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Abstract
Let f be a Morse function on a smooth compact manifold M with boundary. The
path component PH−1

f (D) containing f of the space of Morse functions giving rise
to the same Persistent Homology D = PH( f ) is shown to be the same as the orbit
of f under pre-composition φ �→ f ◦ φ by diffeomorphisms of M which are isotopic
to the identity. Consequently we derive topological properties of the fiber PH−1

f (D):
In particular we compute its homotopy type for many compact surfaces M . In the 1-
dimensional settings where M is the unit interval or the circle we extend the analysis
to continuous functions and show that the fibers are made of contractible and circular
components respectively.

Keywords Persistent homology · Inverse problems · Morse theory

Mathematics Subject Classification 55N31 · 62R40 · 57S05

1 Introduction

Persistent Homology is a central and computable descriptor in Topological Data Anal-
ysis (TDA)which has been applied to a large variety of data science problems. Namely
the persistencemap PH associates to a real-valued function f on a topological space X
a so-called barcode that captures the topological variations of its sub level-sets (Edels-
brunner and Harer 2008; Zomorodian and Carlsson 2005). It is natural to ask how
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90 J. Leygonie, D. Beers

much information can be recovered from persistent homology: Given a barcode D
what can we say about the fiber PH−1(D)?

For the purpose of this paper X = M is an arbitrary smooth (finite-dimensional)
compact manifold with boundary ∂M and f : M → R is a Morse function, i.e. f
has a prescribed constant value a j on each boundary component ∂Mj and has isolated
critical points none of which belong to ∂M . Denote by D := PH( f ) the associated
barcode. Acting on f by pre-composition with the groupDId(M) of diffeomorphisms
which are isotopic to the identity, we get an orbit OId( f ) inside the space of Morse
functions. Our core contribution (Theorem 3.1) is the equality between this orbit and
the the path connected component PH−1

f (D) containing f in the fiber of PH over D:

PH−1
f (D) = OId( f ).

This result crucially relies onMather’s fibration theorem for smoothmappings (Mather
1969), whichwe slightly adapt to the case ofMorse functions with equal critical values
using results of Cerf (1970).

We then put at work the abundant literature about the homotopy type of the
orbit OId( f ), especially the work of Maksymenko (2006): the mapping φ �→ f ◦ φ

in fact defines a locally trivial fibration from DId(M) to the orbit OId( f ), with
fiber SId( f ) ⊆ DId(M) the diffeomorphisms stabilising f , i.e. f ◦ φ = f . Hence
a long exact sequence links the fiber PH−1

f (D) = OId( f ) to well-studied diffeo-
morphism groups of the manifold M . In particular for any compact surface M , we
compute πn(PH

−1
f (D)) for n ≥ 2 (Proposition 4.6). In fact, if D has distinct inter-

val endpoints we derive the complete homotopy type of PH−1
f (D) for many compact

surfaces (Propositions 4.8 and 4.9).
Variations of this setting have already been addressed. In the discrete setting

where X = K is a finite simplicial complex and f is compatible with face inclu-
sions, the fiber PH−1(D) is a complex of polyhedra (Leygonie and Tillmann 2021).
This structure can be used to algorithmically reconstruct the fiber (Leygonie and
Henselman-Petrusek 2021). In the restricted case where K is a line complex, each
path connected component of PH−1(D) is contractible (Cyranka et al. 2020), and it is
homeomorphic to a circle in the case where K is a subdivision of the unit circle (Mis-
chaikow and Weibel 2021).

In the analogous, continuous 1-dimensional setting where X is the interval or the
circle and f is continuous, each component in the fiber is contractible and circular
respectively as we show in Sect. 5. For the unit interval it is possible to count the
number of path connected components in PH−1(D) by means of the combinatorics of
the barcode (Curry 2018). For higher dimensional X analyzing thefiber is a challenging
problem: already for Morse functions on the 2-sphere X = S

2 new tools have been
designed to describe the fiber PH−1(D), and allowed for conjectures on the number of
path connected components (Catanzaro et al. 2020). However the higher dimensional
homotopy groups of PH−1(D) remain unknown, from which stems the motivation of
this work.
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Fiber of persistent homology... 91

2 Stability of morse functions

We fix a d-dimensional compact smooth manifold M with boundary ∂M , whose path
connected components are denoted by ∂Mj . Given another smooth manifold N , we
denote by C∞(M, N ) the space of smooth maps from M to N equipped with the C∞
Whitney topology. We denote by D(M) ⊆ C∞(M, M) the diffeomorphisms of M ,
and by DId(M) its subspace of Id-isotopic diffeomorphisms, i.e. the path connected
component of the identity map.

