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Abstract
This paper proposes a stable volume and a stable volume variant, referred to as a
stable sub-volume, for more reliable data analysis using persistent homology. In prior
research, an optimal cycle and similar ideas have been proposed to identify the homo-
logical structure corresponding to each birth-death pair in a persistence diagram.While
this is helpful for data analysis using persistent homology, the results are sensitive to
noise. The sensitivity affects the reliability and interpretability of the analysis. In this
paper, stable volumes and stable sub-volumes are proposed to solve this problem. For
a special case, we prove that a stable volume is the robust part of an optimal volume
against noise. We implemented stable volumes and sub-volumes on HomCloud, a data
analysis software package based on persistent homology, and show examples of stable
volumes and sub-volumes.

Keywords Persistent homology · Topological data analysis · Computational
algebraic topology · Optimization on homology algebra

Mathematics Subject Classification 55N31 · 62R40 · 55-04 · 55-08

1 Introduction

Topological data analysis (TDA) (Edelsbrunner and Harer 2010; Carlsson 2009) is a
data analysis method utilizing the mathematical concept of topology. In recent years,
persistent homology (PH) (Edelsbrunner et al. 2002; Zomorodian and Carlsson 2005)
has become one of the most important tools of TDA. PH is mathematically formalized
by using homology on a filtration. We can characterize the geometric information
by encoding the information regarding the scale of the data on the filtration. PH has
developed rapidly over themost recent decade andhas been applied in avariety of areas,
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672 I.Obayashi

Fig. 1 How to compute a PD for 5 points a Input pointcloud b Pointcloud and circles with radii r < a/2.
c r = a/2, d r = a/

√
3, e r = a/

√
2, f PD

including natural image analysis (Carlsson et al. 2008), biology (Chan et al. 2013),
geology (Suzuki et al. 2021), and materials science (Hiraoka et al. 2016; Saadatfar
et al. 2017; Onodera et al. 2019; Hirata et al. 2020).

PH information can be described by a persistence diagram (PD) or a persistence
barcode.1 A PD is a scatter plot on theXY plane, where each point (called a birth-death
pair) on the plot corresponds to a homological structure in the input data.

1.1 Persistent homology and volume-optimal cycles

Figure1 can be used to intuitively explain how a PD is determined from data. The
input data in the example constitute a pointcloud with five points, as shown in Fig. 1a.
Let a be the length of the edges of the regular triangle and the square. Since the five
points themselves do not carry any interesting topological information, we construct a
topological structure by putting circles with values of radii r as indicated in Fig. 1b–e.

We now face the problem of how to determine the proper size of the circles. If the
circles are too small, as in Fig. 1b, the topology is simply equivalent to the five points.
On the other hand, if the circles are too large, as in Fig. 1e, the shape becomes acyclic,
which makes it impossible to uncover any interesting topological information. PH
solves this problem by considering the appearance and disappearance of homology
generators associated with radii changes; that is, PH considers the increasing sequence
from Fig. 1b–e.

In the Fig. 1 example, two holes (homology generators in the 1st homology) appear
at Fig. 1c, one ofwhich disappears at d. The other hole disappears at Fig. 1e. The pair of
radii of the appearance and disappearance of each homology generator is called a birth-
death pair, and the multiset of all birth-death pairs is called a persistence diagram. In
this example, the PD for the 1st homology is {(a/2, a/

√
3), (a/2, a/

√
2)}. The PD

is visualized by a scatter plot or a 2D histogram (Fig. 1f). The two pairs correspond
to a regular triangle and a square. We can extract the geometric information of the
pointcloud in Fig. 1a using the PD.

It is beneficial in data analysis using PH to detect the original homological structures
corresponding to each birth-death pair. This is sometimes called “inverse analysis on
PH”. Some applications of PH (Hiraoka et al. 2016; Hirata et al. 2020) already use
inverse analysis on PH. However, detection is not an easy task, as the representative
cycle corresponding to a homology generator is not unique.

1 A persistence diagram and a persistence barcode contain the same information. The difference is how
the information is visualized.
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Fig. 2 Two types of optimization results

To solve this problem, various methods involving the solution of an optimiza-
tion problem in homology algebra have been proposed (Chen and Freedman 2011;
Escolar and Hiraoka 2016; Dey et al. 2019; Erickson and Whittlesey 2005; Dey
et al. 2011; Obayashi 2018; Tahbaz-Salehi and Jadbabaie 2008; Schweinhart 2015)
in various settings. For PH, optimal cycles (Escolar and Hiraoka 2016), persistence
trees (Schweinhart 2015), volume-optimal cycles (Obayashi 2018), and persistent 1-
cycles (Dey et al. 2019), have been proposed. The “tightest” or “minimal” cycle is
considered the best to interpret, and solving the optimization problem in homology
algebra produces the tightest cycle. Persistence cycles (Iuricich 2022) is also proposed
for a similar purpose using discrete Morse theory.

1.2 Problems of homology optimization

The existing methods have problems with noise. The example in Fig. 1 can be used to
demonstrate these problems. The pointcloud in Fig. 1 has twominimal building blocks,
a triangle and a square, and two birth-death pairs correspond to these shapes. However,
the optimization technique sometimes fails to find theseminimal building blocks when
a small noise is added. Figure2a shows the pointcloud in Fig. 1a when a small noise is
added. This figure also shows circles, and, as can be seen, a pentagon appears before
either a triangle or a square appears. By applying the homology optimization technique
to the data in Fig. 2a, we produce a triangle and a pentagon, as shown in Fig. 2b. On the
other hand, consider the pointcloud in Fig. 2c. The pointcloud here is also very close
to that in Fig. 1a; however, while a square appears first, the homology optimization
technique gives a square and a triangle, as shown in Fig. 2d.

The example demonstrates the following problems: (1) A small noise can change
the result, and (2) The optimization technique sometimes fails to giveminimal building
blocks of the data. The first problem is related to the reliability of the analysis; the
second problem is related to the interpretability of the result.

Thismeans that the stability theoremdoes not hold for the solutions of the homology
optimization problems. Previous studies (Cohen-Steiner et al. 2007; Chazal et al. 2009;
Bauer and Lesnick 2014; Lesnick 2015) have proved the stability theorem for PDs.
The literature indicates that a PD is continuously changed by a small noise in the input
data if we consider reasonable metrics. The stability of other PH outputs has also been
studied in the context of machine learning and PH (Bubenik 2015; Kusano et al. 2018;
Adams et al. 2017) or pointcloud summary method (Kurlin 2015; Smith and Kurlin
2021). Although these types of stability play an important role in the study of PH,
such a stability theorem does not hold for optimized results.
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Fig. 3 Optimal volumes for 3 × 3 × 3 cubical lattice. a 1st PD, bOptimal volumes of two pairs, cOptimal
volumes of other two pairs

Fig. 4 Schematic result of
applying the statistical approach
to the birth-death pair
(1/2, 1/

√
2)

These problems are practically significant, especially when we analyze crystalline
structures using PH. We can demonstrate the problems using the synthetic crystalline
data in Fig. 3. Here, the pointcloud consists of 27 points, arranged in a 3 × 3 × 3
cubical lattice. The distance between two vertices on the cube is 1. A small noise
is added to the pointcloud. Figure3a shows the 1st PD of the pointcloud. As can be
seen here, some birth-death pairs are concentrated around (1/4, 1/

√
2) ≈ (0.5, 0.7).

These pairs correspond to 1x1 squares in the lattice. By applying volume-optimal
cycles (Obayashi 2018), we found some loops corresponding to the pairs in Fig. 3b
and c. Some of the cycles shown in Fig. 3b are squares, as expected; however, others in
Fig. 3c are larger structures resembling chairs. These larger structures were detected
with the same mechanism in Fig. 2.

The purpose of this paper is to present a new method to solve these problems. That
is, we propose a method to find minimal building blocks that is robust to noise.

1.3 Statistical approach in previous research

Bendich et al. (2020) proposed a statistical approach for the problem, which can be
outlined as follows:

1. Computing a PD from the input data and choosing a birth-death pair to analyze
2. Adding a small noise to the input data, computing a PD, and applying inverse

analysis
3. Repeating 2. multiple times
4. Computing an average of the results of the inverse analysis

By applying this method to the birth-death pair (1/2, 1/
√
2) in Fig. 1, we produce

the result shown in Fig. 4. The result indicates that the four points on the square are
robust to noise and that the leftmost point is less robust. This result is consistent with
the fact that the pair (1/2, 1/

√
2) corresponds to a square.
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The stability of the method in a probabilistic sense was also proved in the paper.
Notably, the method provides a more reliable inverse analysis. The idea is quite clever,
simple, and easy to implement. However, themethod has a high computation cost since
it requires the user to compute PDs and optimal cycles a large number of times. In
the paper, the authors repeat the computation of the generators 1,000 or 10,000 times.
We suspect that fewer repetitions may be sufficient, but ten or a hundred trials will be
necessary. Multiple trials and errors are typically needed to tune the noise bandwidth
in order to apply the method, and thus the cost is not ignorable.

