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Abstract
It has long been envisioned that the strength of the barcode invariant of filtered cel-
lular complexes could be increased using cohomology operations. Leveraging recent
advances in the computation of Steenrod squares, we introduce a new family of com-
putable invariants on mod 2 persistent cohomology termed Sqk-barcodes. We present
a complete algorithmic pipeline for their computation and illustrate their real-world
applicability using the space of conformations of the cyclo-octane molecule.

Keywords Persistent homology · Steenrod squares · Steenrod barcode ·
Cyclo-octane molecule

Mathematics Subject Classification 55N31 · 55S10 · 62R40 · 68T09

1 Introduction

Persistent homology is one of the primary tools in the rapidly developing field of
topological data analysis. A motivating example for this technique is the study of a
finite point cloud of data embedded in Euclidean space. From it, we can produce a
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collection of nested simplicial complexes

X0 → X1 → · · · → Xn .

For example, by taking the nerve of balls of uniformly increasing diameter whose
centers are the given points. The homology construction provides us with a collection
of linear maps

H•(X0;k) H•(X1;k) · · · H•(Xn;k). (1)

This is an example of a (graded) persistence module and its barcode, a summary
of the way Betti numbers are shared by consecutive simplicial complexes, serves as
a principled and robust feature of the data. This invariant is effectively computable
and some of the open source software developed for this end can be found in Pérez
et al. (2021), (Tauzin et al. 2021; The GUDHI Project 2020; Bauer 2021). For an
expository treatment of persistent homology, we refer the reader to Carlsson (2009)
or Edelsbrunner and Harer (2010).

Assuming k is a field, a straightforward duality argument shows that the barcode
of (1) is equivalent to the barcode of its persistent cohomology

H•(X0;k) · · · H•(Xn−1;k) H•(Xn;k). (2)

When k is the field Fp with p elements, we can define for each k ≥ 1 an additional
barcode naturally associated to (2) by consistently recording the ranks of Steenrod’s
cohomology operation Pk in the commutative diagram

H•(X0;Fp) · · · H•(Xn−1;Fp) H•(Xn;Fp)

H•(X0;Fp) · · · H•(Xn−1;Fp) H•(Xn;Fp).

Pk Pk Pk

In this work we focus on the case p = 2where Steenrod operations are denoted Sqk

and referred to as Steenrod squares, a term that comes from the fact that Sqk([α]) =
[α] � [α]where k is the cohomological degree of α and� denotes the cup product on
cohomology. The ranks of Steenrod operations and in particular of Steenrod squares
are able to detect finer information beyond the Betti numbers of a space. For example:

(1) The real projective plane and the wedge of a circle and a sphere have, with F2-
coefficients, the same Betti numbers, yet the rank of Sq1 tells them apart.

(2) Similarly, the complex projective plane and the wedge of a 2-sphere and a 4-
sphere have the same Betti numbers with any coefficients, yet the rank of Sq2

distinguishes them.
(3) The suspensions of the two spaces above have the same Betti numbers and also

isomorphic cohomology rings, yet the rank of Sq2 tells them apart.
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Persistence Steenrod modules 477

The main contribution of this work is the theoretical and algorithmic develop-
ments needed to use the finer discriminatory power of Steenrod squares in persistent
cohomology. Specifically, we define Sqk-barcodes and introduce a method for their
computation. Using a performance oriented implementation of our methods, we
present examples showing that the finer information they reveal is non-trivially present
in the point cloud of conformations of the cyclo-octane molecule C8H16.

Outline

We begin in Sect. 2 with an overview of the basic notions used in the rest of this arti-
cle. They concern homological algebra, simplicial topology, and persistence theory.
In Sect. 3 we introduce the Steenrod squares Sqk through explicit formulas at the
cochain level and discuss their relevance. In Sect. 4 we introduce persistence Steen-
rod modules and their Sqk-barcodes, and show how to computationally incorporate
these invariants into the persistent cohomology pipeline. We present three examples
in Sect. 5, including one obtained from data sampled from the space of conformations
of C8H16. We close by providing conclusions in Sect. 6.

2 Conventions and preliminaries

We assume familiarity with the notions of chain complex over a ring k and of its
associated homology graded k-module.