Given real valuesa j , a smoothmap f belongs to the spaceMorse(M) ⊆ C∞(M,R)

of Morse functions on M if:

• TheHessian of f is non-degenerate at critical points, all ofwhichbelong toM\∂M ;
and

• The restrictions f|∂Mj to each boundary component ∂Mj are constant with pre-
scribed value a j .

Then D(M) acts on C∞(M,R) by pre-composition and we denote by O( f ) ⊆
Morse(M) the orbit of f , and by OId( f ) ⊆ O( f ) the orbit of f under the restricted
action of Id-isotopic diffeomorphisms.

To express the local triviality results of this section, we rely on the notion of local
cross-sections defined below.

Definition 2.1 LetG be a topological group actingona topological space X .Given x0 ∈
X , a local cross-section for the action of G on X at x0 is a continuous map s : U → G
defined on an open neighborhood U of x0 satisfying:

∀x ∈ U , s(x) · x0 = x .

We say that the action of G on X admits local cross-sections if it does so at each point.

Up to replacing s(x) by s(x)·s(x0)−1 in the above definition, we can assume that s(x0)
is the identity element.

Remark 2.2 It is well-known that, if X admits local cross-sections, then any G-
equivariant map from a G-space to X is locally trivial, see e.g. Palais(1960, Theorem
A).

The main result of this section adapts Mather’s stability of smooth mappings (Mather
1969) to the case of Morse functions with equal critical points by combining results
of Cerf:

Proposition 2.3 Let f ∈ Morse(M) andMorse f (M) be the subspace of Morse func-
tions with the same critical values as f . Then the action of DId(M) on Morse f (M)

admits local cross-sections.

The first result of Cerf we use is essentially a version of Proposition 2.3 restricted to
the space Morse f (M;Crit( f ), ∂M) of Morse functions with the same critical points
and critical values as f and the same value and derivatives of any order as f on ∂M .
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92 J. Leygonie, D. Beers

Proposition 2.4 (Cerf (1970), Appendix, §1, Proposition 1) Let f : M → R be a
Morse function. LetG be the subspace of diffeomorphisms fixing the critical points of f
and ∂M, and which have the same value and derivatives of every order as the identity
on ∂M. Then the action ofG onMorse f (M;Crit( f ), ∂M) admits local cross-sections.

To enhance this result to Morse functions with critical points and derivatives at the
boundary allowed to vary, we need the reformulation of a result of Cerf (Cerf, 1961,
Theorem 5) for the C∞ case given in Hong et al. (2012).

Proposition 2.5 Let N ⊆ M be a compact submanifold. Suppose that:

(a) either N has no boundary and does not intersect the boundary ∂M;
(b) or N is a closed collar neighborhood of a boundary component ∂Mj .

Let L be a compact neighborhood of N. Let EmbL(N , M) be the space of embed-
dings j : N ↪→ M such that j(N ) ⊆ L, j−1(∂M) = N ∩ ∂M, and that restricts to
the identity on N ∩ ∂M. Denote by DL(M) the space of diffeomorphisms inducing
the identity on (M \ L). Then the action of DL(M) on EmbL(N , M) admits local
cross-sections.

Proof This is a direct consequence of Theorem 3.1 in Hong et al. (2012). Note that,
strictly speaking, embeddings j as defined in (Hong et al.,2012, Definition 2.5) are
required to admit an extension to a diffeomorphism of M . However this assumption
is unnecessary for their Theorem 3.1 and so we omit it. ��
Proof of Proposition 2.3 Since g ∈ Morse f (M) implies thatMorseg(M) = Morse f (M),
it is enough to construct a local cross-section at f . By Proposition 2.4, there exists
a local cross-section g ∈ U f �→ φg ∈ DId(M) defined on a neighborhood U f

of f in Morse f (M;Crit( f ), ∂M), the space of functions with the same critical
points p1, . . . , pn and critical values as f , andwith the same value and derivatives ∂k f
as f on the boundary ∂M . Therefore

∀g ∈ U f , g = f ◦ φg. (1)

For the general case where critical points and derivatives on the boundary are allowed
to vary we simply find a diffeomorphism sending them back to p1, . . . , pn and ∂k f
and apply the above result.