1.4 Reconstructed shortest cycles in Ripserer.jl

The “reconstructed shortest cycles” functionality of Ripserer.jl2 by Čufar (2020) gives
another solution of the problem. The functionality reconstructs the tightest 1-cycle
using the shortest path algorithm and the representative of persistent cohomology. The
functionality accepts a noise bandwidth parameter and computes a tighter loop.3

The advantage of reconstructed shortest cycles is their efficiency. Since it uses
the shortest path algorithm, the computational complexity is small. However, recon-
structed shortest cycles can be applied only to 1st PH since it uses the shortest
path algorithm. Another disadvantage is the lack of mathematical justification for
the functionality. Now4 the functionality is declared as experimental5 and gives no
mathematical documentation. We explain the algorithm in Appendix A.

1.5 Results

In this paper, we propose stable volumes and a variant of stable volumes, called stable
sub-volumes. The proposedmethod is based on the volume-optimal cycles and optimal
volumes (Obayashi 2018). Stable volumes produce minimal building blocks with a
lower computation cost than the statistical approach. The following list shows the
outline of the results:

• A stable volume for the (n − 1)th PH embedded in R
n is defined in a similar way

to an optimal volume using persistence trees (Definition 3)
• We prove that the stable volume is considered to be the “robust part” against noise
(Theorem 3.1)

• The stable volume is reformalized using an optimization problem on homology
algebra (Definition 6, Theorem 4.1)

• A stable volume without dimension conditions is also defined using the optimiza-
tion problem (Sect. 4.2)

• A stable sub-volume is also defined in a similar way (Definition 7)

2 https://github.com/mtsch/Ripserer.jl.
3 The demonstration of the reconstructed shortest cycles is available at https://mtsch.github.io/Ripserer.jl/
dev/generated/cocycles/#Reconstructed-Shortest-Cycles.
4 Jan. 28, 2022.
5 https://mtsch.github.io/Ripserer.jl/dev/api/#Ripserer.reconstruct_cycle.
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Fig. 5 Optimal and stable volumes computed for 3 × 3 × 3 cubical lattice. a Optimal volumes of two
pairs (the same as Fig. 3c), b Stable volumes of the same two pairs

As the stable volumemethodhas alreadybeen implemented inHomCloud (Obayashi
et al. 2021),6 stable volumes can now be used to analyze the data.

We can demonstrate stable volumes by using the same input data as in Fig. 3.
Figure5 shows the optimal volumes (Fig. 5a) and stable volumes (Fig. 5b) of the same
two birth-death pairs. The birth-death pairs correspond to 1x1 squares in the lattice
points, but Fig. 5a shows larger loops than expected. In contrast, Fig. 5b shows the
expected 1x1 squares. The author confirmed that all stable volumes are 1x1 squares.
This example suggests that stable volumes give better results and help promote a better
intuitive understanding of PDs.

1.6 Organization of the paper

The remainder of the paper is organized as follows: Sect. 2 introduces the concept of
PH, optimal volumes, and volume-optimal cycles. Section3 defines stable volumes
for the (n− 1)th PH embedded in R

n . In this section, we also discuss the limitation of
stable volumes. Section4 shows an alternative formalization of stable volumes using
mathematical optimization. Section4.1 provides a proof that the two formalizations
are consistent for the (n − 1)th PH when the simplicial complex is embedded in R

n .
Section4.2 extends the formalization to other cases, and Sect. 4.3 defines a stable sub-
volume, which is another variant of stable volume. Section5 discusses the software
implementation of stable volumes. Section6 gives examples using synthetic and real
data. This section also provides a comparison with previous methods, the statistical
approach, and the reconstructed shortest cycles. Section7 discusses the way in which
the noise bandwidth parameter can be tuned. Section8 compares stable volumes and
sub-volumes. Section9 summarizes the paper and offers concluding remarks. In this
section, we also discuss the differences between the proposedmethod and the methods
of previous works.

6 https://homcloud.dev/index.en.html.
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Stable volumes for persistent homology 677

2 Persistent homology, optimal volumes, and volume-optimal cycles

In this section, we introduce the mathematical concepts of PH, PDs, optimal volumes,
and volume-optimal cycles, which provide the foundation for our discussion.

2.1 Persistent homology

PH is defined on a filtration of topological spaces. Let X be a finite simplicial complex
and

X : ∅ = X0 � X1 � · · · � XN = X (1)

be a filtration of subcomplexes of X . The kth persistent homology Hk(X; k) with a
coefficient field k is defined as

Hk(X; k) : Hk(X0; k) → Hk(X1; k) → · · · → Hk(XN ; k), (2)

where Hk(Xi ; k) is the kth homology k-vector space of Xi and → is the linear map
induced by the inclusion maps. We define the direct sum of the sequences of linear
maps to describe the fundamental theorem of PH.

Definition 1 For sequences of linear maps with the same length N + 1, {Vm}Lm=1 =
{Vm,0

fm,1−−→ · · · fm,N−−−→ Vm,N }Lm=1, the direct sum of these sequences
⊕L

m=1 Vi =
V0

f1−→ · · · fN−→ VN is defined as follows:

Vi =
L⊕

m=1

Vm,i (i = 0, . . . , N ), fi =
L⊕

m=1

fm,i (i = 1, . . . , N ).

The fundamental theorem of PH is as follows.

Theorem A There exists a unique decomposition of Hk(X; k),

Hk(X; k) �
L⊕

m=1

I (bm, dm), (3)

where 0 < bm < dm ≤ ∞, k → k is an identity map, 0 → k, k → 0 are zero maps,
and I (b, d) are as shown below:

I (b, d) =0 → · · · → 0 →
bth

︷︸︸︷
k → · · · →

(d−1)th
︷︸︸︷

k →
dth

︷︸︸︷
0 → · · · → 0, if dm 	= ∞,

(4)

I (b, d) =0 → · · · → 0 →
bth

︷︸︸︷
k → · · · → k, if dm = ∞. (5)
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On an intuitive level, the map 0 → k indicates the appearance of a homology
generator, k → k indicates the persistence of the generator, and k → 0 indicates the
disappearance of the generator.

We note that we should use a field as a coefficient ring of the homology module
since the theorem holds only when k is a field.

2.2 Order with level

We earlier introduced the idea of a level function. We now introduce the concept of
total order consistent with the level function. The total order is used to rigorously
describe the algorithms; the level function is needed to rigorously describe the noise.
Simplices with the same level often appear in an alpha filtration or a Vietoris-Rips
filtration; thus, the concept of the total order is required to deal with such filtrations.
The pair consisting of the total order and the level function is called an order with
level.

Let ≺ be a total order on the set of all simplices of X . We assume that

σ � σ ′ implies σ ≺ σ ′. (6)

We can number all simplices in X by this ordering as follows:

σ1 ≺ σ2 ≺ · · · ≺ σN . (7)

From the condition (6), Xi = {σ1, . . . , σi } is always a subcomplex of X and

∅ = X0 � X1 � · · · � XN = X (8)

is a filtration of simplicial complexes. In this filtration, the number of simplices is
increased one by one, which simplifies the mathematical description.

To include additional information in the filtration, we consider an order with level.

Definition 2 A pair r = (r̂ ,�r ) of a real-valued map on X and a total order on X
satisfying the following conditions is called an order with level.

1. σ �r σ ′ implies r̂(σ ) ≤ r̂(σ ′)
2. The order �r satisfies (6)

From the total order �r , a filtration Xr is defined by (7) and (8). Theorem A gives
the unique decomposition Hk(Xr ; k) � ⊕L

m=1 I (bm, dm). For each (bm, dm), the
simplex σbm is called a birth simplex, σdm is called a death simplex, and the pair
(σbm , σdm ) is called a birth-death simplices pair. When dm = ∞, we write the pair as
(σbm , �) using the special symbol �. Dk(Xr ) denotes the set of all birth-death simplices
pairs. Moreover, r̂(σbm ) is called a birth time, r̂(σdm ) is called a death time, and the
pair of the birth time and death time, (r̂(σbm ), r̂(σdm )), is called a birth-death pair.
When σdm = �, r̂(�) is defined as +∞. The multiset of birth-death pairs is called a
persistence diagram:

{(r̂(σbm ), r̂(σdm )) | m = 1, . . . , L; r̂(σbm ) 	= r̂(σdm )}. (9)
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Stable volumes for persistent homology 679

We write the persistence diagram as PDk(X , r).

2.3 Optimal volumes

Optimal volume is proposed by Obayashi (2018) as a way to extract homological
structures corresponding to a birth-death pair. For an order with levels r = (r̂ ,�r )

and a birth-death simplices pair (τ0, ω0) ∈ Dk(Xr ) with ω0 	= �, the optimal volume
for the pair is formalized as the solution to the following minimization problem:

minimize ‖z‖0, subject to

z = ω0 +
∑

ω∈Fk+1

αωω ∈ Ck+1(X; k),

τ ∗(∂z) = 0 for every τ ∈ Fk,

τ ∗
0 (∂z) 	= 0,

(10)

where Ck+1(X; k) is a chain complex whose coefficient field is k, Fk = {σ ∈ X (k) |
τ0 ≺r σ ≺r ω0}, τ ∗ is an element of the dual basis of cochain complex Ck(X; k), and
‖z‖0 = {ω | αω 	= 0} is the �0 norm of z. For solution z, ∂z is called a volume-optimal
cycle.

