880, 11760, 5880). It took RSHT an average of 1108.23 expansions, in 102

runs, to reduce the triangulation (minus a facet) to a triangulation ∂�3 ∪ K 1(21.76) of
the wedge product S2 ∨ S1. We repeated the same experiment, but this time applying
200, 000 preliminary random bistellar edge flips to the 100-vertex triangulation of S2,
before taking the sphere product. The results of this experiment are similar to the one
before (though with a slightly higher average number of expansions). This suggests
that RSHT may be reliable even for larger complexes.

6.3 Dimensionality reduction

“Finding meaningful low-dimensional structures hidden in their high-dimensional
observations” (Tenenbaum et al. 2000) is a major theme in analyzing higher-
dimensional data of various origins. Usually, the data is given as a finite set of points in
some Euclidean or metric space and is then often transformed to (higher-dimensional)
simplicial complexes via taking Čech complexes or Vietoris–Rips complexes. Here,
we did not start with explicit data sets, but instead “hid” a (closed) surface in a higher-
dimensional product as another model to test RSHT on.

Starting with the standard 7-vertex triangulation T of the torus, we first took con-
nected sums of T to create surfaces of higher genus gk , k ≥ 2. Then we took the cross
product gk × I of gk with an interval (subdivided into 10 edges on 11 vertices), and
reduced the resulting triangulation of the cross product with RSHT. In every single
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Table 6 RSHT run for triangulations of products of surfaces with subdivided intervals

Initial complex Initial f -vector Resulting complex Resulting smallest
f -vector

T × I (77, 511, 854, 420) T (7, 21, 14)

g2 × I (121, 929, 1586, 780) g2 (10, 36, 24)

g5 × I (253, 2183, 3782, 1860) g5 (12, 60, 40)

g6 × I (297, 2601, 4514, 2220) g6 (13, 69, 46)

g10 × I (473, 4273, 7442, 3660) g10 (18, 108, 72)

g50 × I (2233, 20993, 36722, 18060) g50 (51, 683, 534)

one out of 102 runs, the product gk × I gets reduced back to a small or even vertex-
minimal triangulation of the original surface of genus gk , as displayed in Table 6. In
a second experiment, we performed 200, 000 random edge flips to “randomize” the
surfaces gk ; then, we took cross products with the 10-edge interval I . Again, in 102

runs of RSHT, we always achieved the respective f -vectors of Table 6. While at least
10 vertices are needed to triangulate g2, Borghini and Minian describe in (Borghini
and Minian 2019) a 2-complex with only 9 vertices that is homotopy equivalent to g2
(we are grateful to Dejan Govc and Petar Pavešić for pointing this example out to us);
but in our runs we never found this 9-vertex example.

In a final experiment, we started with the triangulation of the surface g50 from
before, but this time we added 100 vertices in subdivision steps before performing the
200, 000 random edge flips. We then took again the cross product with the interval I
to get a randomized triangulation of g50 × I with f = (2728, 24278, 42212, 20760).
We then took another cross product of this 3-manifold with boundary with the 4-
simplex�4. The resulting complex is 7-dimensional with around 34 million faces and
face vector

f = (13420, 386630, 2446620, 6910210, 10432052, 8786210, 3909060, 718200).

In less than an hour and by using a few thousand expansions, in each out of 102

runs of RSHT, we were able to reduce this complex back to a triangulation of the
2-dimensional orientable surface of genus 50 with fewer than 60 vertices. In some
cases we were even able to reach the same f -vector with 51 vertices as in Table 6.
Due to memory constraints that come from the computation of the Hasse diagram of
the starting complex (requiring around 10 GB of RAM for this example), this was the
largest complex that we were able to study.
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6.4 Akbulut–Kirby 4-spheres

As stated early on, contractibility is, in general, undecidable. However, it takes con-
siderable effort to pose challenges to RSHT. A notoriously hard series of complexes is
given by the triangulations of the Akbulut–Kirby 4-dimensional spheres (Tsuruga and
Lutz 2013). ThesePL-triangulated standard 4-dimensional spheres (Akbulut andKirby
1985; Akbulut 2010) are built in an intricate way via non-trivial presentations of the
trivial group as their fundamental group (Akbulut and Kirby 1985). By Pachner’s the-
orem, these examples are bistellarly equivalent to the boundary of the 5-simplex, and
byWhitehead’s theorem, the examples minus a facet are simple-homotopy equivalent
to a single vertex. However, establishing connecting sequences of bistellar flips failed
in (Tsuruga and Lutz 2013), beyond the first easy examples of the series. Indeed, here
RSHT made no progress either, even when we set max_ step = 1,000,000 and waited
for a total runtime of 60h. On the level of 2-complexes involved here, their reduction
to a single vertex would prove Andrews–Curtis conjecture (cf. (Hog-Angeloni and
Metzler 1993, Ch. XII)) for these complexes, which is open.
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