Namely, from item (a) of Proposition 2.5, we can find disjoint compact neigh-
borhoods U1, . . . ,Un of p1, . . . , pn and continuously associate to (p′

1, . . . , p
′
n) ∈

U1×· · ·×Un a diffeomorphismψ(p′
1,...,p

′
n)

∈ DId(M) such thatψ(p1,...,pn) = Id and:

∀(p′
1, . . . , p

′
n) ∈ U1 × · · · ×Un, ∀1 ≤ i ≤ n, ψ(p′

1,...,p
′
n)

(pi ) = p′
i .

Let U ⊆ Morse f (M) be a neighborhood of f for which any g ∈ U has critical
points Crit(g) inU1, . . . ,Un . In particular in this case g ◦ψCrit(g) has the same critical
points p1, . . . , pn as f , so it remains to deal with the boundary ∂M .

Let ∂Mj be a boundary component. By flowing along the normalized gradient of f
(or its inverse) from the boundary ∂Mj we get a compact collar Vj ∼= ∂Mj ×[0, α] that
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Fiber of persistent homology... 93

is adapted to f in the sense that f (x, t) = a j ± t , w.l.o.g. f (x, t) = a j + t . For g in a
small neighborhood V ⊆ Morse f (M) of f , we have g(∂Mj ×[0, α

2 ]) ⊆ [a j , a j +α].
Therefore, after potentially shrinking V , we can continuously associate to g ∈ V the
embedding ιg : (x, t) ∈ ∂Mj × [0, α

2 ] �→ (x, g(x, t) − a j ) ∈ Vj that preserves ∂Mj

and satisfies g = f ◦ ιg on ∂Mj × [0, α
2 ]. Hence by using item (b) of Proposition 2.5,

up to shrinking V , we can extend ιg to a diffeomorphism χg that induces the identity
outside Vj . By repeating this process for each boundary component ∂Mj , we can
continuously associate to g ∈ V a diffeomorphism χg such that g and f ◦ χg agrees
on a closed collar neighborhood of the boundary.

By reducing the neighorhoods Ui and Vj to avoid overlaps, we have that for any g
in U ∩ V the Morse function g ◦ ψCrit(g) ◦ χ−1

g◦ψCrit(g)
has the same critical points as f

and agrees with f on a neighborhood of the boundary ∂M , in particular it belongs
to Morse f (M;Crit( f ), ∂M). Hence by Eq. (1), up to shrinking U ∩ V , we have

∀g ∈ U ∩ V, g = (g ◦ ψCrit(g) ◦ χ−1
g◦ψCrit(g)

) ◦ χg◦ψCrit(g) ◦ ψ−1
Crit(g)

= f ◦ φg◦ψCrit(g)◦χ−1
g◦ψCrit(g)

◦ χg◦ψCrit(g) ◦ ψ−1
Crit(g),

hence the local cross-section:

s : g ∈ U ∩ V �−→ φg◦ψCrit(g)◦χ−1
g◦ψCrit(g)

◦ χg◦ψCrit(g) ◦ ψ−1
Crit(g) ∈ DId(M).

��
Corollary 2.6 Let ( ft )t∈[0,1] ⊆ Morse(M) be a path of Morse functions with the same
critical values. Then there exists φ ∈ DId(M) an Id-isotopic diffeomorphism such that
f1 = f0 ◦ φ.