Obayashi (2018) shows the following theorem, which indicates that the volume-
optimal cycle is suitable for representing a birth-death pair.

Theorem B Let (τ0, ω0) ∈ Dk(Xr ) be a birth-death simplices pair and z an optimal
volume of that pair. Then the following relations hold:

∂z /∈ Zk({σ ∈ X | σ ≺r τ0}), (11)

∂z ∈ Zk({σ ∈ X | σ �r τ0}), (12)

∂z /∈ Bk({σ ∈ X | σ ≺r σ0}), (13)

∂z ∈ Bk({σ ∈ X | σ �r σ0}), (14)

where Zk(·) represents the cycles and Bk(·) represents the boundaries.

2.4 Optimal volumes for the (n− 1)th PH and persistence trees

In this section, we consider a triangulation of a convex set in R
n and its (n − 1)th PH

with n ≥ 2. More precisely, we assume the following:

Condition 1 A simplicial complex X in R
n satisfies two conditions.

• Any k-simplex (k < n) is a face of an n-simplex
• |X | := ⋃

σ∈X σ is contractible

Any alpha filtration for a pointcloud with more than (n + 1) points in general posi-
tion (Edelsbrunner and Mücke 1994) satisfies the above conditions.
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680 I.Obayashi

Delfinado and Edelsbrunner (1995) presented an efficient algorithm to compute the
second Betti number of a simplicial complex on the 3-sphere or R

3 using a dual graph
and union-find algorithm (Section 19, Cormen et al (2022)).

Schweinhart (2015) pointed out that the (n − 1)th PH was isomorphic to the 0th
persistent cohomology of the dual filtration by Alexander duality. Zeroth cohomology
is deeply related to the connected components in the dual filtration. This gives rise to
another formalization of (n − 1)th PH. The algorithm is the PH version of Delfinado
and Edelsbrunner (1995)’s algorithm. Obayashi (2018) generalizes the idea to optimal
volumes.

We now examine an order with levels r on X . Consider the filtration Xr in (7)
and (8) given by �r . For simplicity, we will use Z2 as the coefficient field. Then the
following theorems hold (Schweinhart 2015; Obayashi 2018).

Theorem C For any birth-death pair in PDn−1(X , r), the death time is not infinity.
Therefore we can always define the optimal volume of the pair. Moreover, the optimal
volume is uniquely determined.

Theorem D If z and z′ are the optimal volumes for two different birth-death pairs, one
of the following holds:

• z ∩ z′ = ∅
• z � z′
• z � z′

Note that we can naturally regard any z = ∑
ω∈X (n) kωσ ∈ Cn(X) as a subset of

n-simplices of X, {ω ∈ X (n) | kω 	= 0}, since we use Z2 as the homology coefficient
field.

From Theorem D, we know that Dn−1(Xr ) can be regarded as a forest (i.e., the
union of distinct trees) by the inclusion relation. Schweinhart (2015) calls the forest
persistence trees. Moreover, we can compute the persistence trees by the merge-tree
algorithm (Algorithm 1).

To describe the algorithm, consider the one-point compactification space R
n ∪

{∞} � Sn . The following facts from Condition 1 are well known.

• X ∪ {ω∞} is a cell decomposition of R
n ∪ {∞}, where ω∞ = (Rn ∪ {∞})\|X |

• For any τ ∈ X (n−1), the proper cofaces7 of τ are just two n-cells in X ∪ {ω∞}
We can extend the order with levels r onto X∪{ω∞} by regardingω∞ as themaximum
element and r̂(ω∞) = +∞. To describe the algorithm, we consider a directed graph
Ḡ whose nodes are n-cells in X ∪ {ω∞}. An edge has extra data in X (n−1), and we
can write the edge from ω to ω′ with extra data τ as (ω

τ−→ ω′). The directed graph Ḡ
is increasingly updated in Algorithm 1.

Since the graph is always a forest throughout the algorithm (Obayashi 2018), we
can find a root of a tree that contains an n-cellω in the graph Ḡ by recursively following
the edges from ω. We call this procedure Root(ω, Ḡ).

The following theorem gives the interpretation of the result of the algorithm as
persistence information.

7 If τ is a face of ω, ω is called a coface of τ . If the difference of the dimensions is one, ω is a proper
coface of τ .
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Algorithm 1 Computing persistence trees by the merge-tree algorithm.
procedure Compute- Tree(Xr )

initialize Ḡ = {ω∞}
for σ ∈ X in (�r )-descending order do � (LOOP)

if σ is an n-simplex then
add σ to Ḡ as a vertex

else if σ is an (n − 1)-simplex then
let ω1 and ω2 be two cofaces of σ

ω′
1 ← Root(ω1, Ḡ)

ω′
2 ← Root(ω2, Ḡ)

if ω′
1 = ω′

2 then
continue

else if ω′
1 �r ω′

2 then

Add (ω′
2

σ−→ ω′
1) to Ḡ as an edge

else
Add (ω′

1
σ−→ ω′

2) to Ḡ as an edge
end if

end if
end for
return Ḡ

end procedure

procedure Root(ω, Ḡ)
if ω has no outgoing edge then

return ω

else
return Root(ωparent, Ḡ), where ω

τ−→ ωparent
end if

end procedure

Theorem E Let Ḡ∗ be the result of Algorithm 1. That is, Ḡ∗ is the final graph of Ḡ.
Then the following holds:

1. Ḡ∗ is a tree whose root is ω∞
2. Dn−1(Xr ) = {(τ, ω) | (ω

τ−→ ∗) is an edge of Ḡ∗}. Here ∗ means another vertex

3. If there is an edge ω′ τ−→ ω is in Ḡ∗, we have ω′ ≺r ω

4. The optimal volume for (τ, ω) ∈ Dn−1(Xr ) is dec(ω, Ḡ∗), where dec(ω, Ḡ∗) the
set of all descendant nodes of ω in Ḡ∗ including ω itself

5. Ḡ∗ gives the persistence trees. That is, (τ, ω) is the parent of (τ ′, ω′) in the persis-
tence trees if and only if there are edges ω′ τ ′−→ ω

Wecanprove the above theoremsusingAlexander duality.AppendixA in (Obayashi
2017)8 provides a detailed discussion.

We also remark that the merge-tree algorithm is remarkably accelerated by adding
a shortcut path to the root in a similar way as in the union-find algorithm.

8 This paper is the preprint version of (Obayashi 2018). The contents of Appendix A in (Obayashi 2017)
are omitted from (Obayashi 2018); thus, we sometimes refer to the preprint version.
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682 I.Obayashi

3 Stable volumes for the (n-1)th PH

We can now describe stable volume for (n − 1)th PH using persistence trees under
Condition 1. The parameter ε in the following definition is called a bandwidth param-
eter.

Definition 3 Let X be a simplicial complex and r an order with levels on X , and Xr

be the filtration of X given by (7) and (8). Let Ḡ∗ be the persistence trees of the
filtration Xr . For (τ0, ω0) ∈ Dn−1(Xr ) and a positive number ε, the stable volume of
the birth-death simplices pair with a noise bandwidth parameter ε, SVε(r , τ0, ω0), is
defined as follows:

SVε(r , τ0, ω0) = {ω0} ∪
⎛

⎝
⋃

ω∈Cε (τ0,ω0)

dec(ω, Ḡ∗)

⎞

⎠ , (15)

where Cε(τ0, ω0) is given as

Cε(τ0, ω0) = {ω ∈ X (n) | ω
τ−→ ω0, and r̂(τ ) ≥ r̂(τ0) + ε}. (16)

We can compute SVε(r , τ0, ω0) by traversing persistence trees as shown in Algo-
rithm 2.

Algorithm 2 Computing stable volumes for (n − 1)th PH
procedure Stable- Volume- for- n- 1(τ0, ω0, ε, Ḡ∗)

S ← {ω0}
for ω satisfying ω

τ−→ ω0 do
if r̂(τ ) ≥ r̂(τ0) + ε in Ḡ∗ then

Append dec(ω, Ḡ∗) to S
end if

end for
return S

end procedure

We specify the following (r , ω0)-order condition in order to describe the main
theorem.

Definition 4 Let r and q be two orders with levels on a simplicial complex X and
ω0 be an n-simplex. Then q satisfies an (r , ω0)-order condition if σ ≺r ω0 implies
σ ≺q ω0 for all σ ∈ X .

We also define the symbol τq,ω0 . For an order with levels q and an n-simplex
ω0, τq,ω0 is the birth simplex paired with ω0 in Dn−1(Xq). That is, (τq,ω0 , ω0) ∈
Dn−1(Xq).

The following theorem is the first main theorem of the paper. It states that the stable
volume is an invariant part of optimal volumes in the presence of small noise.
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Theorem 3.1

SVε(r , τ0, ω0) =
⋂

q∈Rε

OV(q, ω0), (17)

where

Rε = {q = (q̂,�q) : an order with levels |
‖q̂ − r̂‖∞ < ε/2 and q satisfies (r , ω0)-order condition}, (18)

and

OV(q, ω0) = the optimal volume of (τq,ω0 , ω0) ∈ Dn−1(Xq). (19)

The theorem treats two different filtrations,Xr andXq , on the same simplicial complex
X . It should be noted that the reader needs to treat these filtrations carefully.

