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Abstract
Path homology is a topological invariant for directed graphs, which is sensitive to
their asymmetry and can discern between digraphs which are indistinguishable to the
directed flag complex. In Erdős–Rényi directed random graphs, the first Betti number
undergoes two distinct transitions, appearing at a low-density boundary and vanish-
ing again at a high-density boundary. Through a novel, combinatorial condition for
digraphs we describe both sparse and dense regimes under which the first Betti number
of path homology is zero with high probability. We combine results of Grigor’yan et
al., regarding generators for chain groups, with methods of Kahle andMeckes in order
to determine regimes under which the first Betti number is positive with high prob-
ability. Together, these results describe the gradient of the lower boundary and yield
bounds for the gradient of the upper boundary.With a view towards hypothesis testing,
we obtain tighter bounds on the probability of observing a positive first Betti number
in a high-density digraph of finite size. For comparison, we apply these techniques to
the directed flag complex and derive analogous results

Keywords Path homology · Directed flag complex · Stochastic topology · Directed
graphs · Random graphs

Mathematics Subject Classification 05C20 · 05C80 · 55U15 · 60C05 · 62F03

1 Introduction

In applications, networks often arise with asymmetry and directionality. Chemical
synapses in the brain have an intrinsic direction (see (Purves et al. 2018, §5)); gene
regulatory networks record the causal effects between genes (e.g. Aalto et al. 2020);
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communications in social networks have a sender and a recipient (e.g. Leskovec and
Krevl 2014). A common hypothesis is that the structure of a network determines its
function (Ingramet al. 2006;Reimann et al. 2017), at least in part. In order to investigate
such a claim, one requires a topological invariant which describes the structure of the
network. To obtain such a summary for a digraph, one often symmetrises to obtain an
undirected graph, before applying traditional tools from TDA (e.g. Helm et al. 2021).
This potentially inhibits the predictive power of the descriptor, since the pipeline
becomes blind to the direction of edges. In recent years, particularly in applications
related to neuroscience (e.g. Caputi et al. 2021; Reimann et al. 2017), researchers
have explored the use of topological methods which are sensitive to the asymmetry of
directed graphs.

A much-studied construction, for undirected graphs, is the clique complex (or flag
complex)—a simplicial complex in which the k-simplices are the (k+1)-cliques in the
underlying graph. An obvious extension to the case of directed graphs is the directed
flag complex (Lütgehetmann et al. 2020). This is an ordered simplicial complex in
which the ordered k-simplices are the (k+1)-directed cliques: (k+1)-tuples of distinct
vertices (v0, . . . , vk) such that vi → v j whenever i < j . An important property of
this construction is that is able to distinguish between directed graphs with identical
underlying, undirected graphs; it is sensitive to the asymmetry of the digraph.

Path homology (first introduced by Grigor’yan et al. (2012)) provides an alternative
construction which, while more computationally expensive, is capable of distinguish-
ing between digraphs which are indistinguishable to the directed flag complex (e.g.
Fig. 1, c.f. Chowdhury andMémoli (2018)).Moreover, the non-regular chain complex,
fromwhich path homology is defined, contains the directed flag complex as a subcom-
plex. Intuitively, the generators of the kth chain group of the directed flag complex
are all the directed paths, of length k, such that all shortcut edges are present in the
graph. Whereas, the kth chain group of the non-regular chain complex consists of all
linear combinations of directed paths, of length k, such that any missing shortcuts of
length (k − 1) are cancelled out.

Other desirable features of path homology include good functorial properties in
an appropriate digraph category (Grigor’yan et al. 2014, 2020) and invariance under
an appropriate notion of path homotopy (Grigor’yan et al. 2014, Theorem 3.3). Fur-
thermore, path homology is a particularly novel method since it operates directly on
directed paths within the digraph, rather than first constructing a simplicial complex.
Rather than being freely generated by distinguished motifs, the chain groups for path
homology are formed as the pre-images of the boundary maps. As such, finding a
basis for the chain groups is often non-trivial, which complicates the understanding

Fig. 1 Two motifs which are
indistinguishable to the directed
flag complex but have different
path homology
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of how homology arises in a random digraph. Hence, it is desirable to develop an
understanding of the statistical behaviour of path homology, both from an applied
perspective and from independent interest.

Key questions include (as discussed for the clique complex in Kahle 2009; Kahle
et al. 2014; Kahle and Meckes 2013): when should one expect homology to be trivial
or non-trivial; when homology is non-trivial, what are the expected Betti numbers;
and how are the Betti numbers distributed?

Notation 1.1 Assume G is disturbed according to a null model depending only on n,
e.g. after assuming all other parameters are functions of n.

1. We say a property P holds with high probability, if property P holds with proba-
bility tending to 1 as n → ∞.

2. Given two random variables X ,Y , depending on G, we write X ∼ Y with high
probability if for any ε > 0

P

[
1 − ε ≤ X

Y
≤ 1 + ε

]
→ 1 as n → ∞. (1.1)

To date, traditional topological invariants enjoy a greater statistical understanding
in the context of basic null models. In particular, Kahle showed the following:

Theorem 1.2 (Kahle 2009; Kahle et al. 2014) For an Erdős–Rényi random undirected
graph G ∼ G(n, p), denote the kth Betti number (over a field of characteristic
0) of its clique complex X(G) by βk . Let fk denote the number of k-cliques then

E[ fk] = ( n
k+1

)
p(

k+1
2 ). Assume p = nα , then

1. if −1/k < α < −1/(k + 1) then βk ∼ E[βk] ∼ E[ fk] ∼ fk with high probability;
2. if −1/k < α < −1/(k + 1) then βk > 0 with high probability;
3. if α < −1/k then βk = 0 with high probability;
4. if α > −1/(k + 1) then βk = 0 with high probability.

In essence, this characterises the understanding that, in any given degree, ran-
dom graphs only have non-trivial, clique complex homology in a ‘goldilocks’ region,
wherein graph density is neither too big nor too small. Moreover, the boundaries of
this region are dependent on the number of nodes in the graph, scaling as a power law.
Our primary contribution is a similar description for two different flavours of path
homology, in degree 1.

1.1 Summary of results

In order to derive useful probability bounds, it is often necessary to prescribe a null
model which is highly symmetric and depends on few parameters. Therefore, through-
out this paper we will be focusing on an Erdős–Rényi random directed graph model,
in which the number of nodes is fixed (at n) and each possible directed edge appears
independently, with some probability p. Note, this model allows for the existence of
a reciprocal pair of directed edges.
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Although individual results are potentially stronger, the following theorems charac-
terise the theoretical understanding that we will develop. Denote the kth Betti number
of the non-regular path homology of a digraph by

−→
β k . Firstly, (

−→
β 0 + 1), is the

number of weakly connected components. This coincides with the number of con-
nected components of the flat symmetrisation of the digraph (see Definition 2.10). If
G ∼ −→

G (n, p) is an Erdős–Rényi random directed graph then its symmetrisation is
an Erdős–Rényi random undirected graph, Ḡ ∼ G(n, p̄), where p̄ = 1 − (1 − p)2.
Thus, we use a standard result due to Erdős and Rényi (1960), Kahle (2009) to prove
the following.

Theorem 1.3 For an Erdős–Rényi random directed graph G ∼ −→
G (n, p(n)), let

−→
β 0

denote the 0th Betti number of its non-regular path homology over Z. Assume 1 −
(1 − p(n))2 = (log(n) + f (n))/n, then

1. if limn→∞ f (n) = −∞ then
−→
β 0 > 0 with high probability;

2. if limn→∞ f (n) = ∞ then
−→
β 0 = 0 with high probability.

The same result holds for regular path homology.

Our primary contribution identifies a similar ‘goldilocks’ region for the first Betti
number of path homology,

−→
β 1.

Theorem 1.4 For an Erdős–Rényi random directed graph G ∼ −→
G (n, p(n)), let

−→
β 1

denote the 1st Betti number of its non-regular path homology over Z. Let N1 denote
the number of edges, N1 = #E(G), then E[N1] = n(n − 1)p. Assume p(n) = nα ,
then

1. if −1 < α < −2/3 then
−→
β 1 ∼ E[−→β 1] ∼ E[N1] ∼ N1 with high probability;

2. if −1 < α < −2/3 then
−→
β 1 > 0 with high probability;

3. if α < −1 then
−→
β 1 = 0 with high probability;

4. if α > −1/3 then
−→
β 1 = 0 with high probability.

The same result holds for regular path homology.

By way of justifying the assumption p(n) = nα , in Fig. 9a we plot P[−→β 1(G) =
0], for G ∼ −→

G (n, p), in colour against log(n) and log(p) along the two spatial
axes. We observe two transitions between three distinct regions in parameter space.
There is an interim region, in which we observe mostly

−→
β 1 > 0; when p becomes

too small we suddenly observe mostly
−→
β 1 = 0, and likewise when p becomes too

large. On this plot, the boundaries between the three regions appear as straight lines.
Hence a reasonable conjecture is that these boundaries follow a power-law relationship
log(p) = α log(n)+c. Therefore, following power-law trajectories through parameter
space will allow us to derive either P[−→β 1(G) > 0] → 1 or P[−→β 1(G) = 0] → 1.

Turning our attention to higher degrees, we provide weak guarantees for the asymp-
totic behaviour of

−→
β k , for arbitrary k ≥ 1, at low densities.

Theorem 1.5 For an Erdős–Rényi random directed graph G ∼ −→
G (n, p(n)), let

−→
β k

denote the kth Betti number of its non-regular path homology over Z. Assume p(n) =
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nα with α < − N+1
N for some N ∈ N. Then,

−→
β k = 0 with high probability for every

k ≥ N. The same result holds for regular path homology.

For comparison, in Sect. 5, we apply the techniques used to prove Theorem 1.4 in
order to obtain analogous results for the directed flag complex.

Theorem 1.6 For an Erdős–Rényi random directed graph G ∼ −→
G (n, p(n)), let βk

denote the kth Betti number of its directed flag complex homology over Z. Let Nk

denote the number of directed k-cliques, Nk = rank
−→
X k(G), then E[Nk] = ( n

k+1

)
(k+

1)! p(k+1
2 ). Assume p(n) = nα , then for each k ≥ 0

1. if −1/k < α < −1/(k + 1) then E[βk] ∼ E[Nk];
2. if −1 < α < −1/2 then β1 ∼ E[β1] ∼ E[N1] ∼ N1 with high probability;
3. if −1 < α < −1/2 then β1 > 0 with high probability;
4. if α < −1 then β1 = 0 with high probability;
5. if α > −1/4 then β1 = 0 with high probability.

In Sect. 6, we summarise these results and compare path homology and the directed
flag complex to more traditional symmetric methods. We provide Table 1 in which
we record, for each of the homologies under consideration, the α-region in which we
know β1 is either zero or positive, with high probability (assuming p = nα).

In Appendix A, with a view towards hypothesis testing, we derive a tighter explicit
bound for P(

−→
β 1(G) > 0), which becomes useful when p is large. In order to identify

a given Betti number as statistically significant, against a Erdős–Rényi null model,
one would usually resort to a Monte Carlo permutation test (e.g. Dwass 1957). This
would require the computation of path homology for a large number of random graphs.
For large graphs (n ≥ 100 nodes), this is often infeasible, due to the computational
complexity of path homology. However, if graph density falls into one of the regions
identified by the results in Appendix A, one can potentially circumvent this costly
computation.

2 Background

2.1 Graph theory definitions and assumptions

For clarity, we present a number of standard definitions, and assumptions that we will
use throughout this paper. First, we fix our notation for graphs.

Definition 2.1 1. A (undirected) graph is a pair G = (V , E), where V is an arbitrary
set and E is a set of 2-element subsets of V .

2. A directed graph (or digraph) is a pair G = (V , E), where V is an arbitrary set
and E ⊆ V × V .

3. A (resp. directed) multigraph is a (resp. directed) graph G = (V , E) in which E
is allowed to be a multiset.

4. In all cases, we call V (G) := V the set of nodes or vertices and E(G) := E the
set of edges.
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5. A digraph G = (V , E) is simple if E ⊆ (V ×V )\�, where � := {(i, i) | i ∈ V }.
6. The density of a simple digraph G = (V , E) is the ratio of edges present, relative

to the maximum number of possible edges:

density(G) := #E

#V (#V − 1)
. (2.1)

Assumption 2.2 Throughout this paper, unless stated otherwise, we assume that all
digraphs G = (V , E) are simple. This means that they contain no self loops and
contain at most one edge between any ordered pair of vertices.

Given a directed graph G, we make the following definitions to refer to subgraphs
within G.

Definition 2.3 Given a digraph G = (V , E), we make the following definitions.

1. A subgraph is another graph G ′ = (V ′, E ′) such that V ′ ⊆ V and E ′ ⊆ E ; we
denote this as G ′ ⊆ G.

2. Given a subgraph G1 ⊆ G and a subset of edges E2 ⊆ E(G) we let G1 ∪ E2
denote a new graph with edges

E(G1 ∪ E2) = E(G1) ∪ E2. (2.2)

and node-set V (G1∪E2), the smallest superset of V (G1) that contains all endpoints
of edges in E2.

