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Abstract
Topological data analysis can provide insight on the structure of weighted graphs and
digraphs. However, some properties underlying a given (di)graph are hardly mappable
to simplicial complexes. We introduce steady and ranging sets: two standardized
ways of producing persistence diagrams directly from graph-theoretical features. The
two constructions are framed in the context of indexing-aware persistence functions.
Furthermore, we introduce a sufficient condition for stability. Finally, we apply the
steady- and ranging-based persistence constructions to toy examples and real-world
applications.

Keywords Persistence · Weighted graph · Weighted digraph · Network · Hub

Mathematics Subject Classification 68R10 · 05C10 · 18C99

1 Introduction

Weighted graphs are a common data structure in many real-world scenarios. Recently,
persistent homology became a widespread tool for data analysis, classification, com-
parison, and retrieval. However, this technique is by its very own nature limited to the
analysis of weighted simplicial complexes. Although a graph is a one-dimensional
complex, relevant information is not always carried by its topology, but, for instance,
by graph-theoretical structures. A common choice to overcome this issue is to asso-
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34 M. G. Bergomi et al.

ciate auxiliary simplicial complexes to the graph, see for instance (Bergomi et al.
2020). This strategy has been successfully applied in many interesting applications,
e.g. (Petri et al. 2014; Lord et al. 2016; Reimann et al. 2017; Rieck et al. 2018; Size-
more et al. 2018; Chowdhury and Mémoli 2018; Port et al. 2018; Blevins and Bassett
2020; Anand et al. 2020).

It is possible to define and compute persistence in other categories than simplicial
complexes or topological spaces (Bergomi and Vertechi 2020; Bergomi et al. 2021)
and, in a different sense, Patel (2018), McCleary and Patel (2020), Kim and Mémoli
(2021), andMcCleary and Patel (2022).We introduce a further class of indexing-aware
persistence functions (ip-functions), defined on (R,≤)-indexed diagrams in a given
category, that can be described via persistence diagrams. Additionally, we display a
specific way of building ip-functions for filtered graphs and digraphs, introducing the
concepts of steady and ranging sets.

We are rather far from the categorifications of Bubenik and Scott (2014), Lesnick
(2015), Oudot (2015), de Silva et al. (2018): we aim to provide a simple and agile
tool that can be applied directly to graphs (i.e., without mapping graphs to simplicial
complexes), and possibly to other structures arising naturally from applications. The
constructions derived from the framework we propose have a topological counterpart
obtainable considering the simplicial complex associated with a poset (see Rem. 1
Bergomi et al. (2021)). Here, we show how to bypass that topological construction.

Section 1.1 briefly recalls the classical notions of persistence diagram and bottle-
neck distance. Section 2 focuses on graphs. First, we define ip-functions, and balanced
ip-functions and discuss their stability. Then, we introduce steady and ranging sets
as swift generators of ip-functions based directly on graph-theoretical features. These
constructions are the theoretical core of the work. Thereafter, we apply them to study
persistent Eulerian sets andmonotone features on some elementary graphs. Section 2.5
showcases how the steady and ranging constructions can be leveraged in hub-detection
tasks. Concrete applications follow in Sect. 3: we compute steady and ranging hubs
in a network of airports, the character co-occurrence networks of Les Misérables and
Game of Thrones, and a set of languages. Section 4 extends to weighted digraphs
the theory developed in the previous sections. Code for application is available as a
Python package at the repository https://github.com/MGBergomi/hubpersistence.git.
The Appendix contains examples showing that most ip-functions of the paper are not
balanced.

1.1 Persistence diagrams

The main object of study in persistent homology (Edelsbrunner and Harer 2008) are
filtered spaces, i.e. pairs (X , f ) where X is a topological space (e.g., the space of
a simplicial complex) and f : X → R is a map called filtering function: sublevel
sets Xu = f −1

(
(−∞, u]) are compared through homology morphisms induced by

inclusion, in particular the so-called Persistent Betti Number functions. From such a
function a persistence diagram (see Definition 1) can be built (Cohen-Steiner et al.
(2007), Sect. 2). In turn, Persistent Betti Number functions can be recovered from the
persistence diagram, Cohen-Steiner et al. (2007).
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Persistence diagrams are the most widely used “fingerprints” of filtered spaces. The
bottleneck distance between persistence diagrams yields an effective lower bound to
distances between filtered spaces. This makes persistence diagrams a powerful tool
in shape classification, analysis and retrieval. The strategic advantage of the general-
isation started in Bergomi and Vertechi (2020), Bergomi et al. (2021) consists in the
fact that also categorical persistence functions (Definition 4) can be represented by
persistence diagrams: see Bergomi and Vertechi (2020, Sec. 3.9).

In R × (R ∪ {+∞}) set Δ = {(u, v) | u = v}, Δ+ = {(u, v) | u < v} and Δ̄+ =
Δ ∪ Δ+. In a multiset, the multiplicity of an element will be the number of times that
the element appears.

Definition 1 [Cohen-Steiner et al. (2007); Chazal et al. (2009)] A persistence diagram
D is a multiset of points of Δ̄+ where every point of the diagonal Δ appears with
infinite multiplicity.

The points of D belonging toΔ+ are called cornerpoints; they are said to be proper
if both their coordinates are finite, cornerpoints at infinity otherwise. A persistence
diagram is said to be finite if so is its set of cornerpoints. We shall only consider finite
persistence diagrams.

Definition 2 Given persistence diagrams D, D′, let � be the set of all bijections
between D and D′. We define the bottleneck (formerly matching) distance as the
real number

d(D, D′) = inf
γ∈�

sup
p∈D

‖p − γ (p)‖∞

First, this distance function checks the maximum displacement between corre-
sponding points for a given matching either between cornerpoints of the two diagrams
or cornerpoints and their projections on the diagonal Δ. Then, the minimum among
these maxima is computed. Minima and maxima are actually attained because of the
requested finiteness.

2 Graph-theoretical persistence

Let Graph be the category having finite simple undirected graphs as objects and injec-
tive simplicial applications as morphisms, seen as a subcategory of the category of
finite simplicial complexes. In what follows, a graph will be considered as the pair of
its vertex set and edge set, i.e. G = (V , E), G ′ = (V ′, E ′) and so on.