The following two claims immediately imply Theorem 3.1 and are discussed in the
next three subsections.

Claim 1 For any q ∈ Rε , the following relation holds:

SVε(r , τ0, ω0) ⊆ OV(q, ω0). (20)

Claim 2 For any ω̃ /∈ SVε(r , τ0, ω0), there is an order with levels q ∈ Rε satisfying
ω̃ /∈ OV(q, ω0).

3.1 Dual graph and its subgraphs

To show Theorem 3.1, we introduce a dual graph of X and its subgraphs.

Definition 5 VX and EX are defined as follows:

VX = X (n) ∪ {ω∞},
EX = X (n−1).

(21)

GX = VX ∪ EX is an undirected graph when the two endpoints of τ ∈ EX are defined
as the two cofaces of τ .

We call the graph GX the dual graph of X . We define the subgraphs of GX , GX (�r

σ) and GX (r̂ ≥ s), as

GX (�r σ) = VX (�r σ) ∪ EX (�r σ),

VX (�r σ) = {ω ∈ VX | ω �r σ },
EX (�r σ) = {τ ∈ EX | τ �r σ },
GX (r̂ ≥ s) = VX (r̂ ≥ s) ∪ EX (r̂ ≥ s),

VX (r̂ ≥ s) = {ω ∈ VX | r̂(ω) ≥ s},
EX (r̂ ≥ s) = {τ ∈ EX | r̂(τ ) ≥ s},

(22)
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where σ is a simplex in X and s is a real number. The condition (6) ensures that
GX (�r σ) and GX (r̂ ≥ s) are subgraphs of GX . We also define GX (�r σ) by
replacing �r with �r .

We introduce the notation Ḡσ as Ḡ in Algorithm 1 when the inside of the (LOOP)
is finished at σ . The following facts are essential for the proof of Theorem 3.1. The
facts are shown as Fact 17 and Fact 18 in (Obayashi 2017).

Fact 1 The topological connectivity of vertices in Ḡσ is the same as GX (�r σ). That
is, ω1, . . . , ωk ∈ VX (�r σ) are all vertices of a connected component in GX (�r σ)

if and only if there is a tree in Ḡσ whose vertices are ω1, . . . , ωk .

Fact 2 For each tree in Ḡσ , the root of the tree is the (�r )-maximum vertex in the tree.

The next lemmadescribes the role of the birth and death simplices. K (G, ω) denotes
the connected component of a graph G which contains a vertex ω. KV(G, ω) and
KE(G, ω) denote all the vertices and all the edges of K (G, ω).

Lemma 3.2 Let (τ0, ω0) ∈ Dn−1(Xr ). Then ω0 is the (�r )-maximum n-simplex in
K (GX (�r τ0), ω0) and the optimal volume of (τ0, ω0) is K (GX (�r τ0), ω0). Fur-
thermore, there exists ω1 ∈ VX satisfying the following conditions:

• ω0
τ0−→ ω1 in Ḡ∗

• ω1 �r ω0
• K (GX (�r τ0), ω0) = K (GX (�r τ0), ω0) ∪ K (GX (�r τ0), ω1) ∪ {τ0}. That is,

τ0 is the edge between K (GX (�r τ0), ω0) and K (GX (�r τ0), ω1)

We can easily prove the lemma by considering Algorithm 1 and Facts 1 and 2.

3.2 Proof of Claim 1

The following equality holds from the definition of stable volume (15), Theorem E,
Facts 1 and 2, and Lemma 3.2.

SVε(r , τ0, ω0) = KV(GX (r̂ ≥ r̂(τ0) + ε), ω0). (23)

The following equality also holds from Lemma 3.2.

OV(q, ω0) = KV(GX (�q τq,ω0), ω0). (24)

Therefore, we can show the following relationship to prove Claim 1.

KV(GX (r̂ ≥ r̂(τ0) + ε), ω0) ⊆ KV(GX (�q τq,ω0), ω0). (25)

The following lemma is essential to prove Claim 1.

Lemma 3.3 Let (τ0, ω0) ∈ Dn−1(Xr ) be a birth-death simplices pair and q ∈ Rε .
Then the following inequality holds:

q̂(τq,ω0) − ε/2 < r̂(τ0). (26)
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Proof We assume that q̂(τq,ω0) − ε/2 ≥ r̂(τ0) and will show a contradiction. Since
‖q̂ − r̂‖∞ < ε/2, for any σ ∈ GX with τq,ω0 �q σ , we have

r̂(τ0) ≤ q̂(τq,ω0) − ε/2 ≤ q̂(σ ) − ε/2 < (r̂(σ ) + ε/2) − ε/2 = r̂(σ ). (27)

From the definition of order with levels, the inequality immediately implies τ0 ≺r σ

and GX (�q τq,ω0) is a subgraph of GX (�r τ0).
Since (τq,ω0 , ω0) ∈ Dn−1(Xq), Lemma 3.2 gives ω1 ∈ VX satisfying

ω1 �q ω0, (28)

K (GX (�q τq,ω0), ω0) = K (GX (�q τq,ω0), ω0) ∪ K (GX (�q τq,ω0), ω1) ∪ {τq,ω0}.
(29)

(28) leads toω1 �r ω0 from the (r , ω0)-order condition.At the same time, (29) leads to
ω1 ∈ K (GX (�r τ0), ω0) sinceGX (�q τq,ω0) is a subgraph ofGX (�r τ0). These facts
lead to a contradiction since ω0 is the (�r )-maximum vertex in K (GX (�r τ0), ω0),
but K (GX (�r τ0), ω0) contains ω1 and ω1 �r ω0. ��

Using Lemma 3.3, we prove thatGX (r̂ ≥ r̂(τ0)+ε) is a subgraph ofGX (�q τq,ω0)

to show (25). For any σ ∈ GX (r̂ ≥ r̂(τ0) + ε), we have

q̂(σ ) > r̂(σ ) − ε/2 ≥ (r̂(τ0) + ε) − ε/2 = r̂(τ0) + ε/2 > q̂(τq,ω0), (30)

and hence σ �q τq,ω0 . This means that GX (r̂ ≥ r̂(τ0) + ε) is a subgraph of GX (�q

τq,ω0).

3.3 Proof of Claim 2

If ω̃ /∈ OV (r , ω0), the conclusion of Claim 2 is trivial. Therefore, we assume ω̃ ∈
OV (r , ω0).

Since

ω̃ ∈ OV(r , ω0) = KV(GX (�r τ0), ω0),

ω̃ /∈ SVε(r , τ0, ω0) = KV(GX (r̂ ≥ r̂(τ0) + ε), ω0),

and GX (r̂ > r̂(τ0) + ε) is a subgraph of GX (�r τ), there is τ̃ ∈ EX satisfying the
following conditions:

τ0 ≺r τ̃ ,

r̂(τ0) ≤ r̂(τ̃ ) < r̂(τ0) + ε,

ω̃ /∈ KV(GX (�r τ̃ ), ω0),

ω̃ ∈ KV(GX (�r τ̃ ), ω0).

(31)

Let ε∗ = r̂(τ̃ ) − r̂(τ0) and η = (ε∗ + ε)/4. From (31), we have

ε/2 > η > ε∗/2 ≥ 0. (32)
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Fig. 6 The relationship between connected components and path P in Case 1. Circles represent vertices,
rectangles by dotted lines represent connected components, solid lines represent edges between connected
components, and dashed curves represent paths

Lemma 3.2 gives ω1 ∈ VX satisfying

ω1 �r ω0, and (33)

K (GX (�r τ), ω0) = K (GX (�r τ0), ω0) ∪ K (GX (�r τ0), ω1) ∪ {τ0}. (34)

Let ωe be the endpoint of τ0 contained in K (GX (�r τ0), ω0). A path from ω0 to ωe

exists in K (GX (�r τ0), ω0). We consider the following two cases regarding the path.

Case 1 There is a path P from ω0 to ωe in GX (�r τ0)without passing through K (GX (�r

τ̃ ), ω̃).
Case 2 Any path ω0 to ωe in K (GX (�r τ0) passes through K (GX (�r τ̃ ), ω̃).

We will divide the proof into the above two cases.

3.3.1 Case 1

Fig. 6 shows the relationship between connected components and the path P in Case
1. We can construct an order with levels q satisfying ω̃ /∈ KV(GX (�q τq,ω0), ω0)

based on this relationship.
Using η, we define a function q̂ on X as follows:

q̂(σ ) =

⎧
⎪⎪⎨

⎪⎪⎩

r̂(σ ) + η if σ ∈ X (n),

r̂(σ ) + η if σ ∈ QE,

r̂(σ ) − η if σ ∈ X (n−1)\QE,

r̂(σ ) − η if σ ∈ X (0) ∪ · · · ∪ X (n−2),

(35)

where Q = P ∪ {τ0} ∪ K (GX (�r τ), ω1), and QE is the set of all edges in Q. We
can easily show that q̂ is a level function from the fact that r̂ is a level function. We

123



Stable volumes for persistent homology 687

define the order on X ∪ {ω∞}, �q , as follows:

σ ≺q σ ′ if and only if

q̂(σ ) < q̂(σ ′), or

q̂(σ ) = q̂(σ ′) and σ � σ ′, or

q̂(σ ) = q̂(σ ′) and σ ∩ σ ′ = ∅ and σ ≺r σ ′.