3. A (combinatorial) undirectedwalk is an alternating sequences of vertices and edges

ρ = (v0, e1, v1, e2, . . . , vn−1, en, vn) (2.3)

such that edges connect adjacent vertices, in either direction. That is, for each i ,
either ei = (vi−1, vi ) or ei = (vi , vi−1).

4. A (combinatorial) directed walk is an undirected walk such that all edges are
forward edges, that is ei = (vi−1, vi ) for every i .

5. A (combinatorial) directed/undirected path is a directed/undirected walk which
never repeats vertices or edges, that is vi = v j or ei = e j implies i = j .

6. A (combinatorial) directed/undirected cycle is a directed/undirectedwalk such that

vi = v j , i �= j ⇐⇒ {i, j} = {0, n}. (2.4)

7. The length of a walk is the number of edges it traverses, e.g. the length of ρ in
equation (2.3) is n.

8. A double edge is an unordered pair of vertices {i, j} ⊆ V such that both directed
edges are in the graph, i.e. (i, j), ( j, i) ∈ E .

Notation 2.4 1. For vertices i, j ∈ V , we write i → j if (i, j) ∈ E .
2. If E2 = {e} is a singleton then we define G1 ∪ e := G1 ∪ E2.

Remark 2.5 Assumption 2.2 allows for the existence of double edges.
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2.2 Analytic and algebraic definitions

Next, we provide definitions of ‘Landau symbols’, which we use describe the asymp-
totic behaviour of two functions, relative to one another.

Notation 2.6 Given two functions f , g : N → R we write

1. f (n) = o(g(n)) if limn→∞ f (n)
g(n)

= 0;

2. f (n) = ω(g(n)) if limn→∞ g(n)
f (n)

= 0;

3. f (n) ∼ g(n) if limn→∞ f (n)
g(n)

= 1.

Remark 2.7 1. There is an equivalence, f (x) = ω(g(x)) ⇐⇒ g(x) = o( f (x)).
2. Note that, if X and Y are deterministic random variables then X ∼ Y with high

probability if and only if X ∼ Y in the sense above.

Finally, wemake a formal, algebraic definition, which will be required later in order
to define path homology.

Definition 2.8 Given a ring R and a set V , we let R〈V 〉 denote the R-module of formal
R-linear combinations of elements of V . That is,

R〈V 〉 :=
{

n∑
i=1

αi evi | n ∈ N, αi ∈ R, vi ∈ V

}
(2.5)

where {ev | v ∈ V } are formal symbols which form a basis of the free R-module R〈V 〉.

2.3 Erdos–Rényi random graphs

Throughout this paper, we will primarily be investigating random directed graphs
under an Erdős–Rényi model.

Definition 2.9 1. The Erdős–Rényi random undirected graph model, G(n, p), is a
probability space of undirected graphs. Each graph has exactly n nodes {1, . . . , n}
and each directed edge is included, independently, with probability p. A given
graph G on n nodes with m edges appears with probability

pm(1 − p)(
n
2)−m . (2.6)

For a graph drawn from this model, we write G ∼ G(n, p).
2. The Erdős–Rényi random directed graph model,

−→
G (n, p), is a probability space

of directed graphs. Each graph has exactly n nodes {1, . . . , n} and each directed
edge is included, independently, with probability p. A given digraph G on n nodes
with m edges appears with probability

pm(1 − p)n(n−1)−m . (2.7)

For a digraph drawn from this model, we write G ∼ −→
G (n, p).
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2.4 Symmetrisation

Definition 2.10 Given a directed graph G = (V , E),

1. the flat symmetrisation is an undirected graph, Ḡ := (V , Ē), where

{i, j} ∈ Ē with multiplicity 1 ⇐⇒ (i, j) ∈ E or ( j, i) ∈ E or both. (2.8)

2. the weak symmetrisation is an undirected multigraph
◦
G := (V ,

◦
E), where {i, j}

appears in
◦
E with multiplicity 2 if both (i, j) ∈ E and ( j, i) ∈ E , or with multi-

plicity if 1 if only one of these edges is present.

Remark 2.11 We can view Ḡ and
◦
G as topological spaces by giving them the natural

structure of a simplicial complex and delta complex respectively. Both of these struc-
tures have no simplices above dimension 1, so clearly βk(Ḡ) = βk(

◦
G) = 0 for all

k > 1.

Lemma 2.12 Given a random directed graph G ∼ −→
G (n, p), the flat symmetrisation

is distributed as Ḡ ∼ G(n, p̄) where

p̄ := 1 − (1 − p)2 = 2p − p2. (2.9)

Proof A given undirected edge {i, j} appears in Ḡ if and only if at least one of (i, j)
or ( j, i) is in G. Therefore

P({i, j} /∈ Ē) = P
(
(i, j) /∈ E and ( j, i) /∈ E

) = (1 − p)2. (2.10)

Hence, the undirected edge appears with probability 1 − (1 − p)2. The existence of
each undirected edge depends on the existence of a distinct pair of directed edges.
Hence each undirected edge appears independently. ��
Remark 2.13 Since we always assume p → 0, note that p̄ ∼ 2p. This clearly implies
that p = o(n−1/k) ⇐⇒ p̄ = o(n−1/k).

Definition 2.14 Throughout this paper, we define p̄ as in (2.9), whenever the under-
lying p is clear from context.

Definition 2.15 Given an undirected graph G = (V , E),

1. a k-clique is a subset of vertices V ′ ⊆ V , such that #V ′ = k and for any two,
distinct vertices, i, j ∈ V ′, the edge between them is present, i.e. {i, j} ∈ E ;

2. the clique complex, X(G) is a simplicial complex where the k-simplices are the
(k + 1)-cliques in G.

We now investigate the behaviour of these ‘symmetricmethods’ on randomdirected
graphs. Since the flat symmetrisation of a random digraph

−→
G (n, p) is a random graph

G(n, p̄) and the asymptotics of p̄ do not differ greatly from those of p, Theorem 1.2
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can be restated immediately for βk(X(Ḡ)) with the only change being that E[ fk] =( n
k+1

)
p̄(

k+1
2 ).

Next, we prove that if p = p(n) shrinks too quickly then β1 will vanish for Ḡ and
◦
G, with high probability. This is a special case of the proof given by Kahle (Kahle
(2009), Theorem 2.6). We repeat the proof to illustrate that it can be applied to β1(Ḡ),
β1(

◦
G) and, later on, path homology

−→
β 1(G).

Proposition 2.16 If p = p(n) = o(n−1) then, given a random directed graph G ∼−→
G (n, p), we have

lim
n→∞P(β1(Ḡ) = 0) = lim

n→∞P(β1(
◦
G) = 0) = 1. (2.11)

Proof Note that the existence of an undirected cycle in Ḡ of length L ∈ [3, n] is a
necessary condition for β1(Ḡ) > 0. For each L , by a union bound, the probability of
there being an undirected cycle of length L is atmost (n p̄)L .Hence, the probability that
there is an undirected cycle of any length is at most (n p̄)3/(1 − (n p̄)). The assumption
p = o(n−1) implies that limn→∞(n p̄) = 0 and hence the bound converges to 0 as
n → ∞.

To prove
−→
β 1(

◦
G) = 0 with high probability, all that remains is to bound probability

of there being an undirected cycle on 2 nodes (i.e. a double edge) inG. The probability
that there is some double edge is at most

(n
2

)
p2 ≤ n2 p2 which tends to 0 since

p = o(n−1). ��
Finally, we investigate conditions under which we expect β1(Ḡ) > 0 and β1(

◦
G) >

0 with high probability, and determine the growth rate of E[β1] in each situation.
Standard techniques, as employed for the clique complex in Kahle (2009), shows the
following.

Proposition 2.17 If p = p(n) = ω(n−1) then, given a random directed graph G ∼−→
G (n, p),

E[β1(Ḡ)] ∼
(
n

2

)
p̄ and E[β1(

◦
G)] ∼ n(n − 1)p. (2.12)

Moreover, β1(Ḡ) ∼ E[β1(Ḡ)] and β1(
◦
G) ∼ E[β1(

◦
G)] with high probability and

hence

lim
n→∞P(β1(Ḡ) > 0) = lim

n→∞P(β1(
◦
G) > 0) = 1. (2.13)

Proof Denoting the original digraphG = (V , E), we deal with the flat symmetrisation
first. For convenience, we define N1 := # Ē and N0 := #V . Note that E[N1] = (n

2

)
p̄

and E[N0] = n. A standard application of the Euler characteristic shows

N1 − N0 ≤ β1 ≤ N1. (2.14)
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The assumption p(n) = ω(n−1) yieldsE[N0] = o(E[N1]) and henceE[β1] ∼ E[N1].
Now we show β1 ∼ E[β1] with high probability. Since E[β1] ∼ E[N1] → ∞, by

an application of Chebyshev’s inequality Alon and Spencer (2016), it suffices to show
that Var(β1) = o(E[β1]2). Using the inequalities (2.14) we can (eventually) bound

Var(β1)

E[β1]2 = E[β2
1 ] − E[β1]2
E[β1]2 ≤ E

[
N 2
1

]− E[N1 − N0]2

E[N1 − N0]2
. (2.15)

Then since N1 is a binomial random variable with mean E[N1] → ∞ we have
E
[
N 2
1

] ∼ E[N1]2. We have already seen that E[N1]2 ∼ E[N1 − N0]2 and hence
the bound in (2.15) tends to 0.

Now since β1 ∼ E[β1] with high probability and eventually E[β1] > 0, the final
conclusion β1 > 0 with high probability follows because for any ε ∈ (0, 1) we can
eventually bound

P
[
β1(Ḡ) > 0

] ≥ P
[
β1(Ḡ) ≥ (1 − ε)E[β1]

] → 1. (2.16)

The case for the weak symmetrisation has an identical proof, except that E[# ◦
E] =

E[#E] = n(n − 1)p. ��

3 Path homology of directed graphs

3.1 Definition

Path homologywas first introduced byGrigor’yan et al. (2012, 2020). The key concept
behind path homology is that, in order to capture the asymmetry of a digraph,we should
not construct a simplicial complex, but instead a path complex. In a simplicial complex,
one can remove any vertex from a simplex and obtain a new simplex in the complex.
This property may not hold for directed paths in digraphs; if we bypass a vertex in the
middle of a path then we may not obtain a new path. However, we can always remove
the initial or final vertex of a path and obtain a new path. This is the defining property
of a path complex (Grigor’yan et al. (2012), §1).

Path homology can be defined on any path complex but for this paper we focus on
the natural path complex associated to a digraph. Throughout this section we fix a ring
R and a simple digraph G = (V , E).

Definition 3.1 We make the following definitions to classify sequences of vertices in
V :

1. Any sequence v0 . . . vp of (p + 1) vertices vi ∈ V is an elementary p-path.
2. An elementary path is regular if no two consecutive vertices are the same, i.e.

vi �= vi+1 for every i . Otherwise, the path is called non-regular or irregular.
3. An elementary path is allowed if subsequent vertices are joined by a directed edge

in the graph, i.e. (vi , vi+1) ∈ E for every i .

Remark 3.2 An allowed path coincides with a combinatorial, directed walk.
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Definition 3.3 The following R-modules are defined to be freely generated by the
generators specified, for p ≥ 0:

�p := �p(G; R) := R
〈 {

v0 . . . vp elementary p-path on V
} 〉

(3.1)

Rp := Rp(G; R) := R
〈 {

v0 . . . vp regular p-path on V
} 〉

(3.2)

Ap := Ap(G; R) := R
〈 {

v0 . . . vp allowed p-path in G
} 〉

(3.3)

For p = −1,we let�−1 := R−1 := A−1 := R.Given an elementary p-pathv0 . . . vp,
the corresponding generator of �p is denoted ev0...vp . For convenience, given an edge
τ = (a, b) ∈ E(G) we define eτ := eab as an alias for the basis element of A1.

We can construct homomorphisms �p → �p−1 for each p.

Definition 3.4 Given p > 0, we can define the non-regular boundary map ∂p : �p →
�p−1 by setting

∂p(ev0...vp ) :=
p∑

i=0

(−1)i ev0...v̂i ...vp (3.4)

where v0 . . . v̂i . . . vp denotes the elementary (p− 1)-path v0 . . . vp with the vertex vi
omitted. This defines ∂p on a basis of �p, from which we extend linearly. In the case
p = 0, we define ∂0 : �0 → R by

∂0

(∑
v∈V

αvev

)
:=
∑
v∈V

αv (3.5)

which yields an element of R.

Remark 3.5 1. A standard check verifies that ∂p−1 ◦ ∂p = 0 (Grigor’yan et al. (2012),
Lemma 2.4) and hence

{
�p, ∂p

}
forms a chain complex.