Definition 3 [Bubenik and Scott (2014), Sect. 1.3] An (R,≤)-indexed diagram is
any functor from the category (R,≤) to an arbitrary category C. (R,≤)-indexed
diagrams form a category, C(R,≤). The (R,≤)-indexed diagram is said to be monic if
all morphisms of its image are monomorphisms of C.

We consider (R,≤)-indexed diagrams in Graph that are constant on a finite set of
left-closed, right-open intervals. Because of the choice of monomorphisms as the only
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acceptable morphisms, every such (R,≤)-indexed diagram is monic, see Definition 3,
and can be seen, up to natural isomorphisms, as a filtration of a graph G coming from
a filtering function f : V ∪ E → R ∪ {+∞}. Moreover, we shall limit our study to
(R,≤)-indexed diagrams whose associated filtration has no isolated vertices at any
level. In other words, the filtering function f takes value +∞ if a vertex is isolated,
and the minimum of its values on the edges incident to the vertex, otherwise. Thus, f
is determined by its restriction to E ; therefore theweighted graphs considered here are
pairs (G, f ) with f : E → R. By construction, the subgraphs of the corresponding
filtrations are induced by their edge sets.

Definition 4 [Bergomi and Vertechi (2020), Definition 3.2] Let C̄ be a category. A
lower-bounded function p : Morph(C̄) → Z is a categorical persistence function if,
for all u1 → u2 → v1 → v2, the following inequalities hold:

1. p(u1 → v1) ≤ p(u2 → v1) and p(u2 → v2) ≤ p(u2 → v1).
2. p(u2 → v1) − p(u1 → v1) ≥ p(u2 → v2) − p(u1 → v2).

Remark 1 Such a function is categorical in the sense that it yields the same result
to morphisms obtained from each other by composition with a C̄-isomorphism. For
instance, we can retrieve the framework of classical topological persistence by setting
C̄ = Vect and p as the rank operator, i.e. the dimension of the image.

In what follows we focus on C̄ = (R,≤). In this case a morphism u → v is simply
the relation u ≤ v, which is represented as the point (u, v) in the persistence diagrams.

Definition 5 Let p be a map assigning to each monic (R,≤)-indexed diagram M in
a category C a categorical persistence function pM on (R,≤), such that pM = pM ′
whenever a natural isomorphismbetween M and M ′ exists.All the resulting categorical
persistence functions pM are called indexing-aware persistence functions in C (ip-
functions for brevity). The map p itself is called an ip-function generator.

Remark 2 An ip-function generator is actually a categorical function (in the sense of
Remark 1) on the functor category C(R,≤) .

An ip-function in Graph (Definition 5) pM , where M is an (R,≤)-indexed diagram,
will be denoted p(G, f ), where M corresponds to the filtration produced by theweighted
graph (G, f ). The associated persistence diagram will be denoted by D( f ), for the
sake of simplicity and if no confusion may occur.

We can now observe that ip-functions are a particular case of categorical persis-
tence functions in the category Graph. We recall that categorical persistence functions
generalise Persistent Betti Number (PBN) functions. The difference between any of
the categorical persistence functions introduced in Bergomi et al. (2021) and an ip-
function defined here is that the former comes from a functor defined on Graph, while
the latter strictly depends on the filtration, so comes from a functor defined on (R,≤).

Remark 3 The graph depicted in Fig. 1 shall be our running toy example along the
entire manuscript. In the figure, we report the PBN functions of degree 0 and 1 to allow
the reader to compare those classical results with the ones we shall obtain through ip-
functions.

In Sect. 4, we extend the notions introduced above to the category of directed
graphs.
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Fig. 1 A weighted graph (left) and its Persistent Betti Number functions in degree 0 (middle) and 1 (right)

2.1 Balanced ip-functions

The categorical functions introduced in Bergomi et al. (2021) are stable, i.e. the bottle-
neck distance between their persistence diagrams is a lower bound for their interleaving
distance. The same does not automatically hold for ip-functions. However, we shall
state a condition (Definition 6) which implies stability (as proved in Theorem 1). This
condition corresponds to d’Amico et al. (2010, Proposition 10): there, it is proved for
0-degree PBNs, and from it the stability theorem (d’Amico et al. (2010), Theorem 29)
follows through a sequence of lemmas; here, it is postulated.

Definition 6 Let p be a ip-function generator on Graph. The map p itself and the
resulting ip-functions are said to be balanced if the following condition is satisfied. Let
(G, f ) and (G ′, f ′) be any two weighted graphs, and p(G, f ), p(G ′, f ′) their associated
ip-functions. If an isomorphism ψ : G → G ′ and a positive real number h exist,
such that supe∈E | f (e) − f ′(ψ(e)

)| ≤ h, then for all (u, v) ∈ Δ+ the inequality
p(G, f )(u − h, v + h) ≤ p(G ′, f ′)(u, v) holds.

Let (G, f ), (G ′, f ′) be as above. Let also H be the (possibly empty) set of graph
isomorphisms between G and G ′. We can now take to Graph some definitions given
in Frosini and Mulazzani (1999), d’Amico et al. (2010), and Lesnick (2015).

Definition 7 The natural pseudodistance of (G, f ) and (G ′, f ′) is

δ
(
(G, f ), (G ′, f ′)

) =
{+∞ if H = ∅
infφ∈H supe∈E | f (e) − g

(
φ(e)

)| otherwise

Some simple adjustments of the proof of d’Amico et al. (2010, Theorem 29) and
of its preceding lemmas yield the following theorem.

Theorem 1 (Stability) Let p be a balanced ip-function generator in Graph and
(G, f ), (G ′, f ′) be two weighted graphs. Then we have

d
(
D( f ), D( f ′)

) ≤ δ
(
(G, f ), (G ′, f ′)

)
,
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where D( f ) and D( f ′) are the persistence diagrams realized by the ip-functions
p(G, f ) and p(G ′, f ′) respectively. ��

Through Frosini et al. (2019, Theorem 5.8), this also implies stability with respect
to the interleaving distance. Universality (Lesnick (2015), Sec. 5.2) is generally not
granted for stable persistence functions: it needs ad hoc constructions.