(36)

This is a kind of lexicographic order by the total preorder (σ, σ ′) �→ q̂(σ ) ≤ q̂(σ ′),
the partial order ⊆, and the total order �r . Therefore �q is a total order.

The following two facts are easily shown.

Fact 3 q = (�q , q̂) is an order with levels.

Fact 4 The order�q coincides with�r on VX . The same is true on QE or X (n−1)\QE.

We also show the following fact.

Fact 5 q ∈ Rε .

Proof From the definition, we have ‖q̂ − r̂‖ ≤ η < ε/2. To show the (r , ω0)-order
condition, we assume σ ≺r ω0 and show σ ≺r ω0. From the assumption, we have
r̂(σ ) ≤ r̂(ω0). Since ω0 is n-simplex, q̂(ω0) = r̂(ω0) + η, and so q̂(ω0) ≥ q̂(σ ).
Therefore, we consider the following cases:

1. q̂(ω0) > q̂(σ ). In this case, we can see ω0 �q σ from the definition of order with
levels.

2. q̂(ω0) = q̂(σ ) and ω0 � σ . In this case, we have ω0 �q σ from the definition of
�q .

3. q̂(ω0) = q̂(σ ) and ω0 � σ . In this case, the condition ω0 � σ leads to a contra-
diction since ≺r satisfies (6) but σ ≺r ω0.

4. q̂(ω0) = q̂(σ ) andω0∩σ = ∅. In this case, we haveω0 �q σ from the assumption
of σ ≺r ω0.

In all cases except 3, we have σ ≺r ω0. ��
The following fact comes from Fact 4.

Fact 6 τ0 is the (�q)-minimum element in Q.

The above fact leads to the following.

Fact 7 Q is a subgraph of K (GX (�q τ0), ω0).

We also prove the following fact about K (GX (�q τ0), ω0) and K (GX (�q τ0), ω1).

Fact 8 K (GX (�q τ0), ω0) and K (GX (�q τ0), ω1) are different connected compo-
nents in GX (�q τ0).
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Proof We assume that K (GX (�q τ0), ω0) = K (GX (�q τ0), ω1) and this will lead
to a contradiction. From the assumption, there is a path Q′ from ω0 to ω1 in GX (�q

τ0). Any edge τ on Q′ satisfies τ �q τ0 and so q̂(τ ) ≥ q̂(τ0). Therefore, since
|r̂(τ ) − q̂(τ )| ≤ η and q̂(τ0) = r̂(τ0) + η, the inequality r̂(τ ) ≥ r̂(τ0) holds for any
τ ∈ Q′

E, where Q′
E is the set of all edges on Q′.

We conclude that τ �r τ0 for any τ ∈ Q′
E from (36), τ �q τ0, and r̂(τ ) ≥ r̂(τ0).

This means that Q′ is a subgraph of GX (�r τ0). However, this contradicts the fact
that ω0 and ω1 are contained in different connected components of GX (�r τ0). ��

From Facts 4, 7, and 8, and (33), we have the following fact.

Fact 9 τq,ω0 = τ0.

Next, we examine τ̃ .

Fact 10 τ0 �q τ̃ .

Proof Since τ0 ∈ QE and τ̃ /∈ QE, we have

q̂(τ0) − q̂(τ̃ ) = (r̂(τ0) + η) − (r̂(τ̃ ) − η)

= r̂(τ0) − r̂(τ̃ ) − 2η

= ε∗ − 2η > 0.

The inequality leads to τ0 �q τ̃ since q is an order with levels. ��
We can prove the following fact in a similar way to Fact 8.

Fact 11 ω̃ /∈ K (GX (�q τ̃ ), ω0).

From Facts 9, 10, and 11, the following fact is easily established.

Fact 12 ω̃ /∈ K (GX (�q τq,ω0), ω0).

Finally, since OV(q, ω0) = KV(GX (�q τq,ω0), ω0), we conclude that ω̃ /∈
OV(q, ω0).

3.3.2 Case 2

In Case 2, there is a path T from K (GX (�r τ̃ ), ω̃) to ωe without passing through
K (GX (�r τ̃ ), ω0). Figure7 shows the relationship between connected components
and paths between the components in this case.

We now define a function ŝ on X as follows:

ŝ(σ ) =

⎧
⎪⎪⎨

⎪⎪⎩

r̂(σ ) + η if σ ∈ X (n),

r̂(σ ) + η if σ ∈ SE,

r̂(σ ) − η if σ ∈ X (n−1)\SE,

r̂(σ ) − η if σ ∈ X (0) ∪ · · · ∪ X (n−2),

(37)

where S = K (GX (�r τ̃ ), ω̃) ∪ T ∪ {τ0} ∪ K (GX (�r τ0), ω1) and SE is the set of all
edges of S.
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Fig. 7 The relationship between connected components and path T in Case 2. Circles represent vertices,
rectangles by dotted lines represent connected components, solid lines represent edges between connected
components, and dashed curves represent paths

We also define the total order on X , �s , as follows:

σ ≺s σ ′ if and only if

ŝ(σ ) < ŝ(σ ′), or

ŝ(σ ) = ŝ(σ ′) and σ � σ ′, or

ŝ(σ ) = ŝ(σ ′) and σ ∩ σ ′ = ∅ and σ ≺r σ ′.

(38)

We can prove the following fact in a similar way to Facts 3 and 5.

Fact 13 s = (�s, ŝ) is an order with levels on X , and s ∈ Rε .

The following fact arises directly from the definition of ŝ and �s .

Fact 14 The order�s coincides with�r on VX . The same is true on QE or X (n−1)\QE.

The following fact can be shown in a similar way to Facts 6 and 7.

Fact 15 S is a subgraph of K (GX (�s τ0), ω̃).

We can show the following fact in the same way as Fact 10. From the following
fact, we have K (GX (�s τ0), ω̃) ⊆ K (GX (�s τ̃ ), ω̃).

Fact 16 τ0 �s τ̃ .

We can prove the following in a similar way to Facts 8 and 9 using Facts 14, 15,
and 16.

Fact 17 K (GX (�s τ̃ ), ω̃) and K (GX (�s τ̃ ), ω0) are different connected components
in GX (�s τ̃ ) and τ̃ connects the two connected components. Therefore, τs,ω0 = τ̃ .

From the above facts, we have the following.

Fact 18 ω̃ /∈ K (GX (�s τs,ω0), ω0).

Finally, since OV(q, ω0) = KV(GX (�q τq,ω0), ω0), we conclude that ω̃ /∈
OV(q, ω0).
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Fig. 8 Two filtrations on the same simplicial complex

3.4 Limitation of stable volumes

In this subsection, we discuss some of the limitations of stable volumes.
The first relates to the (r , ω0)-order condition. Theorem 3.1 requires the (r , ω0)-

order condition; however, this condition seems somewhat curious. To clarify, we offer
a brief discussion of the role of the condition.

First, we examine what happens when orders with levels q and r satisfy ‖q̂ − r̂‖ ≤
ε/2 but not the (r , ω0)-order condition. Figure8 shows an example. In this example,
we assume the following conditions:

Y = Y0 ∪ {τ1, τ2, ω1, ω2} is a simplicial complex, (39)

r̂(σ ) ≈ q̂(σ ) for any σ ∈ Y , (40)

r̂(ω1) ≈ r̂(ω2), q̂(ω1) ≈ q̂(ω2), (41)

r̂(σ ) < r̂(τ1) for any σ ∈ Y0, (42)

q̂(σ ) < q̂(τ1) for any σ ∈ Y0, (43)

r̂(τ1) < r̂(τ2) < r̂(ω1) < r̂(ω2) for any σ ∈ Y0, (44)

q̂(τ1) < q̂(τ2) < q̂(ω2) < q̂(ω1) for any σ ∈ Y0. (45)

Here, we have

(r̂(τ1), r̂(ω2)), (r̂(τ2), r̂(ω1)) ∈ PD1(X , r),

(q̂(τ1), q̂(ω1)), (q̂(τ2), q̂(ω2)) ∈ PD1(X , q),

(r̂(τ1), r̂(ω2)) ≈ (q̂(τ1), q̂(ω1)),

(r̂(τ2), r̂(ω1)) ≈ (q̂(τ2), q̂(ω2)).

The optimal volumes are

{ω1, ω2} = OV(r̂ , r̂(τ1), r̂(ω2)) = OV(q̂, q̂(τ1), q̂(ω1)), (46)

{ω1} = OV(r̂ , r̂(τ2), r̂(ω1)), (47)

{ω2} = OV(q̂, q̂(τ2), q̂(ω2)). (48)

Therefore, (r̂(τ2), r̂(ω1)) ≈ (q̂(τ2), q̂(ω2)); however, OV(r̂ , r̂(τ2), r̂(ω1)) does not
intersect withOV(q̂, q̂(τ2), q̂(ω2)). Thus, the example shows that OV(r̂ , r̂(τ2), r̂(ω1))

does not have a robust part to small noise if we do not assume the (r , ω0)-order
condition.
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In contrast, (46) indicates that OV(r̂ , r̂(τ1), r̂(ω2)) has a stable part even if we do
not assume the (r , ω0)-order condition. We expect that if an optimal volume is large
in some sense, then the optimal volume has a stable part even if the (r , ω0)-order
condition is not satisfied. Mathematically clarifying what is meant by “large in some
sense” is a subject for future research.