2. Since we assume all digraphs are simple, there are no self-loops. Therefore, any
allowed path must be regular and hence

Ap ⊆ Rp ⊆ �p. (3.6)

In order to incorporate information about paths in the graph we would like a bound-
ary operator between theAp. However, the boundary of an allowed path may not itself
be allowed, because it involves removing vertices from the middle of paths. To resolve
this, we define a R-module, for each p ≥ 0, called the space of ∂-invariant p-paths

�p := �p(G; R) := {
v ∈ Ap | ∂pv ∈ Ap−1

} = Ap ∩ ∂−1
p (Ap−1). (3.7)

Since ∂p−1 ◦ ∂p = 0, we see that ∂p(�p) ⊆ �p−1. Hence, we can make the following
construction.
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Definition 3.6 The non-regular chain complex is

. . . �2 �1 �0 R 0
∂3 ∂2 ∂1 ∂0 ∂−1 (3.8)

where each ∂p is the restriction of the non-regular boundary map to �p.

Definition 3.7 Thehomologyof the non-regular chain complex (3.8) is thenon-regular
path homology of G. The pth homology group is denoted

Hp(G; R) := ker ∂p
im ∂p+1

. (3.9)

The rank of the pth homology group is pth Betti number, denoted
−→
β p(G; R).

When computing�p, one often encounters paths v ∈ Ap with irregular summands
in their boundary. For example,

∂2(ei ji ) = e ji − eii + ei j . (3.10)

Since irregular summands are never allowed, these must be cancelled to obtain an
element of �p. An alternative construction, which is featured more frequently in the
literature, alters the boundary operator to remove these irregularities.

There is a projection map π : �p → Rp which sends every irregular path to 0.
This allows us to make the following construction:

Definition 3.8 For each p ≥ 0, the regular boundary operator ∂Rp : Rp → Rp−1 is
defined by

∂Rp := π ◦ ∂p. (3.11)

With this new boundary operator we still have the issue that the boundary of an
allowed path may not be allowed. Therefore, we again construct an R-module, for
each p ≥ 0, called the space of ∂R-invariants p-paths.

�R
p := �R

p (G; R) :=
{
v ∈ Ap | ∂Rp v ∈ Ap−1

}
= Ap ∩ (∂Rp )−1(Ap−1).

(3.12)

One can check that, given any irregular path v, either ∂v = 0 or ∂v is a sum of irregular
paths (Grigor’yan et al. 2012, Lemma 2.9) and hence

∂Rp−1 ◦ ∂Rp = π ◦ ∂p−1 ◦ ∂p = π ◦ 0 = 0. (3.13)

Definition 3.9 The regular chain complex is

. . . �R
2 �R

1 �R
0 R 0

∂R3 ∂R2 ∂R1 ∂R0 ∂R−1 (3.14)
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where each ∂Rp is the restriction of the non-regular boundary map to �R
p .

Definition 3.10 The homology of the regular chain complex chain complex is the
regular path homology of G and the kth homology group is denoted

HR
k (G; R) := ker ∂Rk

im ∂Rk+1

. (3.15)

We denote the Betti numbers for these homology groups by
−→
β R

k (G; R).

Remark 3.11 1. If R is also a field, then the homology groups Hk and HR
k are vector

spaces and so fully characterised, up to isomorphism, by
−→
β k and

−→
β R

k respectively.
2. Since we augment the chain complex with R in dimension −1, this is technically

a reduced homology, but we omit additional notation for simplicity.
3. As noted in (Grigor’yan et al. (2012), §5.1), given a subgraph G ′ ⊆ G then, for

every p ≥ 0,

�p(G
′) ⊆ �p(G) and �R

p (G ′) ⊆ �R
p (G). (3.16)

Notation 3.12 When G is clear from context, we shall omit it from notation. If the
coefficient ring R is omitted from notation, assume that R = Z.

Note that the primary difference between the regular and non-regular chain complex
is the boundary operator. The difference between the boundary operators ∂p and ∂Rp
affects the difference between the R-modules �p and �R

p .

3.2 Proof of Theorem 1.5

As an easy first step, we show that, when graph density is too low, it is very unlikely
that there are any long paths within the digraph. Therefore, for large k, Ak becomes
trivial and consequently

−→
β k = 0.

Proposition 3.13 Given N ∈ N, if p = p(n) = o(n−(N+1)/N ) for some N ∈ N then,

given a random directed graph G ∼ −→
G (n, p), for all k ≥ N we have

lim
n→∞P(

−→
β k(G) = 0) = 1. (3.17)

Proof Note that it suffices to show that P(AN = {0}) → 1 as n → ∞ because, if
there are no allowed N -paths, then there are certainly no allowed k-paths. If there are
no allowed k-paths then �k = {0} and so

−→
β k = 0.

ForAN to be non-trivial there must be some combinatorial, directed walk of length
N . Equivalently, there must exist a combinatorial, directed cycle or a combinatorial,
directed path of length N (or both).

If p = o(n−(N+1)/N ) then certainly p = o(n−1) and hence, following the proof of
Proposition 2.16, the probability that there is a directed cycle tends to 0 as n → ∞.
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A combinatorial, directed path is a sequence of N + 1 distinct nodes, each joined
by an edge in the forward direction. By a union bound, the probability that there exists
such a sequence is at most

(
n

N + 1

)
(N + 1)! pN ≤ nN+1 pN (3.18)

which, by the assumption on p, tends to 0 as n → ∞. ��
Proof of Theorem 1.5 By Proposition 3.13, it suffices to note that nα = o(n−(N+1)/N )

whenever α < − N+1
N . ��

This theorem is veryweak. For example, to obtain
−→
β 1 = 0with high probability,we

require p = o(n−2), in which case the expected number of edges in the digraph tends
to 0. The weakness of this result stems from its reliance on the chain of inequalities

−→
β k ≤ rank(ker ∂k) ≤ rank�k ≤ rankAk . (3.19)

There is likely a region of graph densities wherein one or more of these inequalities is
strict. Hence, in order to obtain stronger results, we require an understanding of �k ,
at the very least.

3.3 Chain group generators

Proposition 3.14 (Grigor’yan et al. 2012, §3.3) For any simple digraph G = (V , E),

�0 = �R
0 = R〈V 〉 = A0 and �1 = �R

1 = R〈E〉 = A1. (3.20)

Proof Certainly �0 ⊆ A0 and �1 ⊆ A1. Moreover, the boundary of any vertex is just
an element of R = A−1 and hence allowed. The boundary of any edge is a sum of
vertices and any vertex is an allowed 0-path. Therefore A0 ⊆ �0 and A1 ⊆ �1. ��

We can also see that the non-regular chain complex is a subcomplex of the regular
chain complex, which immediately implies an inequality between the Betti numbers.
This subcomplex relation was first noted by Grigor’yan et al. (2012, Proposition 3.16).

Proposition 3.15 For any simple digraph G, the non-regular chain complex is a sub-
complex of the regular chain complex. In particular, for each p ≥ 0, we have

�p(G) ⊆ �R
p (G). (3.21)

Proof Suppose v ∈ �p, then ∂p(v) ∈ Ap−1.Wehave seen thatAp−1 ⊆ Rp−1.Hence,
if we project ∂p(v) onto Rp−1 via π , we do not remove any summands. Therefore

∂Rp (v) = π
(
∂p(v)

) = ∂p(v) ∈ Ap−1. (3.22)

Certainly v ∈ Ap and hence v ∈ �R
p . Since the two operators, ∂p and ∂Rp , agree on

�p, the non-regular chain complex is a subcomplex of the regular chain complex. ��
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Fig. 2 Generators for
�R
2 (G;Z) as described in

Proposition 3.17. a A double
edge. b A directed triangle. c A
long square. The red, dashed line
must not be present for the third
motif to constitute a long square i

j

(a)

i

j

k

(b)

i

j k

m

(c)

Corollary 3.16 For any simple digraph G,
−→
β R

1 (G) ≤ −→
β 1(G).

Proof By Proposition 3.14, the two complexes coincide in dimensions 0 and 1 and
hence rank ker ∂1 = rank ker ∂R1 . By Proposition 3.15, im ∂2 ⊆ im ∂R2 and hence
rank im ∂2 ≤ rank im ∂R2 . Therefore,

−→
β R

1 (G) = rank ker ∂R1 − rank im ∂R2 ≤ rank ker ∂1 − rank im ∂2 = −→
β 1(G). (3.23)

��
Note, given a directed edge τ = (i, j), ∂1(ei j ) = ∂R1 (ei j ) = e j − ei . From this, it

is easy to obtain the characterisation of the lowest Betti number first stated in Sect. 1.

Proof of Theorem 1.3 A standard argument shows that
−→
β 0 = −→

β R
0 = #C − 1, where

#C is the number of weakly connected components of the digraph G. Note, #C coin-
cides with the number of connected components of the symmetrisation Ḡ. The result
follows by Lemma 2.12 and a standard result due to Erdős and Rényi (see e.g. Erdős
and Rényi 1960; Kahle 2009). ��

Unfortunately, higher chain groups do not enjoy such a concise description. How-
ever, when working with coefficient over Z, it is possible to write down generators for
�R

2 , in terms of motifs within the digraph G.

Proposition 3.17 (Grigor’yan et al. (2014), Proposition 2.9) Let G be any finite
digraph. Then any ω ∈ �R

2 (G;Z) can be represented as a linear combination of
2-paths of the following three types:

1. ei ji with i → j → i (double edges);
2. ei jk with i → j → k and i → k (directed triangles);
3. ei jk − eimk with i → j → k, i → m → k, i �→ k and i �= k (long squares).

Remark 3.18 Note that all vertices i, j, k,m in this theorem are distinct, either due to
the existence of an edge (e.g. i → j implies i �= j) or explicit statement (e.g. i �= k).

The following non-regular corollary follows immediately since, by Proposi-
tion 3.15, �2 ⊆ �R

2 .

Corollary 3.19 Let G beany finite digraph. Then anyω ∈ �2(G;Z) canbe represented
as a linear combination of 2-paths of the three types enumerated in Proposition 3.17.
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Fig. 3 Linearly dependent long
squares with source i and sink k

i

j m l

k

Note that each of the generators in Proposition 3.17 are elements of �R
2 and hence

they form a generating set for �R
2 (G;Z). Note that elements of each type reside in

mutually orthogonal components of A2 because they are supported on distinct basis
elements. That is, we can write

�R
2 = D ⊕ T ⊕ S (3.24)

where D is freely generated by all double edges ei ji in G, and T is freely generated
by all directed triangles ei jk in G. The final component, S, is generated by all long
squares ei jk −eimk inG. However, they may not be linearly independent, for example,
as seen in Fig. 3,

(ei jk − eimk) + (eimk − eilk) + (eilk − ei jk) = 0. (3.25)

Note that double edges are not ∂-invariant paths, i.e. ei ji /∈ �2. However there are
linear combinations of double edges which do belong to �2. For example, suppose
i → j → i and i → k → i , then ei ji − eiki ∈ �2. It is possible to state a non-regular
version of Proposition 3.17, in which all generators are elements of �2. This can be
achieved by replacing double edge generators with such differences of double edges,
which share a common base point. However, we omit this result, as it is not necessary
for our main contribution.

Remark 3.20 1. An alternative approach to computing rank�2 and rank�R
2 was

first seen in (Grigor’yan et al. (2012), Proposition 4.2) and is explored further
in Appendix 1.

2. For the interested reader, more results which characterise relations between the�p

are available in Grigor’yan et al. (2012, 2020).
3. We can use Proposition 3.17 to obtain an intuition for HR

1 (G;Z). Starting with the

cell complex
◦
G, glue in a 2-cell for each generator identified by Proposition 3.17

by identifying its boundary with the corresponding motif in
◦
G. Then H1 of this cell

complex coincideswith HR
1 (G;Z). Unfortunately, sincewe do not have generators

for �R
p for p > 2, developing intuition in higher degrees is much harder.

Example 3.21 For further intuition, we reproduce the example given in (Grigor’yan
et al. (2012), Proposition4.7) but compute both regular andnon-regular path homology.
A cycle graph is a weakly connected digraph, on n ≥ 2, nodes such that each vertex

123



First Betti number of the path homology of random...

has degree 2. Fix a cycle graph G. Then, HR
1 (G;Z) ∼= Z unless G is a double edge,

directed triangle or long square, in which case HR
1 (G;Z) = 0.Whereas, H1(G;Z) ∼=

Z unless G is a directed triangle or long square, in which case H1(G;Z) = 0. For
more examples, please consult Grigor’yan et al. (2012).

4 Asymptotic results for path homology

Intuitively, we expect that the two transitions, identified in Fig. 9, correspond to two
distinct topological phenomena. When density becomes sufficiently large, cycles start
to appear in the graph and ker ∂1 is non-empty for the first time. Then, when density
becomes too large, boundaries enter into �2 which begin to cancel out all of the
cycles, removing all homology. In the interim period, we expect that the number of
cycles and the number of boundaries is approximately balanced. Therefore, in order
to understand the lower boundary we should study ker ∂1 and in order to understand
the upper boundary we should study im ∂2. In order to show that

−→
β 1 > 0 in the

‘goldilocks’ region we should compare the growth rates of rank ker ∂1 and rank im ∂2,
or some approximation thereof. Moreover we expect reasonable conditions on p(n)

to be of the form p = o(nα) or p = ω(nα) for some α, since conditions of this sort
constrain p(n) relative to straight lines through Fig. 9.