When discussing stability above, we introduced two distinct graphs. However, the
following proposition describes stability when considering a single graph and two
filtering functions. This result will be useful in the remainder of the paper.

Proposition 1 The ip-function generator p is balanced if and only if the following
condition is satisfied. Let G = (V , E) be any graph, f and g be two filtering functions
on G, and pG, f ) and p(G,g) their ip-functions. If a positive real number h exists, such
that supe∈E | f (e) − g(e)| ≤ h, then for all (u, v) ∈ Δ+ the inequality p(G, f )(u −
h, v + h) ≤ p(G,g)(u, v) holds.

Proof One of the two implications is immediate. The other is proved by the fact that
p(G,g) = p(G ′, f ′) where g = f ′ ◦ ψ , with the notation of Definition 6. ��
Remark 4 The condition is symmetric: if it holds as in the statement of Proposition 1,
then also p(G,g)(u − h, v + h) ≤ p(G, f )(u, v) holds for all (u, v) ∈ Δ+.

2.2 Steady and ranging sets

Definition 8 Given a graph G = (V , E), any function F : 2V ∪E → {true, f alse}
is called a feature. We call F-set any X ⊂ V ∪ E such that F(X) = true. Given
a weighted graph (G, f ) and a real number u, we denote by Gu the subgraph of G
induced by the edge set f −1(−∞, u]. We shall say that X ⊂ V ∪ E is an F-set at
level w ∈ R if it is an F-set of the subgraph Gw.

Definition 9 Let F be a feature of G. We define the maximal feature mF associated
with F as follows: for any X ⊆ (V ∪ E), mF(X) = true if and only if F(X) = true
and there is no Y ⊆ (V ∪ E) such that X ⊂ Y and F(Y ) = true.

Definition 10 Let F be a feature. A set X ⊆ V ∪ E is a steady F-set (sF-set for
brevity) at (u, v) ∈ Δ+ if it is an F-set at all levels w with u ≤ w ≤ v. We call X a
ranging F-set (rF-set) at (u, v) if there exist levels w ≤ u and w′ ≥ v at which it is
an F-set.

Let SF(G, f )(u, v) be the set of sF-sets at (u, v) and let RF
(G, f )(u, v) be the set of

rF-sets at (u, v).

Remark 5 Intuitively, the adjective “steady” stresses that a steady set enjoys a given
feature F throughout the entire interval [u, v]. “Ranging”, instead, refers to the fact
that a ranging set spans, with feature F , the range [u, v] although possibly with gaps.
Of course, steady implies ranging. This implication is granted by the “≤” and “≥”
signs in the definitions. With strict inequalities the implication fails. There are features
for which steady is equivalent to ranging, e.g., features for which a set can be anF-set
only in a (possibly unbounded) interval. A simple example is the feature F which
assigns true only to singletons consisting of a vertex of a fixed degree.
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Steady and ranging sets in graph persistence 39

Lemma 1 If u ≤ u′ < v′ ≤ v, then

1. SF(G, f )(u, v) ⊆ SF(G, f )(u
′, v′)

2. RF
(G, f )(u, v) ⊆ RF

(G, f )(u
′, v′)

where the equalities hold if Gu = Gu′ and Gv = Gv′ . Moreover SF(G, f )(u, v) = ∅ =
RF

(G, f )(u, v) if Gu = ∅.

Proof By the definitions themselves of steady and ranging F-set. ��
Definition 11 Let F be a feature. For any graph G, for any filtering function f :
E → R, we define σF

(G, f ) : Δ+ → Z as the function which assigns to (u, v) ∈ Δ+

the number |SF(G, f )(u, v)| and 	F(G, f ) : Δ+ → Z as the function which assigns to

(u, v) ∈ Δ+ the number |RF
(G, f )(u, v)|. We denote by σF and 	F the maps assigning

σF
(G, f ) and	F(G, f ) respectively to the (R,≤)-indexed diagramcorresponding to (G, f ).

Proposition 2 The maps σF and 	F are ip-function generators.

Proof We prove conditions 1 and 2 of Definition 4, recalling that the source category
is (R,≤), so the existence of a morphism u → v (with u �= v) simply means that
u < v. Assume u1 < u2 < v1 < v2. Let (G, f ) be any weighted graph.

– (Condition 1 for σF ) By Lemma 1, SF(G, f )(u1, v1) ⊆ SF(G, f )(u2, v1), so

|SF(G, f )(u1, v1)| ≤ |SF(G, f )(u2, v1)|. Also SF(G, f )(u2, v2) ⊆ SF(G, f )(u2, v1) and

|SF(G, f )(u2, v2)| ≤ |SF(G, f )(u2, v1)|.
– (Condition 2 for σF ) By Lemma 1, SF(G, f )(u1, v1) ⊆ SF(G, f )(u2, v1), so

|SF(G, f )(u2, v1)| − |SF(G, f )(u1, v1)| is the number of sF-sets at (u2, v1) which fail

to be F-sets at some w with u1 ≤ w ≤ u2. Analogously for |SF(G, f )(u2, v2)| −
|SF(G, f )(u1, v2)|.
Now, every sF-set at (u2, v2) which fails to be an F-set at w with u1 ≤ w ≤
u2 is also an sF-set at (u2, v1) failing at the same w. So SF(G, f )(u2, v1) −
SF(G, f )(u1, v1) ⊇ SF(G, f )(u2, v2) − SF(G, f )(u1, v2) and |SF(G, f )(u2, v1)|
− |SF(G, f )(u1, v1)| ≥ |SF(G, f )(u2, v2)| − |SF(G, f )(u1, v2)|.

– (Condition 1 for 	F ) The argument is the same as for σF .
– (Condition 2 for 	F ) By Lemma 1, RF

(G, f )(u1, v1) ⊆ RF
(G, f )(u2, v1), so

|RF
(G, f )(u2, v1)| − |RF

(G, f )(u1, v1)| is the number of rF-sets at (u2, v1) which

fail to be F-sets at all levels w with w ≤ u1. Analogously for |RF
(G, f )(u2, v2)| −

|RF
(G, f )(u1, v2)|.