Proof By Proposition 2.3, each t ∈ [0, 1] has a neighborhood It ⊆ [0, 1] such that fh
can be written fh = ft ◦ φh whenever h ∈ It . By compactness [0, 1] is covered by
finitelymany such intervals. Therefore f1 equals f0◦φ, whereφ is a finite composition
of diffeomorphisms in DId(M) hence is itself in DId(M). ��

3 Covering the fiber with diffeomorphisms isotopic to the identity

Given f ∈ Morse(M), we get a nested sequence of sub level-sets f −1((−∞, x]).
In turn, by applying homology in degree 0 ≤ k ≤ d with coefficients in an arbi-
trary field, we get the persistent homology module of f : the sequence of vector
spaces Hk( f −1((−∞, x])) with linear maps between them induced by inclusions,
in other words a functor from the poset (R,≤) to finite dimensional vector spaces.
The barcode of f in degree k is the isomorphism class of this functor up to natural
isomorphism. From Crawley-Boevey (2015) any such functor uniquely decomposes
as a direct sum of functors

⊕
(b,d)∈D I[b,d), with [b, d) ⊆ R an interval closed on

the left and open on the right (hence possibly d = +∞): each I[b,d) consists of 1-
dimensional vector spaces linked with identity maps on [b, d), and it is the zero vector
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94 J. Leygonie, D. Beers

space everywhere outside of [b, d). Therefore the barcode of f , denoted by PHk( f ),
can be equivalently described as the multi-set D of pairs (b, d) indexing this decom-
position, and will be described in this way in the rest of this document. By abuse of
terminology we refer to pairs (b, d) as intervals or bars of the barcode D = PHk( f ).
Intuitively (b, d) corresponds to the appeareance of a k-cycle in f −1((−∞, b]) that is
further cancelled in f −1((−∞, d]) (or persists forever if d = ∞). We refer to Edels-
brunner and Harer (2008); Zomorodian and Carlsson (2005) for extensive treatments
of the theory of Persistence.

In this work the persistence map is defined onMorse functions and returns the d+1
barcodes of interest:

PH : f ∈ Morse(M) �−→ [PH0( f ), . . . ,PHd( f )] ∈ Bard+1.

We assume that Bar is equipped with its natural bottleneck metric which turns PH
into a continuous map by the Stability Theorem (Cohen-Steiner et al. 2007). Given a
barcode D and a Morse function f ∈ Morse(M) such that PH( f ) = D, we denote
by PH−1

f (D) the path connected component of the fiber PH−1(D) ⊆ Morse(M)

containing f .

Theorem 3.1 Let D be a barcode and f ∈ PH−1(D). Then PH−1
f (D) = OId( f ).

Proof Let (φt )0≤t≤1 be a path in DId(M). Each φt restricts to a homeomorphism
between the sub level-sets of f ◦ φt and f , hence it induces an isomorphism between
the associated persistent homologymodules. In turn PH( f ◦φt ) = PH( f ), so that ( f ◦
φt )0≤t≤1 is a path in the fiber PH−1

f (D), which implies OId( f ) ⊆ PH−1
f (D).

Conversely let g ∈ PH−1
f (D) and let ( ft )0≤t≤1 be a path in the fiber PH−1

f (D)

joining f to g, thus PH( ft ) = D for each t . As is well-known, when M has no
boundary there is a one-to-one correspondence between the setD of (bounded) interval
endpoints in the barcode and the set C of critical values (counted with multiplicity)
for Morse functions because the associated persistent homology module and Morse-
Smale complex are isomorphic (Barannikov 1994), see also (Leygonie et al. 2021,
Proposition 2.14) for a self-contained proof.

WhenM has a boundary the correspondence adapts by adding in C the value a j with
multiplicity

∑
i βi (∂Mj ) for each boundary component ∂Mj that is a local minimum.

Note that a Morse function is constant on ∂Mj and has no critical points there, so
either it has ∂Mj as a local minimum or as a local maximum, and this choice is fixed
inside a path connected component of Morse(M).

Therefore each ft has the same critical values as f , because the barcode PH( ft ) =
D is constant. By corollary 2.6 there exists an Id-isotopic diffeomorphism φ such
that g = f ◦ φ. Consequently PH−1

f (D) ⊆ OId( f ). ��

4 Topological properties of the fiber

We derive direct consequences of Theorem 3.1 combined with the extensive study
ofOId( f ) byMaksymenko (2006). Strictly speaking, it isO f ( f ), the path component
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Fiber of persistent homology... 95

ofO( f ) containing f , whose properties are studied inMaksymenko (2006). However,
there is an obvious inclusion OId( f ) ⊆ O f ( f ), and the reverse inclusion holds as
well by corollary 2.6. Therefore O f ( f ) = OId( f ).