4.1 Proof of Theorem 1.4(1)

In order to characterise the behaviour of
−→
β 1 when it is non-trivial, we will follow the

approach of Kahle in (2009, §7). The approach is to use the ‘Morse inequalities’. In the
context of a digraph G, denote the ranks of the chain groups by Nk := rank�k(G;Z)

and NR
k := rank�R

k (G;Z). Then we have

− Nk−1 + Nk − Nk+1 ≤ −→
β k ≤ Nk . (4.1)

and a similar set of inequalities between the NR
k and

−→
β R

k . It is usually easier to
compute the rank of chain groups than the rank homology groups. Hence, we use the
limiting behaviour of Nk to investigate the limiting behaviour of

−→
β k . First we will

need estimates for E[Nk].

Lemma 4.1 For a random directed graph G ∼ −→
G (n, p) we have the following expec-

tations

E[N0] = E

[
NR
0

]
= n (4.2)

E[N1] = E

[
NR
1

]
= n(n − 1)p (4.3)

E[N2] ≤ E

[
NR
2

]
≤ n2 p2 + n3 p3 + n4 p4. (4.4)
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Proof The first two claims are clear since they count the expected number of nodes and
edges in G, respectively. There is no difference between the regular and non-regular
chain complex in dimensions 0 and 1.

We use Proposition 3.17 to compute bounds for E[NR
2 ] and then the bound on

E[N2] follows immediately because �2 ⊆ �R
2 (by Proposition 3.15). Since both

orientations of a double edge constitute a distinct basis element of �R
2 , the expected

number of double edges is n(n−1)p2, which is bounded above by n2 p2. The expected
number of directed triangles is 6

(n
3

)
p3, because each subset of 3 vertices can support

6 distinct directed triangles.
Counting linearly independent long squares is more involved. For an upper bound,

note that any subset of 4 vertices can support 12 long squares (not double counting
for the two orientations since they differ by a factor of ±1). Each fixed long square
appears with probability p4(1 − p). Therefore an upper bound on the number of
linearly independent long squares is

12

(
n

4

)
p4(1 − p) ≤ n4 p4. (4.5)

Combining these counts yields the upper bound on E[NR
2 ]. ��

Proposition 4.2 If G ∼ −→
G (n, p) where p = p(n), with p(n) = ω(n−1) and p(n) =

o(n−2/3), then

E[−N0 + N1 − N2] ∼ E[N1] and hence E[−→β 1(G)] ∼ E[N1] . (4.6)

Moreover, the same relations hold between the NR
k and

−→
β R

k .

Proof We prove the non-regular case, but the regular case follows from an identi-
cal argument. Using our expectations from Lemma 4.1, we see E[N0] = o(E[N1])
because

lim
n→∞

E[N0]

E[N1]
= lim

n→∞
n

n(n − 1)p
= lim

n→∞
1

np
= 0, (4.7)

where the final equality follows from the assumption p = ω(n−1). Next, note that

0 ≤ lim
n→∞

E[N2]

E[N1]
≤ lim

n→∞
n2 p2 + n3 p3 + n4 p4

n(n − 1)p
= lim

n→∞
(
p + np2 + n2 p3

)
.

(4.8)

The assumption p = o(n−2/3) is equivalent to n2/3 p → 0 as n → ∞. This is sufficient
to ensure p → 0, np2 → 0 and n2 p3 → 0 as n → ∞ and so E[N2] = o(E[N1]).
Hence the first relation follows and the latter follows immediately from the Morse
inequalities (4.1). ��
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Remark 4.3 If we choose p = nα to satisfy the hypotheses of Proposition 4.2, then we
must have −1 < α < −2/3 in which case E[N1] is of the order n2 p = nα+2. Then
α + 2 > 1 so E[−→β 1] → ∞ at least linearly as n → ∞.

Proposition 4.4 If G ∼ −→
G (n, p) where p = p(n), with p(n) = ω(n−1) and

p(n) = o(n−2/3), then
−→
β 1(G) ∼ E[−→β 1(G)] and

−→
β R

1 (G) ∼ E[−→β R
1 (G)] with

high probability.

Proof We prove the non-regular case but the regular case follows by an identical
argument. As in Proposition 2.17, it suffices to show that Var(

−→
β 1) = o(E[−→β 1]2).

We have seen that E[N1] ∼ E[−N0 + N1 − N2] and certainly E[N1] → ∞ as
n → ∞. Therefore, eventually E[−N0 + N1 − N2] ≥ 0 so, by the Morse inequalities,
eventually we can bound

E[−→β 1]2 ≥ E[−N0 + N1 − N2]
2 . (4.9)

Moreover, we always have
−→
β 2

1 ≤ N 2
1 so eventually we can bound

Var(
−→
β 1)

E[−→β 1]2
= E[−→β 2

1] − E[−→β 1]2
E[−→β 1]2

≤ E
[
N 2
1

]− E[−N0 + N1 − N2]2

E[N0 + N1 − N2]2
. (4.10)

To conclude, it suffices to show E
[
N 2
1

] ∼ E[−N0 + N1 − N2]2. By Proposition 4.2,
we know E[−N0 + N1 − N2]2 ∼ E[N1]2. Then E

[
N 2
1

] ∼ E[N1]2 because N1 is a
binomial random with mean E[N1] → ∞. ��
Proof of Theorem 1.4(1) If p(n) = nα for −1 < α < −2/3 then p = ω(n−1) and
p = o(n−2/3). Moreover, p = ω(n−1) is sufficient to ensureE[N1] → ∞ as n → ∞.
Since N1 is a binomial randomvariable, this implies N1 ∼ E[N1]with highprobability.
Combining Proposition 4.2 and Proposition 4.4 yields the result. ��

4.2 Proof of Theorem 1.4(2)

Having done the work of showing
−→
β 1 ∼ N1, showing that

−→
β 1 > 0 is now an easy

corollary.

Corollary 4.5 If G ∼ −→
G (n, p) where p = p(n), with p(n) = ω(n−1) and p(n) =

o(n−2/3), then

lim
n→∞P(

−→
β 1(G) > 0) = lim

n→∞P(
−→
β R

1 (G) > 0) = 1. (4.11)

Proof As in Proposition 2.17, this follows immediately because
−→
β 1 ∼ E[−→β 1] and−→

β R
1 ∼ E[−→β R

1 ] with high probability and both expectations are eventually positive.
��

123



T. Chaplin

Proof of Theorem 1.4(2) If p(n) = nα for−1 < α < −2/3 then p = ω(n−1) and p =
o(n−2/3). Hence, by Corollary 4.5, P[−→β 1(G) > 0] → 1 and P[−→β R

1 (G) > 0] → 1
as n → ∞. ��

4.3 Proof of Theorem 1.4(3)

Having understood the behaviour of E[−→β 1] in the ‘goldilocks’ region, we turn our
attention to the boundaries of this region. As with the symmetric methods, we expect
that if p is too small then

−→
β 1 will vanish due to the lack of cycles.

Proposition 4.6 If p = p(n) = o(n−1) then, given directed random graphs G ∼−→
G (n, p), we have

lim
n→∞P(

−→
β 1(G) = 0) = lim

n→∞P(
−→
β R

1 (G) = 0) = 1. (4.12)

Proof Given a double edge i j i , note ∂R2 (ei ji ) = ei j + e ji . Hence, for the regular case,

a necessary condition for
−→
β R

1 > 0 is that there is some undirected cycle, of length at
least 3, in the digraph. Whereas, for the non-regular case, a necessary condition is that
there is some undirected cycle, of length at least 2, in the digraph. Therefore, the proof
of the regular case is identical to the proof that

−→
β 1(Ḡ) = 0 with high probability and

the proof of the non-regular case is identical to the proof that
−→
β 1(

◦
G) = 0 with high

probability, as seen in Proposition 2.16. ��
Proof of Theorem 1.4(3) Assume that p(n) = nα . If α < −1 then p = o(n−1) and
hence, by Proposition 4.6, P(

−→
β 1(G) = 0) → 1 and P(

−→
β R

1 (G) = 0) → 1 as
n → ∞. ��

4.4 Proof of Theorem 1.4(4)

For the previous subsection we chose p small enough to ensure that it is highly likely
that ker ∂1 is empty. We also observe

−→
β 1 vanishing for larger values of p. In these

regimes ker ∂1 is likely non-empty but all cycles are cancelled out by boundaries. Put
another way, we wish to show that, when p is large, every cycle ω ∈ ker ∂1 can be
shown to satisfy

ω = 0 (mod im ∂2). (4.13)

The strategy is to find conditions under which cycles supported on many vertices
can be reduced down to cycles supported on just 3 vertices, and then show that small
cycles can be reduced to 0. For this subsection, wewill prove thatP[−→β 1(G) = 0] → 1
which then implies, by Corollary 3.16, that P[−→β R

1 (G) = 0] → 1, as n → ∞. First,
we need to ensure that we can choose a basis for ker ∂1 which will be amenable to our
reduction strategy.
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Definition 4.7 Given an element ω ∈ �1(G), we can write ω in terms of the standard
basis

ω =
∑

τ∈E(G)

ατ eτ . (4.14)

1. We define the support of v to be

supp(ω) := {τ ∈ E | ατ �= 0} . (4.15)

2. We call ω a fundamental cycle if ω ∈ ker ∂1, ατ ∈ {±1} for each τ ∈ E , and
supp(ω) forms a combinatorial, undirected cycle in G.

Lemma 4.8 Given a simple digraph, ker ∂1 has a basis of fundamental cycles in G.

Proof Take an undirected spanning forest T for G, i.e. a subgraph of T in which every
two vertices in the same weakly connected component of G can be joined by a unique
undirected path through T . One can check that ∂1 : �1(T ; R) → �0(T ; R) has trivial
kernel, since there are no undirected cycles in T .

Given an edge outside the forest τ = (a, b) ∈ E(G) \ E(T ), there is a unique
undirected path ρ through T which joins the endpoints of τ :

ρ = (a = v0, τ1, v1, . . . , τk−1, vk−1, τk, b = vk). (4.16)

for some vi ∈ V (G), τi ∈ E(G). Define

αi :=
{
1 if τi = (vi−1, vi )

−1 if τi = (vi , vi−1)
(4.17)

and note that

∂1

(
eτ −

k∑
i=1

αi eτi

)
= 0. (4.18)

Hence bτ := eτ −∑k
i=1 αi eτi ∈ ker ∂1. Note that bτ is a fundamental cycle.

The set B := {bτ | τ ∈ E(G) \ E(T )} is linearly independent because, given bτ ∈
B, no other bτ ′ ∈ B involves the basis element eτ of �1. Note, we can write

�1 = R〈{eτ | τ ∈ E(T )}〉 ⊕ R〈B〉 . (4.19)

Since there are no cycles in the spanning forestT , the kernel of ∂1 on thefirst component
is trivial. Therefore, rank ker ∂1 ≤ #B and hence B spans ker ∂1. ��

Nowwe can describe the strategy bywhich systematically reduce long fundamental
cycles into smaller ones. We design a combinatorial condition on a directed graph
which is more likely to occur at higher densities.
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Fig. 4 a, b Directed centres for undirected paths of length 3. The blue, dashed edges constitute Jσ,κ . c A
cycle centre for a 3-cycle. d A cycle centre for a 2-cycle

Definition 4.9 1. An undirected path σ ⊆ G, on vertices (v1, . . . , vk), is said to be
reducible if there is some shortcut edge, e = (vi , v j ), with |i − j | > 1 such that−→
β 1(σ ∪ e) = 0. If a path is not reducible then it is called irreducible.

2. Given an undirected path σ ⊆ G of length 3, on vertices (v0, v1, v2, v3), and a
vertex κ ∈ V (G) \ V (σ ), define the linking set

Jσ,κ := {e ∈ E(G) | e = (vi , κ) or e = (κ, vi ) for some i} . (4.20)

Such a vertex, κ , is called a directed centre for σ if there is some subset of linking
edges J ′ ⊆ Jσ,κ such that

−→
β 1(σ ∪ J ′) = 0 and σ ∪ J ′ contains an undirected path,

of length 2, on the vertices (v0, κ, v3).
3. A cycle centre for a directed cycle of length k, on vertices (v0, . . . , vk−1), is a vertex

κ ∈ V (G) \ {v0, . . . , vk−1} such that (k, vi ) ∈ E(G) for all i = 0, . . . , k − 1 or
(vi , k) ∈ E(G) for all i .

In the following examples, we demonstrate the utility of directed centres.

Example 4.10 Figure 5 shows four examples of the reduction strategy described by
Lemma 4.11. For illustration, we describe these reductions in more detail below.

1. In Fig. 5a, the initial undirected path of length 3 has a directed centre κ which does
not coincide with a vertex in the rest of the cycle. Therefore, we can write

[ev0v1 + ev1v2 − ev3v2 ] + ev3v4 − ev5v4 − ev6v5 + ev6v7 + ev7v0

= [ev0κ + eκv3 ] + ev3v4 − ev5v4 − ev6v5 + ev6v7 + ev7v0 (mod im ∂2).