Now, every rF-set at (u2, v2) which fails to be an F-set at all levels w

with w ≤ u1 is also an rF-set at (u2, v1) failing at the same levels w.
So RF

(G, f )(u2, v1) − RF
(G, f )(u1, v1) ⊇ RF

(G, f )(u2, v2) − RF
(G, f )(u1, v2) and

|RF
(G, f )(u2, v1)| − |RF

(G, f )(u1, v1)| ≥ |RF
(G, f )(u2, v2)| − |RF

(G, f )(u1, v2)|.
��
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The value of both functions σF
(G, f ) and 	F(G, f ) at a point P on a vertical (resp.

horizontal) discontinuity line is the same as the value at the points in a right (resp.
upper) neighbourhood of P

Of course, there are many features which give valid ip-functions: eg. the features
F such that, if X is an F-set at level u, then it is an F-set also at level v for all v > u.

We still don’t know which general hypothesis onF would imply that σF or 	F are
balanced ip-function generators (Definition 6). Such features exist: Sect. 2.4 presents
a whole class of features giving rise to balanced ip-functions.

2.3 Steady and ranging persistence on Eulerian sets

We now give an example of the framework exposed in Sect. 2.2. Given any graph G,
we define EU : 2V ∪E → {true, f alse} to yield true on a set A if and only if A is
a set of vertices whose induced subgraph of G is nonempty, Eulerian and maximal
with respect to these properties; in that case A is said to be a EU-set of G. EU is then
the maximal version of a feature we are not going to deal with. Let now (G, f ) be a
weighted graph. We apply Definition 10 to feature EU .

Definition 12 For any real number w, the subset A ⊆ V is a EU-set at level w if it is
a EU-set of the subgraph Gw. It is a steady EU-set (an sEU-set) at (u, v) ∈ Δ+ if it is
a EU-set at all levels w with u ≤ w ≤ v. It is a ranging EU-set (an rEU-set) at (u, v)

if there exist levels w ≤ u and w′ ≥ v at which it is a EU-set.
SEU(G, f )(u, v) and REU

(G, f )(u, v) are respectively the sets of sEU-sets and of rEU-sets
at (u, v). We define σEU

(G, f ) : Δ+ → R as the function which assigns to (u, v) ∈ Δ+

the number |SEU(G, f )(u, v)| and 	EU(G, f ) : Δ+ → R as the function which assigns to

(u, v) ∈ Δ+ the number |REU
(G, f )(u, v)|.

We denote by σEU and 	EU the maps assigning σEU
(G, f ) and 	EU(G, f ) respectively to

the (R,≤)-indexed diagram corresponding to (G, f ). By Proposition 2, σEU and 	EU
are ip-function generators.

Consider the example displayed in Fig. 1. In that particular example, the functions
σEU

(G, f ) and 	EU(G, f ) are the same. Furthermore, they also coincide with the PBN function
in degree 1 shown in the same figure.We show that this is not always the case in Fig. 2.

Both functions σEU and 	EU are not balanced (see the Appendix).

2.4 Monotone features

For a given graphG = (V , E), we shall consider as subgraphs only the ones induced by
sets of edges. The next definition is a variation on the notion of monotone (sometimes
dubbed hereditary) property defined in Alon and Shapira (2008).

Definition 13 We say that a feature F is monotone if

– For any graphs G ′ = (V ′, E ′) ⊂ G ′′ = (V ′′, E ′′), and any X ⊆ (V ′ ∪ E ′),
F(X) = true in G ′′ implies F(X) = true in G ′
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Fig. 2 A weighted graph (H , h) (left) and the corresponding functions σEU
(H ,h)

(middle) and 	EU
(H ,h)

(right)

– In any graph G = (V , E), for any Y ⊂ X ⊆ V ∪ E , F(X) = true implies
F(Y ) = true.

A paradigmatic monotone feature is independence: independent (or stable) sets
and matchings are examples of sets of vertices, respectively of edges, with monotone
features.

For the remainder of this section, let (G, f ) be a weighted graph, G = (V , E), and
F a monotone feature in G. By Proposition 2, σF and 	F are ip-function generators.

Lemma 2 Let X ⊆ (V ∪ E). Then, either there is no value u for which F(X) = true
in Gu, or F(X) = true in Gu for all u ∈ [u1, v1), where u1 is the lowest value u
such that in the subgraph Gu = (Vu, Eu) one has X ⊆ (Vu ∪ Eu), and v1 is either
the lowest value v for which F(X) = f alse in Gv or +∞.

Proof Assume that F(X) = true in Gu for at least one value u. If F(X) = true in
Gu , then F(X) = true in Gu′ = (Vu′ , Eu′) for all u′ < u such that X ⊆ (Vu′ ∪ Eu′)
by Definition 13. ��

The interval [u1, v1) of Lemma 2, i.e. the widest interval for which F(X) = true
in (G, f ), is called the F-interval of X in (G, f ).

Proposition 3 σF = 	F

Proof By Lemma 2. ��
Let now g be another filtering function on G; in order to avoid confusion, for each

real number u, we denote by G f ,u (resp. Gg,u) the subgraph of G induced by the edge
set f −1

(
(−∞, u]) (resp. g−1

(
(−∞, u])).

Lemma 3 Assume that there exists a positive real h such that supe∈E | f (e)−g(e)| ≤ h.
Assume also that X ⊆ (V ∪ E) exists, such that u ∈ [u1, v1) is its F-interval in G, f ),
with u1 + 2h < v1 < +∞. Then there is a non-empty F-interval [u2, v2) of X in
(G, g), and |u1 − u2| ≤ h, |v1 − v2| ≤ h.

Proof Assume that, for e ∈ E , f (e) = u; then g(e) ≤ u + h. This proves that, for
each u, G f ,u is a subgraph of Gg,u+h . Swapping the roles, also Gg,u is a subgraph of
G f ,u+h .
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42 M. G. Bergomi et al.