Denote by SId( f ) the subspace of Id-isotopic diffeomorphisms φ preserving a
Morse function f , i.e. f ◦ φ = f .1

Proposition 4.1 Assume that M is connected. Let D be a barcode and f ∈ PH−1(D).
Then the action of DId(M) on PH−1

f (D) defines a locally trivial principal SId( f )-
fibration.

Proof FromMaksymenko(2006,Theorem2.1, (2)) the actionof diffeomorphismsD(M)

on O( f ) defines a locally trivial principal fibration with fiber the diffeomorphisms φ

satisfying f ◦ φ = f . Restricting to the action ofDId(M) onOId( f ) defines a locally
trivial principal SId( f )-fibration, and PH−1

f (D) equals OId( f ) by Theorem 3.1. ��
Remark 4.2 The principal bundle SId( f ) → DId(M) → PH−1

f (D) has computation-
ally useful and direct implications. First, it is a locally trivial fibration hence it induces
a homotopy long exact sequence:

· · · → πn(SId( f )) → πn(DId(M))

→ πn(PH
−1
f (D)) → πn−1(SId( f )) → · · · → π0(DId(M)).

Second, we have the homeomorphism:

PH−1
f (D) ∼= DId(M)/SId( f ).

We apply this result to compute the path components of the fiber PH−1(D) when M
is a circle:

Proposition 4.3 Assume M = S
1. Let D be a barcode and f ∈ PH−1(D).

Then PH−1
f (D) is homotopy equivalent to S1.

Proof From Proposition 4.1 PH−1
f (D) is homeomorphic to DId(S

1)/SId( f ). Let n
be the number of minima of f , which is then also the number of maxima of f
because χ(S1) = 0. Without loss of generality we assume that the associated 2n
critical points of f are evenly spaced on S1. The space DId(S

1) of Id-isotopic diffeo-
morphisms of the circle deformation retracts to S1, i.e. the rotations of the circle. The
subgroup SId( f ) of Id-isotopic diffeomorphisms φ preserving f , that is f ◦φ = f , is
then (isomorphic to) the subgroup of rotations consisting of the 2n-th roots of unity that
preserve the sequence of extremal values of f . The result follows since the quotient
of S1 by a finite subgroup is again S

1. ��
When M = [0, 1] recall that Morse functions have prescribed values a0 and a1 on

the boundary points 0 and 1.

1 InMaksymenko (2006) the notationSId( f ) rather stands for the space of diffeomorphismsφ preserving f
that are isotopic to IdM though maps preserving f , thus it is the path connected component of IdM in
our SId( f ).
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96 J. Leygonie, D. Beers

Proposition 4.4 Assume M = [0, 1]. Let D be a barcode and f ∈ PH−1(D).
Then PH−1

f (D) is contractible.

Proof From Proposition 4.1 PH−1
f (D) is homeomorphic toDId([0, 1])/SId( f ). How-

ever DId([0, 1]) deformation retracts on the identity diffeomorphism Id[0,1] by
straight-line interpolations, and SId( f ) = {Id[0,1]}. ��

Note that we could easily derive a similar statement for Morse functions on [0, 1]
without boundary conditions. In Sect. 5 we prove the analogues of Propositions 4.3
and 4.4 for continuous functions. The analogues for lower-star filtrations on the sub-
divided interval and circle have been proved by Cyranka et al. (2020) andMischaikow
and Weibel (2021) respectively.

Remark 4.5 When M = M1 � M2 has more than one connected component, the path
component PH−1

f (D) in the fiber over D = PH( f ) can be retrieved as the product
of the path components of the fibers over D1 := PH( f|M1) and D2 := PH( f|M2)

containing the restrictions f|M1 and f|M2 respectively:

PH−1
f (D) = PH−1

f|M1
(D1) × PH−1

f|M2
(D2).

For this reason we focus our analysis to the interesting case where M is connected.

For the rest of the section we fix a compact connected surface M and a function f
with barcode D, whose number of critical points of index 1 is denoted by c1. We make
use of the analysis of the orbit OId( f ) by Maksymenko (2006).

Proposition 4.6 Assume that c1 > 0. Then π2(PH
−1
f (D)) = 0 and πn(PH

−1
f (D)) =

πn(M) for n ≥ 3.