(4.21)

2. In Fig. 5b, the path has a directed centre κ = v5. Replacing the initial path with
the smaller path, via the directed centre, yields a sum of two fundamental cycles:

[ev0v1 + ev1v2 − ev3v2 ] + ev3v4 − ev5v4 − ev6v5 + ev6v7 + ev7v0

= [ev0κ + eκv3 ] + ev3v4 − ev5v4 − ev6v5 + ev6v7 + ev7v0 (mod im ∂2)

= [ev0v5 − ev6v5 + ev6v7 + ev7v0 ] + [ev5v3 + ev3v4 − ev5v4 ] (mod im ∂2).

(4.22)
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Fig. 5 Examples of the
reductions used in Lemma 4.11
which are explained in greater
depth in Example 4.10. Black,
solid edges indicate the initial
cycle. Blue, dash-dotted edges
are new edges in the reduced
cycle. Red, dashed edges are
those removed in the reduced
cycle. Green, dotted edges must
be present in order to do the
illustrated reduction. Square
nodes symbolise directed centres
for the undirected path
(v0, v1, v2, v3).
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3. In Fig. 5c, the path has a directed centre κ = v4. Replacing the initial path
(v0, v1, v2, v3) with the smaller path (v0, κ, v3) yields a much smaller support
since the edge (v3, v4) gets cancelled out:

[ev0v1 + ev1v2 − ev3v2 ] + ev3v4 − ev5v4 − ev0v5

= [ev0κ − ev3κ ] + ev3v4 − ev5v4 − ev0v5 (mod im ∂2)

= ev0v4 − ev5v4 − ev0v5 (mod im ∂2). (4.23)

4. Finally, in Fig. 5d, the initial path is reducible via the shortcut edge (v0, v2) and
hence

[ev0v1 + ev1v2 − ev3v2 ] + ev3v4 − ev5v4 − ev0v5

= [ev0v2 − ev3v2 ] + ev3v4 − ev5v4 − ev0v5 (mod im ∂2). (4.24)

These examples tell the story of each case in the following lemma, in which we
confirm that the presence of directed centres allows us to systematically reduce fun-
damental cycles.

Lemma 4.11 For any simple digraph G, suppose every irreducible, undirected path of
length 3 has a directed centre. Given a fundamental cycleω ∈ ker ∂1 with # supp(ω) =
k ≥ 4, there exists fundamental cycles ω̃1, ω̃2 ∈ ker ∂1 such that

ω = ω̃1 + ω̃2 (mod im ∂2) (4.25)

with # supp(ω̃1) + # supp(ω̃2) ≤ k − 1 and, potentially, one or more ω̃i = 0.
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Proof Sincev is a fundamental cycle, it is supported on somecombinatorial, undirected
cycle

ρ = (v0, τ1, v1, . . . , vk−1, τk, vk = v0). (4.26)

for some vi ∈ V and τi ∈ E ordered such that

ω =
k∑

i=1

αi eτi (4.27)

where

αi :=
{
1 if τi = (vi−1, vi )

−1 if τi = (vi , vi−1)
. (4.28)

Since k ≥ 4, the vertices (v0, . . . , v3) are distinct and, along with the edges
τ1, τ2, τ3, form an undirected path of length 3. Either this is reducible via some short-
cut edge τ ∈ E , or there exists a directed centre κ ∈ V . In either case, there is some
undirected path, from v0 to v3, of length at most 2. This path is represented by some
η′ ∈ �1 with coefficients in {±1}, such that ∂1η′ = ev3 − ev1 and # supp η′ ≤ 2.

Since both η′ and η := ∑3
i=1 αi eτi are supported on undirected paths from v0 to

v3, we have ∂1
(
η − η′) = 0. Since supp(η) ⊆ E(G ′) and supp(η′) ⊆ E(G ′) for some

subgraph G ′ ⊆ G with
−→
β 1(G ′) = 0 (either due to reducibility or a directed centre),

there is some u ∈ �2(G) such that ∂2u = η − η′. Therefore we can replace the initial
undirected path of length 3, in v, with an undirected path of length at most 2, i.e

ω = η′ +
k∑

i=4

αi eτi =: ω̃ (mod im ∂2). (4.29)

Certainly # supp(ω̃) ≤ 2 + (k − 3) < 3 + (k − 3) = # supp(ω) so ω̃ has a strictly
smaller support. It remains to prove that ω̃ can be decomposed into a sum of at most
two fundamental cycles. In the case that the path has a directed centre κ , we split into
two further sub-cases.

Case 1.1: If κ �= vi for any i , supp(ω) and supp(η′) are disjoint so all coefficients of ω̃
are still±1. Moreover, since κ is distinct from the vertices of ρ, replacing (v0, . . . , v3)

with (v0, κ, v3) certainly yields an undirected cycle in G.

Case 1.2: If κ = vi for some i ∈ {0, . . . , k − 1} then there are number of possible
sub-cases. If supp(ω) ∩ supp(η′) = ∅ then all coefficients of ω̃ are still ±1. However,
the replacement procedure has the effect of pinching supp(ω̃) into two edge-disjoint,
undirected cycles, which share a vertex at κ . Hence, we can easily decompose ω̃ into
a sum of two fundamental cycles ω̃1 and ω̃2, supported on each of these underlying
cycles.
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If the intersection is non-empty, then supp(ω) ∩ supp(η′) ⊆ {τ4, τk}, so there are
at most two offending edges. Moreover, in order to attain ∂1(η − η′) = 0 these edges
must appear with opposite signs in ω and η′ respectively. If there are two offending
edges then we must have 4 = k − 1 and the replacements procedure yields ω̃ = 0. If
there is only one offending edge then this edge is no longer contained in supp(ω̃) and
the length of the underlying undirected cycle is further reduced.
Case 2: If the path was reducible, in most cases supp(ω) and supp(η′) are disjoint
and the replacement process simply removes one or two vertices from the undirected
cycle. The only remaining case is if k = 4 and supp(ω) ∩ supp(η′) = {τk}, in which
case the replacement procedure yields ω̃ = 0. ��

Once we have reduced large cycles into smaller ones, we need conditions to ensure
that the resulting small cycles are themselves homologous to zero.

Lemma 4.12 Given a fundamental cycle ω ∈ ker ∂1 such that supp(ω) is a directed
cycle of length k, if supp(ω) has a cycle centre κ ∈ V then

ω = 0 (mod im ∂2). (4.30)

Proof For some vertices v0, . . . , vk−1 ∈ V and edges τ1, . . . , τk ∈ E we can write
the underlying cycle as

ρ = (v0, τ1, . . . , vk−1, τk, v0) (4.31)

so that

ω = ±
k−1∑
i=0

eτi . (4.32)

Since κ is a cycle centre, either γi := eκvivi+1 ∈ �2 for every i or γi := evivi+1κ ∈ �2
for every i (identifying vk = v0). In either case, by a telescoping sum argument,

∂1

(
k−1∑
i=0

γi

)
=

k−1∑
i=0

eτi . (4.33)

After adjusting for a factor of ±1, this concludes the proof. ��
Piecing these lemmas together, gives us a topological condition, which implies−→

β 1(G) = 0, and which is likely to occur in high density graphs.

Proposition 4.13 For any simple digraph G, if every irreducible, undirected path of
length 3 has a directed centre, and every directed cycle of length 2 or 3 has a cycle
centre, then

−→
β 1(G) = 0 and

−→
β R

1 (G) = 0.

Proof We prove the non-regular case fromwhich the regular case immediately follows
by Corollary 3.16.
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Fix a basis {ω1, . . . , ωk} of fundamental cycles for ker ∂1, as described by
Lemma 4.8. Choose an arbitrary i ∈ {1, . . . , k} It suffices to show that ωi = 0
(mod im ∂2). By Lemma 4.11, we can reduce each ωi to a sum of fundamental cycles

ωi =
ki∑
j=1

ω̃i, j (mod im ∂2) (4.34)

with # supp ω̃i, j ≤ 3 for each j .
If supp(ω̃i, j ) is a directed triangle then ω̃i, j is the boundary of the corresponding

basis element in �2; hence ω̃i, j = 0 (mod im ∂2). Otherwise, supp(ω̃i, j ) must be a
directed cycle or length 2 or 3. In either case, the support has a cycle centre and hence,
by Lemma 4.12, ω̃i, j = 0 (mod im ∂2). Therefore ωi = 0 (mod im ∂2). ��

Remark 4.14 Every double edge (i, j), ( j, i) ∈ E appears as an allowed 2-path in�R
2

and ∂R1 (ei ji ) = e ji + ei j . Therefore, the requirement that every cycle of length 2 has

a cycle centre is not strictly necessary to ensure
−→
β R

1 (G) = 0.

Definition 4.15 For each n ∈ N, the complete directed graph on n-nodes, Kn , is
defined by

V (Kn) := {1, 2, . . . , n} , E(Kn) := {(i, j) | i �= j} . (4.35)

Moreover, we define the following collection of subgraphs contained within Kn :

1. Pn
3 := {subgraphs σ ⊆ Kn | σ is an undirected path of length 3};

2. For each k ≥ 2, Cn
k := {subgraphs σ ⊆ Kn | σ is a directed cycle of length k}.

Given a random graph G ∼ G(n, p), we define the following events:

1. for σ ∈ Pn
3 or σ ∈ Cn

k for some k ≥ 2, Sσ is the event that σ is a subgraph of G;
2. for σ ∈ Pn

3 , Iσ is the event that σ is irreducible in the graph G ∪ σ ;
3. for σ ∈ Pn

3 , Aσ,κ is the event that κ is a directed centre for σ in the graph G ∪ σ ;
4. for σ ∈ Cn

k for some k ≥ 2, Bσ,κ is the event that κ is a cycle centre for σ in the
graph G ∪ σ .

Remark 4.16 For a fixedσ ∈ Pn
3 , the events Sσ , Iσ and Aσ,κ for every κ ∈ V (G)\V (σ )

are mutually independent. For a fixed σ ∈ Cn
k for some k ≥ 2, the events Sσ and Bσ,κ

for every κ ∈ V (G) \ V (σ ) are mutually independent.

Proposition 4.17 If G ∼ −→
G (n, p), where p = p(n) = ω

(
(n/ log(n))−1/3), then

lim
n→∞P(

−→
β 1(G) = 0) = lim

n→∞P(
−→
β R

1 (G) = 0) = 1. (4.36)

Proof By Proposition 4.13, it suffices to show that the probability that there exists an
irreducible, undirected path of length 3 without directed centre, or a cycle of length
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2 or 3 without directed centre, tends to 0 as n → ∞. The probability that there is an
irreducible, undirected path of length 3 without a directed centre is at most

∑
σ∈Pn

3

⎛
⎝P[Sσ ] · P[Iσ ] · P

⎡
⎣ ⋂

κ∈V (G)\V (σ )

Aσ,κ
c

⎤
⎦
⎞
⎠ . (4.37)

Because the events
{
Aσ,κ | κ ∈ V (G) \ V (σ )

}
are independent, P

[∩κ Aσ,κ
c
] =∏

κ(1 − P
[
Aσ,κ

]
). Note that #Pn

3 = (n
4

)
4! 22. This count arises because an undi-

rected path of length 3 is determined by a choice of 4 nodes, an order on the nodes
and a choice of orientation on each edge. However, this counts each path twice: once
in each direction. Also, each path arises in G with probability P[Sσ ] = p3 and clearly
P[Iσ ] ≤ 1.

For each σ ∈ Pn
3 and κ ∈ V (G) \ V (σ ), there is at least one choice of 3 directed

edges, from κ to the vertices of the path, which forms a directed centre. Namely, label
the vertices of σ by (v0, . . . , v3). Then we can always choose an edge between κ and
v0 and another edge between κ and v2 so that there is a long square on {κ, v0, v1, v2}, as
illustrated in Fig. 4. The third edge can then be chosen to ensure that there is a directed
triangle on {κ, v2, v3}. If these three edges are present in G, they constitute J ′ ⊆ Jσ,κ

with the properties required to form a directed centre and hence P
[
Aσ,κ

] ≥ p3.
Therefore we can bound the probability (4.37) further by

(
n

4

)
4! 22 p3

[
1 − p3

]n−4 ≤ 4n4 p3 exp
(
−p3(n − 4)

)
. (4.38)

We wish to show that this bound tends to 0 as n → ∞. Since p ≤ 1, it suffices
to show limn→∞ n4 exp(−p3n) = 0. By Lemma 4.18, the condition on p ensures
that limn→∞(4 log(n) − p3n) = −∞. By the continuity of the exponential function,
limn→∞ n4 exp(−p3n) = 0.