Fig. 3 A weighted graph (G, f ) (left) and its functions σmI
(G, f )

(middle) and 	mI
(G, f )

(right)

Therefore, if X exists in G f ,u it also exists in Gg,u+h . Symmetrically, if X exists
in Gg,u it also exists in G f ,u+h . Recalling, by Lemma 2, the meaning of u1 and,
correspondingly, u2, we obtain that |u1 − u2| ≤ h.

If F(X) = true in G f ,u+h , then F(X) = true also in the subgraph Gg,u because
F is monotone. Analogously,F(X) = true in Gg,u+h impliesF(X) = true in G f ,u .
Recalling, by Lemma 2, the meaning of v1 and, correspondingly, of v2, we obtain that
|v1 − v2| ≤ h. ��
Proposition 4 The ip-function generators σF = 	F are balanced.

Proof We shall prove for σF (and consequently for 	F , by Proposition 3) the property
stated in Proposition 1. With the notation and the assumptions of Lemma 2, assume
that for u < v we have σF

(G, f )(u − h, v + h) > 0 (if it vanishes the claim is trivially

true). We want to show that σF
(G, f )(u − h, v + h) ≤ σF

(G,g)(u, v). Let X ⊆ (V ∪ E) be
such that F(X) = true in G f ,w for all w ∈ [u − h, v + h]. Then, for the F-interval
[u1, v1) of X in (G, f ) we have u1 ≤ u − h, v + h < v1. The F-interval of the
same X in (G, g) is [u2, v2), with |u1 − u2| ≤ h, |v1 − v2| ≤ h by Lemma 3. So,
u2 ≤ u1 + h ≤ u − h + h = u and v = v + h − h < v1 − h ≤ v2, i.e. [u, v] is
contained in theF-interval of X in (G, g) andF(X) = true inGg,w for allw ∈ [u, v].
Therefore, an injective map exists from SF(G, f )(u − h, v + h) to SF(G,g)(u, v), proving

that σF
(G, f )(u − h, v + h) ≤ σF

(G,g)(u, v). ��
Monotone features—although balanced—often give rise to extremely rich persis-

tence diagrams. For this reason, it is possible to consider instead the maximal version
(that could be non-balanced) of those features. In Fig. 3, we show how maximal inde-
pendent sets give rise to complex persistence diagrams, even considering as graph our
running toy example (the one shown originally in Fig. 1). For the monotone feature I
which identifies independent sets of vertices, mI is not balanced (see the Appendix).

Anyway, the maximal version of the feature M, which identifies matchings, pro-
duces balanced ip-function generators (Proposition 5). See Fig. 4 for the functions
σmM and 	mM of the usual example of Fig. 1.

Proposition 5 The ip-function generators σmM and 	mM coincide and are balanced.

123



Steady and ranging sets in graph persistence 43

Fig. 4 A weighted graph (G, f )

(left) and its functions
σmM
(G, f )

= 	mM
(G, f )

(right)

Proof If the edge set X is a matching in a graph, it is a matching in all supergraphs.
In a weighted graph (G, f ), the set of levels w such that an edge set X is a maximal
matching in Gw = (Vw, Ew) is either empty or the interval [u2, v2) where u1 is the
left end-point of theM-interval of X and v2 is either +∞ or the left end-point of the
M-interval of a matching Y containing X . This proves that σmM

(G, f ) = 	mM
(G, f ).

Let now g be another filtering function on G, such that supe∈E | f (e) − g(e)| ≤ h,
with h > 0. Assume that the interval [u2, v2) on which X is a maximal matching is
such that u2 + 2h < v2 < +∞. Then, by Lemma 3, for the left end-point u3 of the
M-interval of X in (G, g) and the left end-point v3 of the M-interval of Y in (G, g)

one has |u2 − u3| ≤ h, |v2 − v3| ≤ h. So, if X belongs to SmM
(G, f )(u − h, v + h), it also

belongs to SmM
(G,g)(u, v), proving that σmM

(G, f )(u − h, v + h) ≤ σmM
(G,g)(u, v). ��

2.5 Hubs

Although the informal concept of hub is intuitively clear, it is not as easy to formalize
in graph-theoretical terms. The simple idea of a vertex with (locally) maximum degree
is not entirely satisfactory: in a social network it is common to find users with a lot of
contacts, with whom, however, they interact poorly. Even a high sum of traffic inten-
sities (e.g. the number of messages exchanged between a user and their connections)
is not enough to bestow a vertex the central role implied by the word hub.

There is an important line of research on a probabilistic concept of “persistent hubs”
based on degree maximality (Dereich andMörters 2009; Galashin 2016; Banerjee and
Bhamidi 2021) with some intersection with what we are proposing.

We shall use local degree prevalence as feature for building two ip-function gen-
erators: for any graph G we define H : 2V ∪E → {true, f alse} to yield true only on
singletons containing a vertex whose degree is greater than the ones of its neighbours.
Such a vertex is called an H-vertex or simply a hub. This feature, combined with the
indexing-aware persistence framework and the notion of ranging and steady feature,
allows for the identification of those vertices whose role is indeed central throughout
the filtration of a given weighted graph (G, f ).

Importantly, we preserve the flexibility granted in the realm of classical persistence:
as one of the many possible variations, we could consider a vertex to be a hub if the
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Fig. 5 A weighted graph (G, f ) (left) and its functions σH
(G, f )

(middle) and 	H
(G, f )

(right). The topmost
vertex is a hub at all levels in [2, 3) ∪ [4, 5)

sum of values of f on the edges incident to it (instead of the degree) is greater then
the sum at its neighbours.

Our proposal is to build persistence diagrams in our generalized framework, and
thereafter use the selection procedure presented in Kurlin (2016) (see 3.1) to identify
relevant cornerpoints, thus identifying the “persistent” hubs (with a different meaning
of the adjective than in Dereich and Mörters (2009), Galashin (2016), Banerjee and
Bhamidi (2021)) of a given weighted graph.