Next, we focus on the construction of simplicial filtrations. An alpha shape (Edels-
brunner and Mücke 1994) is often used to construct a filtration from a pointcloud.
Alpha complexes have some good properties. If a pointcloud is in R

d and satisfies the
general position condition, then the alpha shape is embedded in R

d . An alpha shape
has the same information as the union-balls model. More precisely, an alpha shape is
homotopy equivalent to the union of balls. However, the alpha shape may vary dis-
continuously with noise. Theorem 3.1 assumes that the simplicial complex X does not
change with noise; however, the assumption does not hold if the noise is large. On the
other hand, if the noise is small, the assumption holds and the theoremworks perfectly.
In Sect. 6, we show that a large noise bandwidth parameter gives unexpected results.
Therefore, it is reasonable to assume that the noise is small; however, care should be
taken.

4 Another formalization of a stable volume as the solution to an
optimization problem

The formalization of stable volumes is based on persistence trees. Importantly, how-
ever, persistence trees are available only for the (n − 1)th persistence homology, and
we cannot apply the concept directly to another degree. Another version of a stable
volume can be defined as the solution to an optimization problem.

Definition 6 Let r be an order with levels and (τ0, ω0) ∈ Dk(Xr ). ˜SVε(r , τ0, ω0) is
defined by the solution to the following minimization problem.

minimize ‖z‖0, subject to

z = ω0 +
∑

ω∈Fε,k+1

αωω ∈ Ck+1(X; k), (49)

τ ∗(∂z) = 0 for any τ ∈ Fε,k, (50)

wherek is the coefficient field andFε,k = {σ ∈ X (k) | r̂(τ0)+ε ≤ r̂(σ ) and σ ≺r ω0}.

4.1 Another formalization of a stable volume: a special case

For (n−1)th PH, we will prove the following second main theorem, which guarantees
the validity of the definition.

Theorem 4.1 If X satisfies Condition 1, k = Z/2Z, and (τ0, ω0) ∈ Dn−1(Xr ),˜SVε(r , τ0, ω0) coincides with SVε(r , τ0, ω0) for k = n − 1.
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Recall the remark associated with Theorem D that ˜SVε(r , τ0, ω0) can be regarded
as a subset of X (n).

For z = ω0 + ∑
ω∈Fε,n

αωω ∈ Cn(X; Z/2Z), we define Vz and Ez as follows.

Vz = {ω ∈ Fε,n | αω = 1} ∪ {ω0},
Ez = {τ ∈ Fε,n−1 | ∃ω ∈ Vz τ ∗(∂ω) = 1}. (51)

To prove the theorem, we show the following lemma.

Lemma 4.2 If z satisfies (49) and (50), Gz := Vz ∪ Ez is a subgraph of GX and Gz

is a disjoint union of some connected components of GX (r̂ ≥ r̂(τ0) + ε).

We now assume that z satisfies (49) and (50). To show the above lemma, we show
the following three facts, Fact 19, 20, and 21.

Fact 19 For any τ ∈ Ez , τ is not a face of ω∞.

Proof Assume τ is a face of ω∞. Then there is a unique n-simplex ω1 ∈ X (n) which
is the coface of τ . From the definition of Ez and ω∞ /∈ Vz , Vz should contain ω1.
However,

τ ∗(∂z) = τ ∗(∂(
∑

ω∈Vz
ω)) =

∑

ω∈Vz
τ ∗(∂ω) = τ ∗(∂ω1) = 1 	= 0, (52)

which contradicts (50). ��
The following fact guarantees that Gz is a subgraph of GX .

Fact 20 For any τ ∈ Ez , both cofaces of τ , ω1 and ω2, are contained in Vz .

Proof From the definition Ez , Vz contains either ω1 or ω2 and one of the following
holds: αω1 = 1 or αω1 = 1. From the condition (50),

τ ∗(∂z) =
∑

ω∈Fε,n

αωτ ∗(∂(ω)) = αω1 + αω2 = 0. (53)

Therefore, αω1 = αω2 = 1, which means that both ω1 and ω2 are contained in Vz . ��
Fact 21 For ω1 ∈ VX , Aω1 denotes the set of all (n − 1)-dimensional faces of ω1. If
ω1 ∈ Vz , then the following holds:

Aω1 ∩ EX (r̂ ≥ r̂(τ0) + ε) = Aω1 ∩ Ez . (54)

Proof Since Ez ⊆ Fε,n−1 ⊆ EX (r̂ ≥ r̂(τ0) + ε), Aω1 ∩ EX (r̂ ≥ r̂(τ0) + ε) ⊇
Aω1 ∩ Ez is trivial. Therefore, we assume τ ∈ Aω1 ∩ EX (r̂ ≥ r̂(τ0) + ε) and will
show τ ∈ Aω1 ∩ Ez . Since τ ≺r ω1 and ω1 ∈ Vz ⊂ Fε,n ∪ {ω0}, we have τ ≺r ω0.
Therefore, τ ∈ Fε,n−1 since τ ∈ EX (r̂ ≥ r̂(τ0) + ε). We also have τ ∗(∂ω1) = 1
because τ ∈ Aω1 and we conclude τ ∈ Ez . ��
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By repeatedly using Fact 21, we can see that any path inGX (r̂ ≥ r̂(τ0)+ε) starting
from ω1 ∈ Vz is also a path in Gz . This means that Gz is a disjoint union of some
connected components of GX (r̂ ≥ r̂(τ0) + ε), and Lemma 4.2 is shown.

Lemma 4.3 z1 = ∑
ω∈KV(GX (r̂≥r̂(τ0)+ε),ω0)

ω satisfies (49) and (50).

Proof First, we show (49). The condition (49) is equivalent to the following inclusion
relationship:

KV(GX (r̂ ≥ r̂(τ0) + ε), ω0) ⊂ Fε,n ∪ {ω0}. (55)

Since GX (r̂ ≥ r̂(τ0) + ε) is a subgraph of GX (�r τ0) and ω0 is (�r )-maximum
element in K (GX (�r τ0), ω0), ω �r ω0 holds for any ω ∈ KV(GX (r̂ ≥ r̂(τ0) +
ε), ω0). This equates to (55).

Next we show (50). We can show the following relationship in a similar way to
(55).

KE (GX (r̂ ≥ r̂(τ0) + ε), ω0) ⊆ Fε,n−1. (56)

Let τ be an element ofFε,n−1. We consider the following two cases to show τ ∗(∂z) =
0.

1. τ ∈ KE (GX (r̂ ≥ r̂(τ0) + ε), ω0). In this case, KE (GX (r̂ ≥ r̂(τ0) + ε), ω0)

contains both cofaces ω1, ω2 of τ , and

τ ∗(∂z1) = τ ∗(∂ω1) + τ ∗(∂ω2) = 1 + 1 = 0. (57)

2. τ ∈ Fε,n−1\KE (GX (r̂ ≥ r̂(τ0)+ε), ω0). In this case, KE (GX (r̂ ≥ r̂(τ0)+ε), ω0)

does not contain both cofaces of τ , and τ ∗(∂z1) = 0.

In both cases, we have τ ∗(∂z1) = 0. ��
From Lemma 4.2 and Lemma 4.3, we can show that z1 in Lemma 4.3 is the

solution to the optimization problem in Definition 6. This means that KV(GX (r̂ ≥
r̂(τ0)+ ε), ω0) = ˜SVε(r̂ , τ0, ω0). From (23), this set is equal to SV(r , τ0, ω0), which
completes the proof of the theorem.

4.2 Another formalization of a stable volume: general case

We can apply Definition 6 to cases other than k = n−1. In such cases, we also call the
solutions of the optimization problems the stable volumes. In such cases, Theorem 4.1
does not hold in general, and it is difficult to mathematically ensure the good property
shown in Theorem 3.1. Empirically, however, the stable volumes often work well. (We
examine the property using computer experiments in Sect. 6.)

The reason for this is likely that an optimal volume is often included in a lower-
dimensional structure (a submanifold or a lower-dimensional simplicial complex) and
the solution of the stable volume is also included in the structure.
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4.3 Stable sub-volume

In the previous subsection, we expressed our belief that a lower-dimensional structure
may make the stable volume work well. We can develop a variant of stable volume
using this idea. If we find such a lower-dimensional structure, we can consider the
stable volume constrained on the structure. An optimal volume is one possible lower-
dimensional structure. We define a stable sub-volume as follows.

Definition 7 Let r be an order with levels and (τ0, ω0) ∈ Dk(Xr ). The stable sub-
volume of (τ0, ω0) is defined by the solution to the following minimization problem:

minimize ‖z‖0, subject to

z = ω0 +
∑

ω∈Fε,k+1∩OV(r ,τ0,ω0)

αωω ∈ Ck+1(X; k), (58)

τ ∗(∂z) = 0 for any τ ∈ Fε,k, (59)

wherek is the coefficient field andFε,k = {σ ∈ X (k) | r̂(τ0)+ε ≤ r̂(σ ) and σ ≺r ω0}.
For stable sub-volumes, the parameter ε is also called a noise bandwidth parameter.