Note #Cn
2 = (n

2

)
and #Cn

3 = 2
(n
3

)
. By another union bound, we see that the

probability that there is a directed cycle, of length 2, without cycle centre, is at most

∑
σ∈Cn

2

⎛
⎝P[Sσ ] ·

∏
κ∈V (G)\V (σ )

P
[
Bσ,κ

c]
⎞
⎠ =

(
n

2

)
p2[1 − p2]2n−4

. (4.39)

Similarly, the probability that there is a directed cycle, of length 3, without cycle centre
is at most

2

(
n

3

)
p3[1 − p3]2n−6

. (4.40)

Again, by Lemma 4.18, the condition on p suffices to ensure that these two bounds
also tend to 0 as n → ∞. ��
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Lemma 4.18 Given k ∈ N>0 and A, B > 0, if p = ω
(
(n/ log(n))−1/k) then

lim
n→∞(A log(n) − Bnpk) = −∞. (4.41)

Proof The condition on p is equivalent to limn→∞ npk

log(n)
= ∞, which implies

(A log(n)

npk
− B) → −B and npk → ∞ as n → ∞. ��

Proof of Theorem 1.4(4) Assume that p(n) = nα . If α > −1/3 then an application
of L’Hôpital’s rule shows p = ω

(
(n/ log(n))−1/3) and hence, by Proposition 4.17,

P(
−→
β 1(G) = 0) → 1 and P(

−→
β R

1 (G) = 0) → 1 as n → ∞. ��
Remark 4.19 Lemma 4.18 reveals the origin of the ratio 1/3, which appears in Theo-
rem 1.4(4) and Proposition 4.17. In particular, it arises as the ratio between the power
of n and the power of p inside the exponential of equation (4.38). The power of n is 1
because there are on the order of n1 possible directed centres for an undirected path of
length 3. The power of p is 3 because we require at least 3 edges from κ to the path,
in order for κ to form a directed centre. In Lemma A.7, we will see that this is indeed
the minimal number of edges required to form a directed centre.

The bounds used in the proof of Proposition 4.17 are by no means the best possible.
Indeed, by splitting Pn

3 into four isomorphism classes, it is possible to get exact values
for P[Iσ ] and P

[
Aσ,κ

]
. We explore this further in Appendix 1 in order to obtain tighter

bounds, useful for hypothesis testing.
Moreover, the topological condition for

−→
β 1(G) = 0 presented in Proposition 4.13

was chosen since it is likely to occur at high densities. However, there may (and
indeed probably does) exist weaker topological conditions which imply

−→
β 1(G) = 0

and occur at somewhat lower densities. This could potentially allow for a weaker
hypothesis on Proposition 4.17. In order to conjecture theweakest possible hypothesis,
we conduct a number of experiments in Appendix B.

5 Directed flag complex of random directed graphs

For comparative purposes, we now apply the techniques of Sect. 4 to the directed flag
complex, which features more readily in the literature.

Definition 5.1 (Lütgehetmann et al. 2020, Definition 2.2) An ordered simplicial com-
plex on a vertex set V is a collection of ordered subsets of V , which is closed under
taking non-empty, ordered subsets (with the induced order). A subset in the collection
consisting of (k + 1) vertices is called a k-simplex.

Definition 5.2 (Lütgehetmann et al. 2020, Definition 2.3) Given a directed graph G =
(V , E),

1. a directed (k + 1)-clique is a (k + 1)-tuple of distinct vertices (v0, . . . , vk) such
that (vi , v j ) ∈ E whenever i < j ;
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2. the directed flag complex,
−→
X (G), (often denoted dFl(G)) is an ordered simplicial

complex, whose k-simplicies are the directed (k + 1)-cliques.

Given a ring R, the directed flag chain complex is {−→X k(G), ∂k}k≥−1 where, for k ≥ 0,

−→
X k(G) := −→

X k(G; R) := R〈{(v0, . . . , vk) | directed (k + 1)-clique in G}〉 , (5.1)

∂k(e(v0,...,vk )) :=
k∑

i=0

(−1)i e(v0,...,v̂i ,...,vk ). (5.2)

where (v0, . . . , v̂i , . . . , vk) denotes the directed k-clique (v0, . . . , vk) with the vertex
vi removed. This defines ∂k on a basis of

−→
X k(G), from which we extend linearly. We

also define
−→
X −1(G) = R and ∂0 simply sums the coefficients in the standard basis,

as in equation (3.5).
The homology of this chain complex is the directed flag complex homology. The

Betti numbers are denoted βk(
−→
X (G)). When the coefficient ring R is omitted from

notation, assume R = Z.

Firstly, as with path homology, β0(
−→
X (G)) captures the weak connectivity of a

digraph G and hence Theorem 1.3 also holds for the directed flag complex. Next,
since we have an explicit list of generators for

−→
X k(G), and they are easy to count, we

can calculate the expected rank of the chain groups in every dimension. As before, we
denote the ranks of chain groups as Nk := rank

−→
X k(G) and use these to estimate the

Betti numbers.

Lemma 5.3 For an Erdős–Rényi directed random graph G ∼ −→
G (n, p), for any k ≥ 0

we have

E[Nk] =
(

n

k + 1

)
(k + 1)! p(k+1

2 ). (5.3)

Proof A possible directed clique is uniquely determined by an ordered (k + 1)-tuple
of distinct vertices. Therefore, there are

( n
k+1

)
(k + 1)! possible cliques. For a given

clique to be present, one edge must be present in G for every pair of distinct nodes. ��
Using the Morse inequalities as before, this allows us to compute the growth rate

of the expected Betti numbers, under suitable conditions on p = p(n).

Proposition 5.4 For k ≥ 0, if G ∼ −→
G (n, p) where p = p(n), with p(n) = ω(n−1/k)

and p(n) = o(n−1/(k+1)), then

E
[−Nk−1 + Nk − Nk+1

] ∼ E[Nk] and hence E[βk(
−→
X (G))] ∼ E[Nk] . (5.4)

Proof It is easy to check that

E
[
Nk−1

]
E[Nk]

= 1

(n − k)
p−k ∼ 1

npk
(5.5)
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which tends to 0 thanks to the condition p(n) = ω(n−1/k). It follows that
E
[
Nk+1

]
/E[nk] ∼ npk+1 which tends to 0 thanks to the condition p(n) =

o(n−1/(k+1)). As in Proposition 4.2, the result then follows by the Morse inequali-
ties. ��
Proposition 5.5 If G ∼ −→

G (n, p) where p = p(n), with p(n) = ω(n−1) and p(n) =
o(n−1/2), then β1(

−→
X (G)) ∼ E[β1(

−→
X (G)] with high probability.

Proof The proof is identical to Proposition 4.4 except we only need p(n) = o(n−1/2)

to ensure E[−N0 + N1 − N2] ∼ E[N1]. ��

Corollary 5.6 If G ∼ −→
G (n, p) where p = p(n), with p(n) = ω(n−1) and p(n) =

o(n−1/2), then

lim
n→∞P(β1(

−→
X (G)) > 0) = 1. (5.6)

Proof The proof is identical to Corollary 4.5 expect again we only require p(n) =
o(n−1/2) to invoke Proposition 5.5. ��

As with path homology, degree 1 homology appears in the directed flag complex
with the appearance of undirected cycles in the underlying digraph. Therefore, the
same conditions show that β1(

−→
X (G)) = 0 with high probability, when p = p(n)

shrinks too quickly.

Proposition 5.7 If p = p(n) = o(n−1) then, given a random directed graph G ∼−→
G (n, p), we have

lim
n→∞P(β1(

−→
X (G)) = 0) = 1. (5.7)

Proof The proof is identical to the non-regular case of Proposition 4.6. ��
The techniques fromSect. 4.4 can be applied, mutatis mutandis, to show β1(G) = 0

with high probability, when p = p(n) shrinks too slowly.

Proposition 5.8 If G ∼ −→
G (n, p), where p = p(n) = ω

(
(n/ log(n))−1/4), then

lim
n→∞P(β1(

−→
X (G)) = 0) = 1. (5.8)

Proof This follows from the same argument as Proposition 4.17. The only difference
is that a directed centre for an undirected path of length 3 requires at least 4 edges, in
order to form 3 directed cliques. This results in the ratio 1/4 instead of 1/3. ��

As in the earlier sections, the results obtain here suffice to prove the summary result,
Theorem 1.6, presented in the introduction.
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6 Discussion

We have identified asymptotic conditions on p = p(n) which ensure that a random
directed graph G ∼ −→

G (n, p) has
−→
β 1(G) > 0 with high probability. Moreover, under

these conditionswe showed thatE[−→β 1(G)] ∼ n(n−1)p. Beneath the lower boundary
of this positive region, we showed that

−→
β 1(G) = 0 with high probability. Immedi-

ately after the upper boundary of the positive
−→
β 1 range, our theory is inconclusive,

but experimental results (shown in Appendix B) provide evidence that
−→
β 1(G) = 0

with high probability. Further away from the positive region, e.g. when p = nα for
α > −1/3, our theory again guarantees that

−→
β 1(G) = 0 with high probability. For

comparison, we applied these techniques to the directed flag complex and found sim-
ilar results, with minor changes to the gradient of the boundary lines. We summarise
these results, along with similar results for ‘symmetric methods’ in Table 1.

These results, along with known results for the clique complex of a random undi-
rected graph, motivate the following research directions:

1. Tighter upper boundary – Experimental results, in Appendix 1, indicate that the
conditionα > −1/3 of Theorem1.4 could beweakened significantly, potentially as
far as α > −2/3. Indeed this is the best possible result because

−→
β 1 > 0 with high

probability for −1 < α < −2/3. We saw how the ratio 1/3 arose from our proof
in Remark 4.19, which informs how we might improve this result. Generalising a
directed centre to be a set of k > 1 nodes, with suitable conditions, might yield
better results since there are on the order of nk set of k nodes. However, this would
complicate the probability bound because two directed centres would no longer be

Table 1 Given a random directed graphs G ∼ −→
G (n, p), assuming p = nα , we record the known regions

of α for which various homologies are either positive, or zero, with high probability

Homology Expected growth Positive region (α) Zero region (α)

Symmetric methods

β1(
◦
G) n(n − 1)p (−1, 0] (−∞, −1)

β1(Ḡ)
(n
2
)
p̄ (−1, 0] (−∞, −1)

β1(X(Ḡ))
(n
2
)
p̄ (−1,−1/2) (−∞, −1) ∪ (−1/2, 0]

βk (X(Ḡ)), k > 1
( n
k+1

)
p̄(

k+1
2 )

(
− 1

k , − 1
k+1

) (
−∞,− 1

k

)
∪
(
− 1

k+1 , 0
]

Directed methods

β1(
−→
X (G)) n(n − 1)p (−1,−1/2) (−∞, −1) ∪ (−1/4, 0]

−→
β 1(G) n(n − 1)p (−1,−2/3) (−∞, −1) ∪ (−1/3, 0]
−→
β R

1 (G) n(n − 1)p (−1,−2/3) (−∞, −1) ∪ (−1/3, 0]
−→
β k (G), k > 1 ? ?

(
−∞, k+1

k

)
−→
β R

k (G), k > 1 ? ?
(
−∞, k+1

k

)

Moreover, we describe the growth rate of the expected Betti numbers, in the respective positive regions. That
is, for Betti number β, we give a function f (n) such that, when α is in the positive region, E[β(G)] ∼ f (n)
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independent. Alternative approaches may include finding a cover of the random
graph which can be used to show that the digraph is contractible via path homotopy
Grigor’yan et al. (2014).

2. Higher degrees – So far we only have weak guarantees for the behaviour of
−→
β k

for k > 1. One potential avenue for improvement is to find conditions under which
P[�k = {0}] → 1 as n → ∞. In order to get better results for vanishing

−→
β k at

small p, we require a greater understanding of generators of ker ∂k . In order to
get better results at large p, we need a high-density, topological condition which
implies that these generators can be reduced to 0 (mod im ∂k+1).

3. Distributional results—One direction of research is to show that normalised
−→
β 1

converges to a normal distribution as n → ∞. More evidence for this conjecture
is given in Appendix 1. This could be done, for example, by Stein’s method Chen
et al. (2011), as is done by Kahle and Meckes (2013) for β1(X(G(n, p))).
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Appendix A: Explicit probability bounds

The results presented in Sect. 4 provide a broad-stroke, qualitative description of the
behaviour of

−→
β 1 on random directed graphs. However, they provide no guarantees for

a digraph of a fixed size, such as those arising in applications. For hypothesis testing,
it is desirable to have explicit bounds on the P[−→β 1(G) > 0] and P[−→β 1(G) = 0] for
G ∼ −→

G (n, p), given n and p. In this section, we describe such bounds arising from
the proofs in Sect. 4 and improve on them where possible.
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A.1 Positive Betti numbers at low densities

First we refine the bound developed in Proposition 4.6, in order to show that it is
unlikely to observe

−→
β 1(G) > 0 when graph density is low.

Theorem A.1 If G ∼ −→
G (n, p) then

P

[−→
β 1(G) > 0

]
≤

n∑
L=2

(
n

L

)
L!
2L

(2p)L . (A1)

The same bound holds forP[β1(
−→
X (G)) > 0]. The same bound holds forP[−→β R

1 (G) >

0] after removing the L = 2 term.

Proof We start with the non-regular and directed flag complex case. We follow the
same argument as the proof of Proposition 4.6 but make more accurate estimates. A
sufficient condition for both

−→
β 1(G) = 0 and β1(

−→
X (G)) is that there are no undirected

cycles of any length 2 ≤ L ≤ n in G. For each L , there are

(
n

L

)
L!
2L

2L (A2)

possible undirected cycles. This is because an undirected cycle can be determined by
a choice of L vertices, an order on those vertices, and a choice of orientation for each
edge. However, this over-counts, by a factor of 2L , since we could traverse the cycle in
either direction and start at any vertex. Each cycle of length L appears with probability
pL so a union bound yields the result.