Proof PH−1
f (D) = OId( f ) by Theorem 3.1, and by Maksymenko(2006, (2), Theo-

rem 1.5) we have π2(OId( f )) = 0 and πn(OId( f )) = πn(M) for n ≥ 3. ��
Remark 4.7 From Maksymenko(2006, (2), Theorem 1.5) we can also derive a short
exact sequence 0 → π1(DId(M)) ⊕ Z

k f → π1(PH
−1
f (D)) → G → 0 where G is a

finite group and the integer k f ≥ 0 depends on the component PH−1
f (D) in the fiber,

on the number c1 of saddles and the surface M .

Proposition 4.8 Assume that c1 = 0. Then the homotopy type of the fiber PH−1
f (D) is

classified as follows:

Surface M S
2

S
1 × I D

2

Fiber PH−1
f (D) S

2 {∗} {∗}
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Proof PH−1
f (D) = OId( f ) by Theorem 3.1, and the homotopy type of OId( f ) is

computed by Maksymenko(citeyearmaksymenko2006homotopy, Theorem 1.9). ��
For instance the case where f : S2 → R has no saddle (c1 = 0) can be interpreted

as follows: The fiber sequence SId( f ) → DId(S
2) → PH−1

f (D) of Proposition 4.1

can be identified up to homotopy with the standard fiber sequence S1 → SO(3) → S
2.

This is because DId(S
2) deformation retracts to SO(3) by the 2-dimensional Smale

conjecture (see Smale (1959)), and if without loss of generality we assume that f is
the standard height function, then SId( f ) consists of those rotations fixing the poles,
so SId( f ) is fixed by the retraction and SId( f ) ∼ S

1.

Proposition 4.9 Assume that D has pairwise distinct bounded interval endpoints, and
that c1 > 0. Then we have the following homotopy types for the fiber PH−1

f (D):

Surface M S
2 Projective Plane Torus S

1 × I D
2

Fiber PH−1
f (D) SO(3) × (S1)c1−1 SO(3) × (S1)

c1−1
(S1)c1+1 (S1)c1 (S1)c1

When M is obtained from the surfaces in the above tables by removing finitely
many 2-disks, then PH−1

f (D) ∼ (S1)c1−1. If M is the Möbius strip, then PH−1
f (D) ∼

(S1)c1 . For other orientable surfaces M, we have PH−1
f (D) ∼ (S1)c1+χ(M). For the

remaining non-orientable surfaces,we havePH−1
f (D) ∼ (S1)k f for some integer k f ≤

c1 + χ(M), unless M is the Klein bottle in which case k f ≤ c1 + 1.

Proof PH−1
f (D) = OId( f ) by Theorem 3.1. Since D has distinct bounded interval

endpoints, f has distinct critical points, and then the homotopy type of OId( f ) is
computed by Maksymenko (2006, (2) & (3), Theorem 1.5). ��
Remark 4.10 When M has no boundary, ∂M = ∅, the number c1 of saddles of Morse
functions f in the fiber PH−1(D) can be directly inferred from the barcode D. Namely,
if we denote by kD the number of intervals in D, then the quantity kD −β0−β2 counts
(i) all the intervals (b, d) of D in degree 1, which correspond by their birth value b to
saddle points of f whose attachinghandle increases the 1-dimensional homologyof the
sub level-set f −1((−∞, b]), and (ii) all the bounded intervals (b, d) of D in degree 0,
which correspond by their death value d < ∞ to saddle points of f whose attaching
handle decreases the 0-dimensional homology of the sub level-set f −1((−∞, d]).
Hence c1 = kD −β0 −β2. When ∂M = ⊔

j ∂Mj �= ∅, we can partition the boundary
components ∂Mj into the sets ∂Mmin (resp. ∂Mmax) of components ∂Mj that are
local minimum (resp. maximum) of one (hence any) function f in the component
of PH−1(D) at stake. Since M is a surface each ∂Mj is a circle, therefore if ∂Mj ⊆
∂Mmin, then it corresponds in the barcode D to the births of one interval in degree 0
and one interval in degree 1. Otherwise ∂Mj ⊆ ∂Mmax induces no topological change
when entering the sub level-sets of f . Consequently the correspondence between
critical points and interval endpoints adapts and yields c1 = kD −β0 −β2 −#∂Mmin.