The following proposition holds for the (n−1)th PH in R
n since the stable volume

is a subset of an optimal volume.

Proposition 4.4 Let X be a simplicial complex embedded inR
n satisfying Condition 1.

Let r be an order with levels. For (τ0, ω0) ∈ Dn−1(Xr ) and ε > 0, the stable volume of
(τ0, ω0) with bandwidth parameter ε coincides with the stable sub-volume of (τ0, ω0)

with bandwidth parameter ε.

The advantages and disadvantages of a stable sub-volume will be discussed in
Sect. 8.

5 Implementation

In this section, we discuss how to produce a stable volume using a computer.
While we can directly implement stable volumes by persistence trees (Definition 3)

using the persistence trees constructed by Algorithm 1, implementing stable volumes
as an optimization problem is more difficult. As discussed in (Chen and Freedman
2011; Dey et al. 2019), these kinds of optimization problems are NP-hard in general,
which makes them difficult to solve on a computer. To resolve this problem, we can
apply the following approximation techniques (Tahbaz-Salehi and Jadbabaie 2008;
Escolar and Hiraoka 2016; Obayashi 2018):

• Use R as a coefficient field instead of Z/2Z

• Change �0 norm to �1 norm

The second technique is often used in sparse modeling. Following the above approx-
imations, the optimization problem can be formulated as a linear programming
problem.
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We need to translate the problem into an acceptable form for a linear programming
solver. That is, we need to specify the variables, the objective function (the function
to be minimized), and the constraints in the following form:

• The objective function should be
(a linear combination of variables) + (constant)

• Each constraint should be
(a linear combination of variables)+ (constant)OP (another constant), where OP
is any of the relational operators =,≥,≤

Algorithm 3 shows the algorithm of a stable volume. We can also compute a stable
sub-volume using the same algorithm expect that Fε,k+1 is replaced by Fε,k+1 ∩
OV(r , τ0, ω0). It should be noted that R is used as the coefficient field and that we
need to consider the sign of cω,τ .

Algorithm 3 Computing stable volumes
procedure Stable- Volume(ω0, τ0, ε)

Solve the following optimization problem by a linear programming solver and return {ω ∈ Fε,k+1 |
αω 	= 0}

variables: αω, ᾱω for all ω ∈ Fε,k+1

minimize
∑

ω∈Fε,k+1

ᾱω, subject to

ᾱω − αω ≥ 0 for each ω ∈ Fε,k+1,

ᾱω + αω ≥ 0 for each ω ∈ Fε,k+1,

cω0,τ +
∑

ω∈Fε,k+1

cω,τ αω = 0 for each τ ∈ Fε,k ,

where

cω,τ = τ∗(∂ω).

end procedure

Section 4.2 in (Obayashi 2018) introduced the idea of accelerating the computation
of optimal volume using locality. The same idea is applicable to stable volumes.

HomCloud already implements Algorithm 2 and Algorithm 3, and was used for the
examples in Sect. 6.

6 Examples

In this section, we give examples of stable volumes and stable sub-volumes. Alpha
filtration (Edelsbrunner and Mücke 1994) is used to compute the PDs.
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6.1 2D lattice with random defects

Figure 9 shows an example of stable volume. Here, we consider 2D lattice points
with defects (Fig. 9a). We prepared 30x30 lattice points in a 2D space. The distance
between the two closest vertices is 1. The configuration of the points is perturbed
from the complete lattice using random noises sampled from a uniform distribution
on (−0.1, 0.1)2, and some points are removed randomly with a probability of 0.5
except for the outermost points.

Figure 9b shows the 1st PD of the points, and Fig. 9c shows the optimal volume of
(0.705, 2.091). Figure9d shows the stable volume of the same birth-death pair with
bandwidth parameter ε = 0.12. The optimal volume in Fig. 9d seems to surround the
holes in the pointcloud more naturally than is the case in Fig. 9c.

We also examined the effect of changing the bandwidth parameter, computing stable
volumes for bandwidth parameter ε = 0.0, 0.01, 0.02, . . . , 0.40. Figure9e shows the
graph of the bandwidth parameter versus the size of the stable volumes. The size was
measured as the number of simplices in the stable volume.

From the optimal volume (ε = 0), the size of the stable volume rapidly decreases.
A wide plateau appears at ε = 0.04 and is completely flat from ε = 0.06 to ε = 0.27,
meaning that the stable volume is stable to changes in bandwidth parameter over the
range [0.06, 0.27]. This suggests that ε should be somewhere within this range. It
should be noted that the scale of this range coincides with the scale of the noise. This
is consistent with the fact that the bandwidth parameter indicates the strength of the
virtual noise.

6.2 Comparison with previous studies

We apply the statistical approach by Bendich et al. (2020) and reconstructed shortest
cycles by Ripserer.jl using the same data as in Fig. 9 to compare with our method. The
two methods are applied to the same birth-death pair as in the example of Sect. 6.1.

Figure 10 shows the results of the statistical approach. The distribution of the noise
is the uniform distribution on [−0.03, 0.03]2 (left) and [−0.06, 0.06]2 (right). In the
computation, the optimal volumes are computed 100 times. We put large black dots in
the figure to indicate points whose frequencies are more than 70% or 90%. The result
is consistent with Fig 9 and has richer information. However, the result looks more
difficult to interpret than Fig 9.

Figure 11 shows the reconstructed shortest cycles with two noise bandwidth param-
eters, 0.1 (left) and 0.3 (right). As shown in the figure, the result for 0.3 is consistent
with other results, but the result for 0.1 is not consistent. This means that the shortest
loop criterion sometimes gives a result inconsistent with the structure of persistent
homology. Figure12 shows the reason for the phenomenon using schematic pictures.
The 1st PD for the pointcloud Fig. 12a has two prominent birth-death pairs corre-
sponding to �1 and �2 in Fig. 12b, but the shortest loop criterion finds the loop �3
instead of �2 since �2 and �3 share the two cross-marked points and �3 is shorter than
�2.
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698 I.Obayashi

Fig. 10 Result of the statistical approach. Upper two figures: Noise source is the uniform distribution on
[−0.03, 0.03]2. Lower two figures: Noise source is the uniform distribution on [−0.06, 0.06]2. The left two
figures: The points with frequencies > 70% are marked. The right two figures: The points with frequencies
> 90% are marked

Fig. 11 Result of reconstructed shortest cycles. Left: The noise bandwidth parameter is 0.1. Right: The
noise bandwidth parameter is 0.3

Fig. 12 Schematic pictures to explain why the shortest loop criterion sometimes gives a result inconsistent
with the structure of persistent homology
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Fig. 13 1st PD for amorphous silica

In this comparison, we also remark that the meaning of noise bandwidth parameters
used in those three methods is different. Therefore a direct comparison of the results
with the same parameter is meaningless. We should focus on the changes in the results
to the change of noise bandwidth parameters.

6.3 Atomic configuration of amorphous silica

The proposed approach was applied to more realistic data. In this case, we used the
atomic configuration of amorphous silica. The data are from ISAACS (Rouxa and
Petkova 2010), generated by Reverse Monte Carlo simulations guided by synchrotron
X-ray radiation data. The data are available at http://isaacs.sourceforge.net/ex.html.

ThePDswere computed from the atomic configuration. Two types of atoms, silicons
and oxygens, were mixed in a 1:2 ratio in the data. The atomic type was ignored in
this example, and only the positions of the atoms were used. Figure13 shows the 1st
PD.

The PD has birth-death pairs on the vertical line with (birth time) ≈ 0.7. The birth-
death pairs on the vertical line correspond to rings formed by the chemical bonds
between oxygen and silicon. Oxygen and silicon atoms appear alternatively on these
rings. Previous studies (Hiraoka et al. 2016; Onodera et al. 2019) have found that the
existence of the vertical line on a PD implies network structures.

Figure 14a shows the boundary of the optimal volume (orange) and the boundary
of the stable volume (green) with ε = 0.2 of (0.677, 5.007). The red and blue points
are oxygen atoms and silicon atoms, respectively. In this case, the stable volume and
stable sub-volume are identical. The optimal volume is a large twisted ring, while the
stable volume is a simpler ring. Figure14b shows the ε versus volume plot. The plot
indicates that the size of the stable volume quickly decreases from ε = 0 to ε = 0.1,
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Fig. 14 a Optimal volume and stable volume of (0.677, 5.007). The orange ring is the boundary of the
optimal volume; the green ring is the boundary of the stable volume. The red and blue points are oxygen
atoms and silicon atoms, respectively. b The plot of the bandwidth parameter ε versus the size of stable
volumes and stable sub-volumes

Fig. 15 a Optimal volume and stable volume of (0.669, 5.053). The orange ring is the boundary of the
optimal volume; the green ring is the boundary of the stable volume. The red and blue points are oxygen
atoms and silicon atoms, respectively. b Plot of the bandwidth parameter ε versus the size of the stable
volumes and stable sub-volumes. c Schematic of the optimal volume and the stable volume. The orange
area is the optimal volume, the dark orange ring is its boundary, and the green ring is the boundary of the
stable volume

meaning that the optimal volume is sensitive to noise. Therefore, we can consider that
the stable volume is the essential part of the birth-death pair.