For regular path homology, the only undirected cycles of length 2 are double edges,
which are boundaries in the regular path complex. Therefore we can remove the L = 2
term from the bound. ��

The region of parameter space in which this theorem applies is illustrated in Fig. 6a.
For each n, we plot ptl (n), the maximum value such that for all p ≤ ptl (n), Proposi-

tion A.1 implies that P[−→β 1(G) > 0] ≤ 0.05.

A.2 Zero Betti numbers

In order to obtain the best possible estimate, following the second moment method of
Corollary 4.5, we need an exact value for E[rank�2]. We reproduce the approach of
(Grigor’yan et al. (2012), Proposition 4.2), making the necessary alterations for the
non-regular case. The approach is to determine the number of linearly independent
conditions required to describe �2 as a subspace of A2.

Definition A.2 Given a directed graph G = (V , E),

1. a semi-edge is an ordered pair of distinct vertices (i, k) ∈ V 2, i �= k such that
i �→ k but there is some other vertex j ∈ V , j �= i, k such that i → j → k;
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2. a semi-vertex is a vertex i ∈ V such that there is some other vertex j ∈ V , j �= i
such that i → j → i .

We denote the set of all semi-edges by SE and all semi-vertices by SV .

Lemma A.3 If G ∼ −→
G (n, p) then

E[rank�2(G;Z)] = n(n − 1)2 p2 − n(n − 1)(1 − p)
[
1 − (1 − p2)

n−2
]

− n
[
1 − (1 − p2)

n−1
]

(A3)

E

[
rank�R

2 (G;Z)
]

= n(n − 1)2 p2 − n(n − 1)(1 − p)
[
1 − (1 − p2)

n−2
]

(A4)

Proof First we deal with the non-regular case. Given v ∈ A2, then v ∈ �2 if and only
if ∂v ∈ A1. Let A2 denote the set of all allowed 2-paths in G, then we can write

v =
∑

i jk∈A2

vi jkei jk (A5)

so that

∂v =
∑

i jk∈A2

vi jk(e jk − eik + ei j ). (A6)

Since i jk is allowed, so too are i j and jk. Therefore

∂v = −
∑

i jk∈A2

vi jkeik (mod A1). (A7)

Now we split off terms corresponding to double edges

∂v = −
∑

i jk∈A2
i �=k

vi jkeik −
∑

i j i∈A2

vi j i eii (mod A1). (A8)

Note i i is never an allowed 1-path. However, for i �= k, ik is an allowed 1-path if
i → k, so we can remove these summands

∂v = −
∑

i jk∈A2
i �=k,i �→k

vi jkeik −
∑

i j i∈A2

vi j i eii (mod A1). (A9)

Therefore, ∂v ∈ A1 if and only if for each (i, k) ∈ V 2 with i �= k and i �→ k

∑
j : i jk∈A2

vi jk = 0 (A10)

123



First Betti number of the path homology of random...

and for each i ∈ V

∑
j : i j i∈A2

vi j i = 0. (A11)

Some of the indexing sets of these summations may be empty and hence some of
these conditions may be trivial. The remaining conditions are linearly independent
and hence it remains to count the number of non-trivial equations. Equation (A10) is
non-trivial if and only if (i, k) is a semi-edge and equation (A11) is non-trivial if and
only if i is a semi-vertex. Therefore

rank�2 = rankA2 − #SE − #SV . (A12)

Taking expectations

E[rankA2] = n(n − 1)2 p2, (A13)

E[#SE ] = n(n − 1)(1 − p)
[
1 − (1 − p2)

n−2
]
, (A14)

E[#SV ] = n
[
1 − (1 − p2)

n−1
]

(A15)

which concludes the non-regular case.
For the regular case, note that equation (A9) becomes

∂Rv = −
∑

i jk∈A2
i �=k,i �→k

vi jkeik (mod A1). (A16)

since the eii terms are removed by the projection. Hence all the semi-vertex conditions
of equation (A11) are removed. ��

Theorem A.4 If G ∼ −→
G (n, p) then

P

[−→
β 1(G) > 0

]
≥ max (0,−n + n(n − 1)p − E[N2])2

n(n − 1)p(1 − p) + n2(n − 1)2 p2
(A17)

where

E[N2] = n(n − 1)2 p2 − n(n − 1)(1 − p)
[
1 − (1 − p2)

n−2
]

−n
[
1 − (1 − p2)

n−1
]
. (A18)

Proof In theory, we could track back the bound from the theorems invoked by Corol-
lary 4.5. Instead we use a more direct bound. Since

−→
β 1(G) is a non-negative random
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variable, an application of the Cauchy-Schwarz inequality to E[−→β 11−→
β 1>0

] gives

P[−→β 1(G) > 0] ≥ E[−→β 1(G)]2
E[−→β 1(G)2]

. (A19)

Employing the Morse inequalities again, we see

P

[−→
β 1(G) > 0

]
≥ max(0,E[−N0 + N1 − N2])2

E
[
N 2
1

] (A20)

where Nk := rank�k(G;Z). We obtain the numerator using the expectations for N0
and N1 from Lemma 4.1 and the expectation of N2 from Lemma A.3. Then N1 is a
binomial random variable on n(n−1) trials, each with independent probability p, and
hence the second moment is

E

[
N 2
1

]
= n(n − 1)p(1 − p) + n2(n − 1)2 p2 (A21)

which concludes the proof. ��
Remark A.5 Letting Nk denote the rank of the kth chain group in each of the respective
chain complexes, it is quick to see that N1 is the same random variable across all
complexes. In order to obtain an analogous theorem to bound P[−→β R

1 (G) > 0] one
need simply replace E[N2] with the computation of E

[
rank�R

2

]
from Lemma A.3.

To obtain a result for the directed flag complex, one can use the expectations from
Lemma 5.3.

Unfortunately, this bound is not useful for practical applications. In Fig. 6b we
plot the minimum value of this bound over all p ∈ [0, 1], for a range of n. Note that
the bound does not reach a significance level of 0.1, at any p, until approximately
n = 7.4 × 105 and does not reach a significance level of 0.05 until approximately
n = 1.2× 107. At these large graph sizes, computing

−→
β 1(G) is infeasible and hence

this bound serves no practical use.

A.3 Positive Betti numbers at high densities

Finally, we tackle bounding P[−→β 1(G) > 0] when graph density is large. In order
to improve upon the naive bound available from Proposition 4.17, we provide more
avenues for reducing long paths into shorter ones. Specifically, we will obtain better
bounds on P[Iσ ] and P

[
Aσ,κ

c
]
. This will not effect the asymptotic behaviour of the

bound, but may provide a substantially lower bound, at a fixed n and p.
In order to achieve this, we must partition Pn

3 , the set of all possible undirected
paths of length 3, on an n-node graph. Every undirected path of length 3 is uniquely
determined by a choice of 4 distinct nodes in the graph, an ordering on these nodes
(v0, v1, v2, v3), and a choice of orientation for the edges joining {v0, v1} and {v2, v3}.
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Fig. 6 a If (n, p) falls beneath the line ptl (n) then Theorem A.1 implies P(
−→
β 1(

−→
G (n, p)) > 0) ≤ 0.05.

Both axes are linearly scaled. b For n ∈ [104, 1.5 × 107], we plot the minimum value of the bound of
Theorem A.4 for p ∈ [0, 1]. Both axes are logarithmically scaled
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(a)
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v0
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Fig. 7 The four possible ‘3-path motifs’ which partition Pn
3 , shown with black edges. From left to right

we see the edge orientations for σ belonging to Pn
3,0, P

n
3,1, P

n
3,2 and Pn

3,3 respectively. Dashed, red edges
indicate edges which must not be present for the path to be considered irreducible

The edge joining the middle two nodes is assumed to be ‘forward’, i.e. via (v1, v2), so
as to avoid double counting each path. Therefore, we can partition Pn

3 , based on the
choices of edge orientations, into one of four classes, Pn

3,m for m ∈ {0, 1, 2, 3}. These
classes are visualised in Fig. 7.

Lemma A.6 If σ ∈ Pn
3,m then P[Iσ ] = (1 − p)cm , where c = (cm) = (2, 4, 4, 4)ᵀ.

Proof The red, dashed edges shown in Fig. 7 identify ‘shortcut’ edges; if any one of
these edges is present then σ is reducible. Moreover, these are the only shortcut edges,
since the addition of any other edge would create a subgraph with

−→
β 1 > 0. Hence, if

σ ∈ Pn
3,m , it is irreducible if and only if none of these cm edges are present. Since the

existence of each edge is independent, the result follows. ��
Lemma A.7 If σ ∈ Pn

3,m then

P[Aσ,κ ] =
8∑

l=0

qm,l p
l(1 − p)8−l , (A22)
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where

Q = (qm,l) =

⎛
⎜⎜⎝
0 0 0 2 11 22 23 8 1
0 0 0 4 19 33 25 8 1
0 0 0 4 19 33 25 8 1
0 0 0 2 16 34 26 8 1

⎞
⎟⎟⎠ . (A23)

Proof Assume that σ ∈ Pn
3,m and κ ∈ V (G) \ V (σ ). Let qm,l denote the number of

l-element subsets J ⊆ {(v, κ), (κ, v) | v ∈ V (σ )} such that κ is a generic directed
centre for σ in the graph σ ∪ J . Note, qm,l is well-defined because, for a fixed m, all
σ ∪ J are isomorphic for σ ∈ P3,m and κ ∈ V (G) \ V (σ ).

Then, conditioning on the cardinality of Jσ,k , we can write

P[Aσ,κ ] =
8∑

l=0

P[Aσ,κ | #Jσ,κ = l] · P(#Jσ,κ = l) (A24)

=
8∑

l=0

qm,l(8
l

) ·
(
8

l

)
pl(1 − p)8−l . (A25)

Since qm,l depends only on m and l, we can compute an exact value which does
not depend on σ or κ . This is done as follows:

1. For eachm = 0, 1, 2, 3, initialise a graphGm withnodesV (Gm) = {v0, . . . , v3, κ}.
The edge set E(Gm) consists solely of an undirected path σ , of length 3, on the
vertices (v0, . . . , v3), such that σ ∈ P3,m (the black, solid edges of Fig. 7).

2. Define the set of all possible linking edges

L := {(vi , κ), (κ, vi ) | i = 0, 1, 2, 3} .

3. For each subset J ⊆ L , construct Gm,J := (V (Gm), E(Gm) ∪ J ).
4. Set αm,J := 1 if Gm,J contains an undirected path of length 2 from v0 to v3 and−→

β 1(Gm,J ) = 0. Otherwise set αm,J := 0.
5. For each subset J ⊆ L , set γm,J := 1 if αm,J ′ = 1 for any J ′ ⊆ J . Otherwise set

γm,J = 0.
6. Then

qm,l =
∑
J⊆L :
#J=l

γm,J .

This algorithm was implemented as a MATLAB script and was subsequently used to
compute the matrix Q given in the statement of the theorem. In step 4, Betti numbers
are computed via the pathhomology package Yutin (2022), using the symbolic
option. This uses MATLAB’s symbolic computational toolbox in order to avoid any
numerical errors. Details on how to access the codebase are available in Sect. 1.3. ��
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Theorem A.8 If G ∼ −→
G (n, p) then

P

[−→
β 1(G) > 0

]
≤
(
n

4

)
4!

3∑
m=0

p3(1 − p)cm

(
1 −

8∑
l=0

qm,l p
l(1 − p)8−l

)n−4

+
(
n

2

)
p2
[
1 − p2

]2n−4 + 2

(
n

3

)
p3
[
1 − p3

]2n−6
,

(A26)

where c = (cm) = (2, 4, 4, 4)ᵀ and

Q = (qm,l) =

⎛
⎜⎜⎝
0 0 0 2 11 22 23 8 1
0 0 0 4 19 33 25 8 1
0 0 0 4 19 33 25 8 1
0 0 0 2 16 34 26 8 1

⎞
⎟⎟⎠ . (A27)

Proof We follow the same approach as Proposition 4.17, but with tighter bounds. One
can bound the probability that there is an irreducible, undirected 3-path, without a
directed centre by

3∑
m=0

∑
σ∈Pn

3,m

⎛
⎝P[Sσ ] · P[Iσ ] ·

∏
κ∈V (G)\V (σ )

[1 − P(Aσ,κ )]
⎞
⎠ . (A28)

By Lemma A.6 and Lemma A.7 we can bound this further by

(
n

4

)
4!

3∑
m=0

p3(1 − p)cm

(
1 −

8∑
l=0

qm,l p
l(1 − p)8−l

)n−4

(A29)

since #Pn
3,m = (n

4

)
4! for each m. The same bounds, from Proposition 4.17, apply to

the probability that there is a directed cycle, of length 2 or 3, without cycle centre.
Combining these bounds concludes the proof. ��
Remark A.9 By Corollary 3.16 the bound identified in Theorem A.8 also holds for−→
β R

1 (G). However, as noted in Remark 4.14, we can obtain a stronger bound by
removing the term

(
n

2

)[
1 − p2

]2n−4
(A30)

which corresponds to undirected cycles of length 2.