Definition 14 For any real number w, a vertex is a hub (orH-vertex) at level w if it is
an H-vertex of the subgraph Gw. It is a steady hub (or sH-vertex) at (u, v) ∈ Δ+ if
it is anH-vertex at all levels w with u ≤ w ≤ v. It is a ranging hub (or rH-vertex) at
(u, v) ∈ Δ+ if there exist levels w ≤ u and w′ ≥ v at which it is an H-vertex.
SH(G, f )(u, v) and RH

(G, f )(u, v) are respectively the sets of sH-vertices and of rH-

vertices at (u, v). We define σH
(G, f ) : Δ+ → R as the function which assigns to

(u, v) ∈ Δ+ the number |SH(G, f )(u, v)| and 	H(G, f ) : Δ+ → R as the function which

assigns to (u, v) ∈ Δ+ the number |RH
(G, f )(u, v)|.

We denote by σH and 	H the maps assigning σH
(G, f ) and 	H(G, f ) respectively to the

(R,≤)-indexed diagram corresponding to (G, f ).

Figure 5 shows the two ip-functions σH and 	H for the usual example of Fig. 1.
Also σH and 	H are not balanced (see the Appendix).

3 Persistent hubs

In this Section we present a first approach to hub detection implementable on real-
world graphs. We consider this work in progress a sort of exploration of the meaning
of steady and ranging hubs in different contexts; however, we will not compare our
results to a ground truth.

In the following examples, instead of the functions σH
(G, f ) and 	H(G, f ), we will only

show the corresponding persistence diagrams, to make the selection procedure clearer.
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Fig. 6 Selecting maxima in a time series. Left Flow of the Nile from 1871 to 1970. Data freely available
at vincentarelbundock.github.io. Right Cornerpoints selected by considering the widest diagonal gap (in
yellow) (color figure online)

3.1 A selection procedure

It is well-known in persistence that noise is represented by cornerpoints close to the
diagonalΔ. However, not all cornerpoints close toΔ necessarily represent noise, then
howwide is the strip alongΔ to get rid of? A smart, simple answer is offered in Kurlin
(2016), where a remarkable application to segmentation of very noisy data is given.
We summarize it here for a given persistence diagram D.

Call diagonal gap a maximal region of the form {(u, v) ∈ Δ+ | a < v − a < b}
where no cornerpoints of D lie; b − a is its width. We can then form a hierarchy of
diagonal gaps by decreasing width; out of it we get a hierarchy of sets of cornerpoints:
We can consider the cornerpoints lying above the first, widest gap as the most relevant.
Empirically, we may decide that also the cornerpoints sitting above the second, or the
third widest gap are relevant, and so on. Equivalently, we consider the cornerpoints
below the chosen gap to be ignored as a possible result of noise. In Fig. 6 it is possible
to observe how the selection of cornerpoints above the widest diagonal gap allows to
traceback those maxima (or classes of maxima depending on the multiplicity of the
cornerpoints), that are more relevant with respect to the trend of the time series.

In the next Sections we apply this selection criterion to the persistence diagrams
corresponding to the functions σH

(G, f ) and 	H(G, f ), computed for some networks and
some filtering functions. The vertices identified by the so selected cornerpoints will be
called persistent hubs, in particular persistent steady hubs or persistent ranging hubs.

3.2 Airports

A first attempt of the search for relevant hubs has been realized on a set of 44 major
North-American cities (41 in the US, three in Canada; the ones in capital letters in the
Amtrak railway map; see Table 1). The edges connect cities between which there have
been flights in a randomly chosen but fixed week (June 11–17, 2018). Flight data have
been obtained from Google Flights by selecting direct flights with Business Class;
distances have been found at Prokerala.com. A single vertex has been considered for
each city with more than one airport.

As filtering functions we used:
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Table 1 The towns considered as vertices and the respective degrees in the graph

Vertices (degree)

Albuquerque (13) Atlanta (42) Baltimore (16) Boston (30)

Buffalo (8) Cheyenne (0) Chicago (40) Cincinnati (19)

Cleveland (13) Dallas (41) Denver (39) Detroit (35)

El Paso (7) Houston (40) Indianapolis (17) Jacksonville (12)

Kansas City (19) Las Vegas (23) Los Angeles (37) Memphis (11)

Miami (30) Milwaukee (14) Mobile (3) Montreal (16)

New Orleans (16) New York (35) Oakland/Emeryville (7) Philadelphia (34)

Phoenix (35) Pittsburgh (14) Portland (25) Sacramento (16)

Salt Lake City (33) San Antonio (17) San Diego (26) San Francisco (35)

Seattle (34) St. Louis (17) St. Paul-Minneapolis (38) Tampa (19)

Toronto (26) Tucson (10) Vancouver (18) Washington (32)

– Distance
– Number of flights in the fixed week
– Their product

and their opposites (+their maximum). For each such choice we looked for steady and
ranging hubs, for a total of twelve different persistence diagrams. Note that the same
vertex can contribute to several cornerpoints of the persistence diagram of σH

(G, f ),

whereas this cannot happen for 	H(G, f ).
Next, we report results in which where the interest resides in the identification

of hubs which do not rank very high by their degree. In particular, we do not find
of particular interest that Atlanta, Dallas, Chicago and Houston turn out to be often
persistent ranging or steady hubs, since they have the highest degrees in the graph (42,
41, 40 and 40 respectively).

The first occurrence of a persistent hub which is rather far from having highest
degrees is with the filtering function distance: Seattle is just twelfth in the degree rank,
but appears above the widest diagonal gap as a steady hub (Fig. 7). Persistent steady
hubs are: Atlanta (with two cornerpoints), Dallas, Seattle.

Surprisingly, if we use the opposite of distance (summed to the maximum distance,
for ease of representation), the cornerpoints corresponding to vertices with highest
degrees are located under the widest diagonal gap (Fig. 8). Persistent steady hubs are:
Los Angeles, San Francisco, Seattle.