It should be noted that the stable volume with ε ∈ [1.1, 1.6] on the second plateau
is not a reasonable representation of the birth-death pair since only oxygen atoms exist
on the boundary of the volume. The large ε causes the removal of the information of
the silicon atoms.

Figure 15a shows the optimal volume (orange) of (0.669, 5.053) and the stable
volume (green) of the same pair with ε = 0.2. In this case, the optimal volume and
the stable sub-volume are identical. However, the stable volume and sub-volume are
not identical since the stable volume is not included in the optimal volume. Figure15b
shows the plot of ε against the volume.

In Fig. 15a, the stable volume is tighter than the stable sub-volume. Figure15c
shows the schematic of the optimal volume and the stable volume. The stable volume
and sub-volume are different since path Z in the figure is not included in the optimal

123



Stable volumes for persistent homology 701

volume. In our opinion, the stable volume appears superior since it surrounds the tunnel
in the pointcloud more tightly. However, we do not have a theoretical guarantee. In
general, the stable volume is tighter than the stable sub-volume since the optimization
for a stable volume is more aggressive than that for a stable sub-volume.

7 Tuning of noise bandwidth parameter

In applying stable volumes, properly tuning the noise bandwidth parameter ε is essen-
tial. The examples shown in the previous section suggest two possible approaches to
such tuning:

• The scale of ε should be the same scale as the noise of the data
• A value on the plateau shown in the plot of ε against volume size (Sect. 6.1) should
be used

In applying the first approach, we can use the domain knowledge about the data
to tune the parameter. Here, the scale of the system noise gives an estimate of the
parameter. For example, the scale of thermal fluctuation can be used as the parameter
if the data consist of the atomic configuration, and thermal fluctuation is the dominant
noise.

To apply the second approach, we need to plot the figure. As noted in Sect. 6.3,
when there are multiple plateaus, we need additional criteria to determine which is
better.

If we use stable volumes by persistence trees, such a plot is easy to produce. From
Definition 3, the size of a stable volume is computable as follows:

1 +
∑

ω∈Cε (τ0,ω0)

(size of dec(ω, V , E)). (60)

We can compute the size of dec(ω, V , E) by counting all the descendant elements of
ω. It is also easy to judge whether ω ∈ Cε(τ0, ω0) by comparing r̂(τ0) and r̂(τ ) in
(16). HomCloud already has this functionality.

When we cannot use stable volumes by persistence trees and we want to plot ε

against volume size, a stable sub-volume is more useful than a stable volume.

8 Comparison between stable volumes and stable sub-volumes

The question of whether stable volumes or stable sub-volumes are better requires
further discussion. The differences between stable volumes and stable sub-volumes
can be described as follows:

• If we want to compute stable volumes or stable sub-volumes using multiple band-
width parameters, the computation cost of stable sub-volumes is smaller than that
of stable volumes. Thus, stable sub-volumes are desirable for constructing ε versus
volume plots.
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• If the size of the optimal volume is large, a stable volume often gives a more
aggressive and likely better result than a stable sub-volume. In other words, a
stable sub-volume gives a more conservative result than a stable volume.

The first listed characteristic shows the advantage of using a stable sub-volume, while
the second characteristic implies that the choice between stable volumes and stable
sub-volumes depends on the problem.

In the author’s opinion, stable sub-volumes are easy to handle in general. However,
users should compare both options and make a decision as to which is better for their
data.

9 Concluding remarks

Wehave proposed the concept of stable volumes and stable sub-volumes as ameans for
identifying good geometric realization of homology generators that, unlike many of
the methods proposed in prior research, is robust to noise. The idea of stable volumes
and stable sub-volumes is based on optimal volumes by Obayashi (2018).

The statistical approach taken by Bendich et al. (2020) offers another solution to
our problem. However, one advantage of stable volumes and stable sub-volumes is
that they do not require a large number of repeated computations. Moreover, stable
volumes and sub-volumes are easier to visualize than the output of the statistical
approach since they give a deterministic rather than a probabilistic description. On
the other hand, the advantage of the statistical approach is its flexibility. For 1st PH,
we can only apply the statistical approach when we want to minimize the length of a
loop rather than minimize the volume. The statistical approach is also applicable to
the spatial distribution of points. Another advantage of the statistical approach is that
it gives richer probabilistic information than stable volumes and sub-volumes.

Reconstruct shortest cycles in Ripserer.jl by Čufar (2020) offers the other solu-
tion. The approach uses the representative of persistent cohomology and the shortest
path algorithm. Our proposed method has two advantages over reconstructed short-
est cycles. The first is its mathematical background. We prove Theorem 3.1 to show
the good property of stable volumes and stable sub-volumes. Reconstruct shortest
cycles do not have such mathematical justification. The second is the difference in the
scope of the application. Stable volumes and sub-volumes can apply to the PH of any
degree; however, reconstructed shortest cycles are only applicable to 1st PH. On the
other hand, the advantage of reconstructed shortest cycles is computation efficiency.
The algorithm of reconstructed shortest cycles uses the shortest path algorithm and is
faster than stable volumes and sub-volumes in general.

Although we used the number of simplices as the volume size in this paper, it is
possible to use the real volume by changing the objective function from

∑
ω∈Fε,k+1

|ᾱω|
to

∑
ω∈Fε,k+1

vol(ω)|ᾱω|, where vol(ω) is the volume of the simplex ω. This idea may
improve the result.

In this paper, we presented algorithms only for the filtration of a simplicial complex;
however, the concept can be easily applied to other filtrations, such as cubical and cell
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filtrations. The proposed algorithms should be helpful in the study of two-dimensional,
three-dimensional, or higher-dimensional digital images.

Someproblems raised in Sect. 3.4 are still unresolved.Amore reliablemathematical
justification for stable volumes other than (n − 1)th PH is also an open problem.
These problems show the limitation of our research and are worth addressing in future
research for the further development of homology optimization.

Acknowledgements This research is partially supported by JSPS KAKENHI JP19H00834, JP20H05884,
19KK0068, JST Presto JPMJPR1923, JST CREST JPMJCR15D3, and JST-Mirai Program JPMJMI18G3.
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Appendix A: Reconstructed shortest cycles in Ripserer.jl

We illustrate the mechanism of reconstructed shortest cycles in Ripserer.jl using an
example.

Figure 16 shows the example filtration, andwe considerZ/2Z-persistent homology.
In this filtration, a homology generator appearing at X2 disappears at X7. That is, (2, 7)
is a birth-death pair in the 1st PD. The representative cycle corresponding to the pair
is

∑
σ∈X (1)

2
σ . This representative cycle is the loop appearing at X2.

Now we consider persistent cohomology. The diagram defined by persistent coho-
mology is identical to the diagram by persistent homology since we use a field as a
coefficient, but the representative cocycle is, of course, different. The representative
cocycle corresponding to (2, 7) is σ ∗

1 + σ ∗
2 + σ ∗

3 .
From the observation of the example, we find that the representative cocycle is

the “cut” of the loop. This means that any representative cycle corresponding to the
birth-death pair disappears if we remove all 1-simplices in the representative cocycle
from the 1-skeleton of X7 as shown in Fig. 17a.

Using this fact, we can compute representative cycles using the shortest path algo-
rithm. Let C be {σ1, σ2, σ3}, the set of all 1-simplices in the representative cocycle.
Now X (1)

2 is divided into two parts, one is X (1)
2 \C and another is X (1)

2 ∩ C = {σ1}.
Then we compute the shortest path in X (1)

4 \C whose two endpoints are the endpoints
of σ1. The result is shown in Fig. 17b.
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Fig. 16 Example filtration for reconstructed shortest cycles

Fig. 17 a Representative
cocycle, b Reconstructed
shortest cycle for X2 c for X4 d
for X5

(a) (b) (c) (d)

We can extend the idea to compute tighter cycles. We can similarly divide X (1)
4 into

X (1)
4 \C and X (1)

4 ∩ C = {σ1, σ2}. For each σ ∈ X (1)
4 ∩ C , we compute the shortest

path in X (1)
4 \C whose two endpoints are the endpoints of σ . The results are (b) and (c)

in Fig. 17, and we choose (c) as the shortest loop in these loops. Using X5 instead of
X4, we compute an even tighter loop (d). This is the mechanism of the reconstructed
shortest cycles.

The algorithm is summarized as follows.

1. The 1st PD, PD1(X) for a filtration X : X1 ⊂ · · · ⊂ XN , is computed using
persistent cohomology. The representative cocycles are also computed

2. We choose a birth-death pair (b, d), and take the corresponding representative
cocycle

∑
σ∈C σ ∗

3. We also choose k between b and d
4. For each σ ∈ X (1)

k ∩C , we compute the shortest path in X (1)
k \C , P(σ ), whose two

endpoints are the endpoints of σ

5. We search the shortest one from {P(σ )}σ∈C
The mathematical justification of the algorithm is not yet given, but empirically it
works. A deeper analysis of the algorithm is beyond the scope of this paper.
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