123



98 J. Leygonie, D. Beers

Remark 4.11 FormanifoldsM of dimension3 forwhich theSmale conjectureD(M) ∼=
Isom(M) holds, e.g. the 3-sphere, lens spaces, prism and quaternionic manifolds
(see Hong et al. (2012)), the homotopy type of DId(M) is quite well-understood.
For instance we have DId(S

3) ∼= SO(4). However, to deduce the homotopy
groups of PH−1

f (D), we lack the understanding of less-studied topological proper-
ties of SId( f ).

5 Fiber of persistent homology for continuousmaps on the circle and
on the interval

In this section the domain of the persistence map consists of continuous maps on the
circle:

PH : C0(S1,R) −→ Bar2.

Note that in the codomainwe record the two barcodeswith non-trivial homology, those
in degree 0 and 1. In fact the second barcode contains a unique unbounded interval
starting at the maximum of the function on the circle.

We fix a barcode D with finitely many intervals. When f = cst is constant it
forms the fiber by itself over the trivial barcode D = PH( f ) with only two infinite
bars (cst,+∞), one in each degree 0 and 1. Other barcodes such that PH−1(D) �=
∅ have one infinite interval (b0,+∞) in degree 0, one infinite interval (b1,+∞)

with b0 < b1 in degree 1, finitely many bounded intervals in degree 0 with endpoints
in [b0, b1], and no other intervals. In the rest of this section we assume that D is
non-trivial and denote by (n − 1), for some n ≥ 1, its number of bounded intervals in
degree 0.

Let Aut≤(S1) be the space of orientation-preserving homeomorphisms of the circle,
and End≤(S1) = Aut≤(S1) be its closure in C0(S1,R) in the compact-open topology.
Given f ∈ C0(S1,R) we have the pre-composition map φ ∈ End≤(S1) �→ f ◦ φ ∈
C0(S1,R); we denote by SId( f ) the stabiliser of f and by OId( f ) its orbit.

Proposition 5.1 The fiber PH−1(D) has finitely many path connected components. In
each such component �(D) there exists some f�(D) : S1 → R such that:

�(D) = OId( f�(D)),

and then �(D) is homeomorphic to the quotient End≤(S1)/SId( f�(D)), and in par-
ticular is homotopy equivalent to S1.

Unlike the smooth case the component �(D) ⊆ PH−1(D) in the fiber equals the
orbit of a function only for a careful choice of function f�(D): the requirement will
be that f�(D) is injective between its consecutive extrema. Nevertheless the fact that
the pre-composition map induces a homeomorphism from End≤(S1)/SId( f�(D)) to
the orbitOId( f�(D)) is reminiscent of the smooth case, and in fact with slightly more
work it can be shown that it defines a SId( f�(D))-principal bundle. We state without
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proof the analogous and simpler result for the unit interval [0, 1], which works with
or without fixed values on the boundary points 0 and 1.

Proposition 5.2 For any finite barcode D the fiber PH−1(D) ⊆ C0([0, 1],R) has
finitely many path connected components, each of which is contractible.

Using a fixed orientation on S
1 and going around starting from the north pole we

can order the n minima and n maxima of a non-constant f ∈ C0(S1,R) into a
sequence Val( f ) which we view as an element in R2n :

Val( f ) := m1( f ) < M1( f ) > · · · > mn( f ) < Mn( f ).

Associated to this sequence we have the sequence of critical sets of f :

Seq( f ) : c1( f ), d1( f ), . . . , cn( f ), dn( f ).

Explicitly, each ci ( f ) (resp. di ( f )) is a connected component of f −1(mi ( f )) (resp.
of f −1(Mi ( f ))).

Proposition 5.3 Let f ∈ PH−1(D). Then f has 2n extrema, i.e. Val( f ) ∈ R
2n. In

addition, let �n be the group of cyclic permutations on n elements, which acts on R2n

by cyclically permuting the n pairs of entries. Then the connected component �(D)

in the fiber containing f is made of functions g whose sequence of extrema is the same
as that of f up to a different ordering, that is:

�(D) = {
g ∈ C0(S1,R) |Val(g) ∈ �n .Val( f )

}
(2)

We omit the proof of this elementary statement. So if �(D) is a component in the
fiber, we can pick the following simple function f�(D) in �(D), whose critical sets
and extrema are denoted by ci , di ,mi , Mi for simplicity: the critical sets ci and di are
singletons arranged on the regular 2n-gon in S1 and on each circular arc [ci , di ], f�(D)

restricts to the linear homeomorphism to [mi , Mi ].
Proposition 5.4 Let�(D) ⊆ PH−1(D) be a path component in the fiber. Then the pre-
compositionmapφ �→ f�(D)◦φ induces ahomeomorphism fromEnd≤(S1)/SId( f�(D))

to �(D).