New York City has the eighth highest degree (35, together with Detroit, Phoenix
and San Francisco). Still, we would expect it to appear as a hub, in the common sense
of the term. In fact, it occurs as one of the few ranging hubswhen the filtering functions
(max minus number of flights) and distance·(max minus number of flights) are used.
Ranging hubs for (maxminus number of flights): Atlanta, Chicago, Dallas, NewYork.
Ranging hubs for the product filtering function are Atlanta, Chicago, Dallas, New
York, Vancouver.
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Fig. 7 Filtering function: distance; steady hubs. Persistent steady hubs above the widest diagonal gap: two
cornerpoints represent Atlanta, one Dallas and one Seattle

Fig. 8 Filtering function: max distanceminus distance; steady hubs. Persistent steady hubs above the widest
diagonal gap: Los Angeles, San Francisco, Seattle

3.3 Characters co-occurrence in a novel

A classical benchmark for the analysis of hubs in co-occurrence graphs is given by
Les Misérables. The network representing the co-occurrence of its characters is freely
available at Graphistry. The graph has 77 major characters as vertices; each of the 254
edges joins two characters which appear together in at least one scene; the weight on
an edge is the number of common occurrences. We used the inverse of the weight as a
filtering function. We compare our results with the ones of Rieck et al. (2018), where
the notion of clique-community centrality was used to spot particularly important
characters: Table 2.
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Table 2 Hubs in Les Misérables
characters co-occurrence Steady hubs

Cosette Courfeyrac Enjolras

Marius Myriel Valjean

Ranging hubs

Cosette Courfeyrac Enjolras

Marius Myriel Valjean

Clique-community centrality

Enjolras Fantine Gavroche

Marius Valjean

Comparing results obtained via the steady and ranging persistence
construction and clique-community centrality

Our method spots Cosette as a hub, whereas clique-community centrality does
not. On the contrary, our technique misses Gavroche and Fantine. Both methods miss
Javert. We are particularly puzzled by the result of Kurlin’s selection method: above
the second widest diagonal gap (the first obviously isolates Jean Valjean) we find only
Enjolras.

3.4 Time-varying hubs

Weighted graphs can represent discrete dynamics in time-varying process. It is possi-
ble to keep track of persistence hubs obtaining a concise representation of the relative
importance of each hub in time. We considered the characters co-occurrence in five
subsequent books of the Game of Thrones saga, and applied the algorithm mentioned
above for the analysis of character co-occurrence in Les Misérables. In this case, how-
ever, characters evolve throughout the books. A global analysis, i.e., computing hubs
on the graphs obtained considering summary statistics on the five book hardly carries
dynamical information. On the contrary, persistence hubs yield an easily visualizable
summary of the characters’ roles in time. See Fig. 9.

3.5 Languages

The website TerraLing.com contains much information, consisting of 165 properties,
about several languages. It was used in an interesting research (Port et al. 2018) on
persistent cycles in language families. Unfortunately the amount of information varies
quite a lot from language to language.Weanalysed themutual relations of 19 languages
(18 of the European Union plus Turkish: Table 3) for which at least 50% of the 165
properties are checked. The graph is the complete one with 19 vertices. The filtering
function defined on each edge is the opposite of the normalised quantity of common
properties of the two languages that it connects. Ranging and steady hubs coincide
and are: Castilian, Catalan, Dutch, English, Portuguese, Swedish.

Apart from the presence of English, whichmight also be biased by the great quantity
of information available, we have no key for interpreting these results. For this and for
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Book 1 Book 2 Book 3 Book 4-5

0.0

0.4

0.8

1.2

1.6

2.0
Daenerys Targaryen 0.08, 0.18, 0.3, 0.32

Tyrion Lannister 0.00, 0.42, 0.42, 0.01

Eddard Stark 0.42, 0.00, 0.00, 0.00

Bran Stark 0.00, 0.05, 0.04, 0.07

Jon Snow 0.02, 0.06, 0.41, 0.31
Aria Stark 0.00, 0.06, 0.05, 0.02

Fig. 9 Evolution of Game of Thrones hub characters throughout five books. The legend reports the first six
hubs and their persistence values per book

Table 3 The 19 considered
languages

Languages

Castilian Catalan Czech Croatian Danish

Dutch English Finnish French Galician

German Greek Hungarian Italian Polish

Portuguese Romanian Swedish Turkish

the previous applications, we would very much like to set up a research with specific
experts.

4 Digraph persistence

In this section, let (G, f ), with G = (V , A), be any weighted digraph. Given a feature
F : 2V ∪A → {true, f alse}, it is straightforward to extend the definitions of balanced
ip-function (Definition 6), of natural pseudodistance (Definition 7), the stability the-
orem (Theorem 1) and the definitions of steady and ranging sets (Definition 10) and
of the ip-function generators σF and 	F (Definition 11, Proposition 2) to this setting.

WedefineDH : 2V ∪A → {true, f alse} to yield true only on singletons containing
a vertex whose outdegree is greater than the ones of its neighbours. Also in this case,
there aremany possible variations of this feature: we recover the notions of hub, steady
hub and ranging hub and ip-function generators σDH and 	DH as in Sect. 2.5.

Figure 10a presents all tournaments on three vertices, with injective functions with
values in the set {1, 2, 3}. Figure 10b shows the values of some ip-functions. The
correspondence between weighted tournaments and functions is given in Table 4. On
these digraphs, σDH and 	DH yield coinciding functions. However, this is not always
the case, as shown in Fig. 11.

There are two opposite definitions of a kernel of a digraph; we shall consider
the one given in Morgenstern and Neumann (1953). However, alternative definitions
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(a) The eight tournaments on three vertices, with {1, 2, 3}-valued filtering functions.

(b) The ip-functions corresponding to the digraphs of Fig. 10a with respect to
features DH and K.