To demonstrate the utility of this theorem, in Fig. 8, at each n, we plot the minimum
ptu(n) such that the bounds from Proposition 4.17 (respectively Theorem A.8) imply

P(
−→
β 1(

−→
G (n, p)) > 0) ≤ 0.05 for all p ≥ ptu(n). We compute ptu(n) via MATLAB’s
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1
Proposition 4.17
Theorem A.8

Fig. 8 Boundaries of the parameter regions in which Proposition 4.17 and Theorem A.8 apply. If (n, p)

falls above a given line then the corresponding theorem implies P(
−→
β 1(

−→
G (n, p)) > 0) ≤ 0.05

fzero root-finding algorithm, with an initial interval of [0.1, 1]. For graphs on n ≤
470 nodes, the region of p in which Theorem A.8 applies is at least 0.1 larger. With
pu(t) plotted on logarithmic axes, the boundaries both appear to be straight lines with
the same gradient. This demonstrates that the bound derived in Theorem A.8 would
not allow for weaker asymptotic conditions on p(n) in Proposition 4.17.

Finally, these same techniques can be applied to the directed flag complex to get a
similar explicit bound.

Theorem A.10 If G ∼ −→
G (n, p) then

P

[
β1(

−→
X (G)) > 0

]
≤
(
n

4

)
4!

3∑
m=0

p3(1 − p)cm

(
1 −

8∑
l=0

qm,l p
l(1 − p)8−l

)n−4

+
(
n

2

)
p2
[
1 − p2

]2n−4 + 2

(
n

3

)
p3
[
1 − p3

]2n−6
,

(A31)

where c = (cm) = (2, 3, 3, 4)ᵀ and

Q = (qm,l) =

⎛
⎜⎜⎝
0 0 0 0 5 16 19 8 1
0 0 0 0 7 20 20 8 1
0 0 0 0 7 20 20 8 1
0 0 0 0 8 22 21 8 1

⎞
⎟⎟⎠ . (A32)
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Table 2 Scope of the four data collection experiments

Exp. # Homology Samples n-range p-range

1
−→
β 1(G) 100 [20, 150] [10−4, 0.15]

2
−→
β 1(G) 100 [20, 100] [0.05, 0.35]

3 β1(
−→
X (G)) 200 [20, 200] [5 × 10−4, 0.3]

4 β1(
−→
X (G)) 200 [20, 200] [0.1, 0.45]

Proof This follows from the same argument as Theorem A.8. The only changes are
the counts of possible shortcut edges for each isomorphism class in Lemma A.6, and
the output of the algorithm in the proof of Lemma A.7. ��

Appendix B: Experimental results

B.1 Data collection

In order to further investigate the behaviour of path homology on random directed
graphs, we sample empirical distributions of Betti numbers. Table 2 records the four
experiments that were conducted. In each experiment, a number of random graphs
were sampled from G ∼ −→

G (n, p), for n evenly spaced in intervals of 5 in the noted
n-range, and 50 values of plogarithmically spaced in the noted p-range. Then, we
compute the first Betti number of either non-regular path homology or directed flag
complex, as noted in the table.

By logarithmically spaced in the range [a, b]wemean that values are chosen evenly
spaced between log(a) and log(b) and then we apply the exponential function.We dis-
cuss the reason for this logarithmic spacing inAppendix 1.Non-regular path homology
is computed with the pathhomology package Yutin (2022). Unlike in Appendix A,
we do not use the symbolic option and hence Betti numbers are subject to numerical
errors, due to error in rank computations. Directed flag complex homology is com-
puted with the flagser package Lütgehetmann et al. (2020), without approximation
turned on. Also note that, due to computational restrictions, Experiments 1 and 2 were
occasionally stopped and restarted. These experiments were run before rng persis-
tence was implemented and hence reproduction attempts may yield slightly different
results.

B.2 Illustrations

In Fig. 9, we merge the samples from Experiments 1 and 2 for n ∈ [20, 100]. We then
use the colour axis to plot statistics for each of these samples, against the logarithm of
each parameter on the two spatial axes. In Fig. 9a we record the empirical probability
that

−→
β 1 = 0 for each of the samples. In Fig. 9b, we record 〈−→β 1(G)〉/n(n − 1)p,

where 〈−→β 1(G)〉 is the mean
−→
β 1 for each random sample of graphs. In the following
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Fig. 9 Statistics for the path homology of samples of 100 random directed graphsG ∼ −→
G (n, p), sampled at

a range of parameter values, plotted against the natural logarithmof the parameters.Our primary contribution
is descriptions of the boundaries of the darker, blue region in (a) and a limiting value for the lighter, yellow
region of (b) as n → ∞

informal discussion, we refer to these figures as proxies for the exact probabilities and
expectations of the distributions from which we sample.

We observe two distinct transitions between three distinct regions in parameter
space. Namely, when graph density is relatively low P[−→β 1 = 0] is almost 1. Next,
there is a ‘goldilocks’ region in which suddenly P[−→β 1 = 0] is close to 0 and E[−→β 1]
appears to be growing. Finally, when density is too large, we transition back to a regime
in which P[−→β 1 = 0] is almost 1. Thanks to the logarithmic scaling of the parameter
axes, the boundaries between these regions appear to be straight lines.

Theorem 1.4 describes the fate of straight line trajectories through this diagram.
Theorem 1.4(3-4) says that a straight line with gradient m < −1 (resp. m > −1/3)
will eventually cross into and remain in the lower (resp. upper) yellow region of
Fig. 9a, where P(

−→
β 1 = 0) is close to 1. Theorem 1.4(2) says that a straight line

with gradient −1 < m < −2/3 will eventually reach the blue region of Fig. 9a,
where P(

−→
β 1 = 0) is close to 0. In particular, this implies that the gradient of the

lower boundary region tends towards −1 and the gradient of the upper boundary is
eventually in the region [−2/3,−1/3]. Finally, Theorem 1.4(1) says that a straight
line with gradient −1 < m < −2/3 will eventually reach the yellow region of Fig. 9b
and the colour will approach 1.

In Fig. 10, we merge the samples from Experiments 3 and 4 for n ∈ [20, 200]. This
figure provides Theorem 1.6 with a similar interpretation, as above, except that the
upper boundary is eventually in the region [−1/2,−1/4].

It is worth reiterating that these interpretations and results all hold in the limit.
That is, Theorem 1.4 provides no guarantees for a finite line segment, regardless
of its gradients or length. However, we do observe that the boundaries between the
three regions converge onto straight lines, of the correct gradient, relatively quickly
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Fig. 10 Statistics for the directed flag complex homology of samples of 200 random graphs G ∼ −→
G (n, p)

sampled at a range of parameter values

(i.e. within n ≤ 50 nodes). We will see empirical evidence for this in the following
section.

B.3 Finding boundaries

Note, Theorem 1.4 says nothing of the region −2/3 < α < −1/3. In the follow-
ing discussion we attempt to determine, empirically, the equations of the boundaries
between the positive region and the two zero regions identified in Fig. 9. This pro-
vides evidence to support the conjecture that the zero region for path homology can
be expanded to (−∞,−1) ∪ (−2/3, 0].
Conjecture B.1 For an Erdős–Rényi random directed graph G ∼ −→

G (n, p(n)), let
−→
β 1

denote the 1st Betti number of its non-regular path homology. Assume p(n) = nα , if
α > −2/3 then

−→
β 1(G) = 0 with high probability. The same holds for regular path

homology.

Using the samples fromExperiment 1, for each n, we determine themaximum pl(n)

such that for all p ≤ pl(n) we observe P̂[−→β 1(G) = 0] ≥ 0.95 for G ∼ −→
G (n, p),

where P̂ denotes the empirical probability, derived from our sampled distribution.
Similarly, using the samples from Experiment 2, we determine the minimum pu(n)

such that for all p ≥ pu(n) we observe P̂[−→β 1(G) = 0] ≥ 0.95 for G ∼ −→
G (n, p).

Since we anticipate a power-law relationship, the logarithmic spacing of p allows us to
achieve greater precision as n increases, since the values of log(p) are evenly spaced.
Moreover, we chose the boundaries of the p-region so that precision is greater near
the lower boundary in Experiment 1 and near the upper boundary in Experiment 2.
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Fig. 11 Over a range of parameters (n, p) we measure the first Betti number,
−→
β 1(G), for 100 sampled

random graphs G ∼ −→
G (n, p). Then, at each n, we determine maximum pl (n) (and minimum pu(n)) such

that for all p ≤ pl (n) (and all p ≥ pu(n)) at most 5% of graphs sampled from
−→
G (n, p) have

−→
β 1(G) > 0.

The figures show log–log plots of these two functions. In both cases, we fit a line of best fit in order to
obtain an approximate power-law relationship

We then compute a least-squares, line of best fit between log(pl(n)) and log(n), to
obtain a power-law relationship of the form pl(n) = Anγ . We repeat this for the upper
boundary to obtain a similar relationship for pu(n). The results of this experiment are
shown in Fig. 11.

Figure 11a shows that the empirical lower boundary has a similar dependency
on n to that predicted by Theorem 1.4(2, 3), i.e. pl(n) ∼ n−1. Moreover, Fig. 11a
contains a plot of ptl (n), as defined in Appendix A.1. For a parameter pair (n, p)

falling below this line, Theorem A.1 implies P[−→β 1(G) > 0] ≤ 0.05. We observe that
this theoretical boundary of significance lies very close to the observed, experimental
boundary, indicating that Theorem A.1 is close to the best possible bound.

Conversely, Fig. 11b predicts an upper boundary of pu(n) ∼ n−0.660. This is consis-
tent with Theorem 1.44 since −0.660 < −1/3, but indicates that there is significant
room for improvement. This suggests that the hypothesis of Theorem 1.44 can be
weakened to α > −2/3. However, short of a stronger theoretical result, we require
more experiments with graphs on n > 150 nodes to confirm this; computational
complexity is currently the limiting factor.

In Fig. 12 we repeat the same analysis with Experiments 3 and 4 respectively,
in order to discern the boundaries of the positive region for directed flag complex
homology. Again, Fig. 12a shows that the empirical lower boundary has a similar
dependency on n to that predicted by Theorem 1.6(3, 4), i.e. pl(n) ∼ n−1. Fig. 11b
shows an upper boundary of pu(n) ∼ n−0.443. This is also consistent with Theo-
rem 1.65 since −0.437 < −1/4. This provides evidence that the zero region for
directed flag complex can be expanded as far as (−∞,−1) ∪ (−1/2, 0].
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Fig. 12 As for Fig. 11 but for 200 samples of β1(
−→
X (G))

Fig. 13 Results for 10 normality tests on samples of
−→
β 1(G) for G ∼ −→

G (n, p) at a range of n and p.
Red rectangles indicate that at least 5% of samples were zero and hence are excluded from the experiment.
Colour indicates the P-value for the hypothesis test in question. Finally, for each test and at each n, we
average the P-value of the range of relevant p, which is recorded on the line graph. Note adjacent densities,
p, on the horizontal axis are shown with equal width, despite being logarithmically spaced

B.4 Testing for normal distribution

In analogy to known results for the clique complex (Kahle and Meckes 2013, The-
orem 2.4), one conjecture is that, in the known positive region, the normalised Betti
number

−→
β 1 approaches a normal distribution.
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Fig. 14 As Fig. 13 but for β1(
−→
X (G))

Conjecture B.2 If G ∼ G(n, p), where p = p(n) with p(n) = ω(n−1) and p(n) =
o(n−2/3), then

−→
β 1(G) − E

[−→
β 1(G)

]
√
Var

(−→
β 1(G)

) �⇒ N (0, 1) as n → ∞ (B.1)

where N (0, 1) is the normal distribution with mean 0 and variance 1.

To provide some empirical evidence towards this conjecture, we perform 10 normality
tests on the distributions of

−→
β 1, obtained in Experiment 1. We restrict our focus to

the samples in which at most 5% of samples were zero, so that we are in a parameter
region where we hope our conjecture would apply.

We normalise each of the remaining samples and perform 10 hypothesis tests under
the null hypothesis that the samples come from normal distributions. To avoid confu-
sionwith the nullmodel parameter,we refer to the significance of these hypothesis tests
as P-values. These tests are computed with the MATLAB package normalitytest
Öner et al. (2017). The P-values (and names of the tests) are recorded in Fig. 13, along
with the average P-value against edge-inclusion probability p. In all tests, we see a
noisy but consistent trend: there is a decreasing amount of evidence for discarding the
null hypothesis as n → ∞.

In Fig. 14, we repeat this analysis with the distributions of β1(
−→
X (G)) collected in

Experiment 3. Again we observe a similar but stronger trend: there is a decreasing
amount of evidence for discarding the null hypothesis as n → ∞.

While no individual test is sufficient to conclude that
−→
β 1 tends towards a normal

distribution, the ensemble of tests provide good evidence towards this claim. Larger
sample sizes, as well as samples at larger n, are required formore convincing evidence.
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