Proof Themapφ ∈ End≤(S1) �→ f�(D)◦φ ∈ �(D) is well-defined, i.e. PH( f ◦φ) =
PH( f ) = D. This is because a homeomorphism φ ∈ Aut≤(S1) restricts to a home-
omorphism between the sub level-sets of f�(D) ◦ φ and those of f�(D), hence it
induces an isomorphism of persistent homology modules and the equality of bar-
codes PH( f�(D) ◦ φ) = PH( f�(D)), which holds as well for any φ ∈ End≤(S1) =
Aut≤(S1) by continuity of PH.

Let f ∈ �(D). From Proposition 5.3 there are cyclic permutations π ∈ �n such
that Val( f ) = π.Val( f�(D)). For each such permutation π there is a unique map φ f ,π

satisfying both f�(D)◦φ f ,π = f andφ f ,π (ci ( f )) = cπ(i) (andφ f ,π (di ( f )) = dπ(i)):
It is defined on each circular arc [ci ( f ), di ( f )] by

φ
f ,π
|[ci ( f ),di ( f )] := [( f�(D))|[cπ(i),dπ(i)]]−1 ◦ f|[ci ( f ),di ( f )], (3)
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mi

Ui

Mi

Vi

ci(f) di(f)

Fig. 1 A piece of a continuous function f : S1 → R and a small neighborhood U indicated by dashed
curves. Any function in PH−1(D) between the dashed curves must have a critical value in eachUi and Vi ,
provided the band between the dashed curves is thin enough to separate critical values. If g is such a function
then these must be the only critical values. Then the critical value of g inUi must be mi , in Vi must be Mi ,
and so on

and similarly on circular arcs [di−1( f ), ci ( f )]. In particular for f = f�(D) the set
of such φ f ,π equals the group SId( f�(D)) of stabilisers. Therefore φ �→ f�(D) ◦ φ

descends to a continuous bijection from End≤(S1)/SId( f�(D)) to �(D).
Finallywe show that the inverse is continuous. Let f ∈ �(D) andφ f ,π as in (3). Up

to pre-composing f by a suitable homeomorphism the north pole does not belong to
any extremal set ci ( f ), di ( f ). Consequently, for g in a small neighborhoodU ⊆ �(D)

around f ,we also haveVal(g) = π.Val( f�(D)), hencewe candefineφg,π ∈ End≤(S1)

like inEq. (3) and then f�(D)◦φg,π = g. Hence themap g ∈ U �−→ φg,π ∈ End≤(S1)

is a local section, whose continuity is a consequence of the fact that on each circular
arc [ci , di ] the linear restriction ( f�(D))|[ci ,di ] and its inverse are Lipschitz, and of
the fact that the maximal distance from points in the critical sets ci (g), di (g) to the
critical sets ci ( f ), di ( f ) of f can be continuously tracked in a sufficiently small
neighborhood U of f , see Fig. 1. The technical details are omitted. ��

Proof of Proposition 5.1 FromProposition5.4 the pre-compositionmapφ �→ f�(D)◦φ

induces a homeomorphism from End≤(S1)/SId( f�(D)) to the path connected com-
ponent �(D). Besides it is well-known that End≤(S1) deformation retracts to the
group SO(2) ∼= S

1 of orientation preserving rotations.2 Recall that f�(D) is a piece-
wise linear interpolation between extremal values arranged on a regular 2n-gon,
therefore its stabiliser SId( f�(D)) is a finite subgroup of SO(2) which is preserved
under the deformation retraction. Hence �(D) is homotopy equivalent to the quotient
of SO(2) ∼= S

1 by a finite subgroup, so it is in fact homotopy equivalent to S1. ��

2 For instance the deformation retract of Aut≤(S1) of Hamstrom et al.(1974, Theorem 1.1.2) extends
to End≤(S1).
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