Fig. 10 aThe eight tournaments on three vertices,with {1, 2, 3}-valuedfiltering functionsbThe ip-functions
corresponding to the digraphs of Fig. 10a with respect to features DH and K. Examples of digraphs and
ip-functions; for the correspondence see Tables 4 and 5

Table 4 The correspondence between the weighted digraphs of Fig. 10a and the diagrams of Fig. 10b for
feature DH
Hubs

000 001 010 011 100 101 110 111

σDH
(G, f )

= 	DH
(G, f )

A B C C D D A B

(see, e.g., Galeana-Sánchez and Hernández-Cruz (2014)) give also rise to admissible
features in our framework. We define the feature K : 2V ∪A → {true, f alse} to
yield true only on kernels, i.e. independent sets X of vertices such for every vertex
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Fig. 11 A weighted digraph (G, f ) (left) and its functions σDH
(G, f )

(middle) and 	DH
(G, f )

(right)

Table 5 The correspondence
between the weighted digraphs
of Fig. 10a and the diagrams of
Fig. 10b for feature K

Kernels

000 001 010 011 100 101 110 111

σK
(G, f )

E F D F F F D E

	K
(G, f )

E C D C F F D E

w ∈ V − X , there exists at least one arc a ∈ A with w as tail and head in X , where
independence is defined with respect to the underlying undirected graph. Then σK and
	K are ip-functiongenerators. The correspondence betweenweighted tournaments and
functions is given in Table 5.

None of the ip-function generators σDH, 	DH, σK, 	K is balanced (see the
Appendix).

5 Conclusions

We introduced ip-functions in a fairly general setting and studied their stability. We
have then restricted our scope to the categories of graphs and digraphs, where we have
defined steady and ranging sets according to features relative to the given (di)graphs.

We showed how graph-theoretical features can be used directly to obtain a concise
representation of weighted undirected and directed graphs as persistence diagrams.
In particular, we believe that the steady and ranging ip-function generators allow for
a more streamlined analysis of graphs and networks bypassing the construction of
auxiliary simplicial complexes. Although the steady and ranging sets yield equivalent
results in some cases, persistence diagrams associated with ranging sets are generally
simpler than the ones derived from steady sets, so the information is represented in a
more condensed way. This is not the only reason for considering both representations.
In our applications, we focused on the notion of hub. There, we showcased how
the ranging representation of hubs is relevant for hub detection: a vertex might be
relevant for the global dynamics of a network if it has local degree prevalence at far
enough levels. For example, in a graph whose vertices represent users of a social
network, edges represent “friendship”, and weights represent geographical distance,
we conjecture that high-persistence ranging hubs might be crucial for the diffusion of
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“viral” documents. Analogously, we thought that an airport might have a key role if
it has a sort of centrality both at a regional and international level, but not necessarily
at all intermediate ones.
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Appendix: Unbalanced

In order to show that some of the proposed ip-functions are not balanced—so their
persistence diagrams do not generally enjoy stability—we give examples which do
not respect Definition 6.

The ip-function generator σEU is not balanced, as the example of Fig. 12 shows:
in fact, the maximum absolute value of the weight difference on the same edges is 1,
and σEU

(G, f )(4.5 − 1, 10 + 1) = 1 > 0 = σEU
(G,g)(4.5, 10).

Fig. 12 σEU is not balanced: filtering function f left, g right
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Fig. 13 	EU is not balanced: filtering function f left, g right

Fig. 14 σmI is not balanced:
filtering function f left, g right 2

4

1

35

6

2

3

1

46

5

Fig. 15 	mI is not balanced:
filtering function f left, g right

34

1

2

34

2

1

Also the ip-function generator	EU is not balanced, as the example of Fig. 13 shows:
in fact, the maximum absolute value of the weight difference on the same edges is 1,
and 	EU(G, f )(7.5 − 1, 10 + 1) = 1 > 0 = 	EU(G,g)(7.5, 10).

The ip-function generator σmI is not balanced: for the two filtering functions on
the graph of Fig. 14 the maximum difference in absolute value on the same edges is
1, but 	mI

(G, f )(3.5 − 1, 6 + 1) = 1 > 0 = 	mI
(G,g)(3.5, 6).

The ip-function generator 	mI is not balanced: for the two filtering functions on
the graph of Fig. 15 the maximum difference in absolute value on the same edges is
1, but 	mI

(G, f )(3.5 − 1, 5 + 1) = 3 > 2 = 	mI
(G,g)(3.5, 5).
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Fig. 16 σH is not balanced: filtering function f left, g right

Fig. 17 	H is not balanced: filtering function f left, g right

σH is not a balanced ip-function generator, as the example of Fig. 16 shows:
the maximum absolute value of the weight difference on the same edges is 2, but
σH

(G, f )(4 − 2, 9 + 2) = 1 > 0 = σH
(G,g)(4, 9).

There are counterexamples which are even simpler than this and the one of Fig. 17.
These have the advantage to hold also if “>” is substituted by“≥” in the definition of
hub (what we don’t think to be a good idea).

Also 	H is not a balanced ip-function generator, as the example of Fig. 17 shows:
the maximum absolute value of the weight difference on the same edges is 2, but
	H(G, f )(5 − 2, 6 + 2) = 1 > 0 = 	H(G,g)(5, 6).

In order to show that σDH and 	DH are not balanced, consider the weighted
tournaments 010 as (G, f ) and 011 as (G ′, f ′). For the isomorphism ψ which swaps
vertices a and b, one has | f (e)− f ′(ψ(e)

)| ≤ 1 for all e ∈ A, but σDH
(G, f )(2.5−1, 3+

1) = 	DH
(G, f )(2.5 − 1, 3 + 1) = 1 > 0 = 	DH

(G ′, f ′)(2.5, 3) = σDH
(G ′, f ′)(2.5, 3).

The ip-function generator σK is not balanced: consider the weighted tournaments
010 as (G, f ) and 011 as (G ′, f ′). For the isomorphism ψ which swaps vertices a
and b, one has | f (e)− f ′(ψ(e)

)| ≤ 1 for all e ∈ A, but σK
(G, f )(2.5− 1, 4+ 1) = 1 >

0 = σK
(G ′, f ′)(2.5, 4).

Finally, also 	K is not a balanced ip-function generator: consider the weighted
tournaments 001 as (G, f ) and 101 as (G ′, f ′). For the isomorphism ψ which swaps
vertices a and c, one has | f (e)− f ′(ψ(e)

)| ≤ 1 for all e ∈ A, but 	K(G, f )(2.5−1, 4+
1) = 1 > 0 = 	K

(G ′, f ′)(2.5, 4).
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