2.1 Tensor and hom complexes

In this subsection we review two natural chain complexes associated to any pair of
chain complexes C and C ′.

The tensor product C ⊗ C ′ is the chain complex whose degree-n part is

(
C ⊗ C ′)

n =
⊕

i+ j=n

Ci ⊗ C ′
j ,

whereCi ⊗C ′
j is the tensor product of k-modules, and whose boundary map is defined

by

∂(v ⊗ w) = ∂v ⊗ w + (−1)|v|v ⊗ ∂w.

The hom complex Hom(C,C ′) is the chain complex whose degree-n part is the
subset of linear maps between them that increase degree by n, i.e.,

Hom(C,C ′)n = { f : C → C ′ | ∀k ∈ Z, f (Ck) ⊂ C ′
k+n},
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478 U. Lupo et al.

and boundary map defined by

∂ f = ∂C ′ ◦ f − (−1)n f ◦ ∂C .

A chainmap is a 0-cycle in this chain complex, and two chainmaps are chain homotopy
equivalent if they are homologous cycles. We extend this terminology and say that
two maps f , g ∈ Hom(C,C ′) are homotopic if their difference is nullhomologous,
referring to a map h ∈ Hom(C,C ′) such that ∂h = f − g as a homotopy between
them.

Regarding k as a chain complex with 0-part equal to k and all other parts equal to 0
the linear dual of a chain complex C is the chain complex Hom(C,k). For historical
reasons we will use cohomological grading for the dual of a chain complex, placing
the dual of a chain in degree n also in degree n instead of −n as would be more
appropriate.

For any three chain complexes, there is a natural adjunction isomorphism:

Hom(C ⊗ C ′,C ′′) ∼= Hom(C,Hom(C ′,C ′′)). (3)

2.2 Invariants and coinvariants

Symmetries on chain complexes play an important role in this work. Let G be a finite
group. We will later focus solely on the symmetric group S2. We denote by k[G] the
group ring of G, i.e., the free k-module generated by G together with the ring product
defined by linearly extending the group structure on G. We refer to a chain complex
of k[G]-modules as a chain complex with a G-action.

To any chain complex C with a G-action we naturally associate the following two
chain complexes. The subcomplex of invariant chains of C , denoted by CG , contains
all elements c ∈ C satisfying g · c = c for every g ∈ G. The quotient complex of
coinvariant chains of C , denoted by CG , is the chain complex obtained by identifying
elements c, c′ ∈ C if there exists g ∈ G such that c′ = g · c.

LetC andC ′ be chain complexes and assumeC has aG-action. The chain complex
Hom(C,C ′) has a G-action induced from (g · f )(c) = f (g−1 · c) and there is an
isomorphism:

Hom(C,C ′)G ∼= Hom(CG,C ′). (4)

2.3 Simplicial complexes

Simplicial complexes are used to combinatorially encode the topology of spaces and
occur naturally on real-world data.

An abstract and ordered simplicial complex, or a simplicial complex for short, is
a pair of sets (V , X) where V is a poset and the elements of X are non-empty finite
subsets of V , such that:

(1) The restriction of the partial order of V to any element in X defines a total order
on it.

123



Persistence Steenrod modules 479

(2) For every v in V , the singleton {v} is in X .
(3) If x is in X and y is a subset of x , then y is in X .

We abuse notation and denote the pair (V , X) simply by X .
The elements of X are called simplices and the dimension of a simplex is defined by

subtracting 1 from its cardinality. Simplices of dimension d are called d-simplices.We
abuse terminology and refer to the elements of V and to their associated 0-simplices
both as vertices.

A simplicial complex Y is a subcomplex of a simplicial complex X if every simplex
of Y is a simplex of X . In this case we say that (X ,Y ) is a simplicial complex pair
and write (X ,Y ) ⊆ (X ′,Y ′) if X ⊆ X ′ and Y ′ ⊆ Y .

A filtered simplicial complex is a simplicial complex X togetherwith subcomplexes

∅ = X−∞ ⊆ · · · ⊆ Xi ⊆ Xi+1 ⊆ · · · ⊆ X+∞ = X .

2.4 Simplicial cohomology

Let (X ,Y ) be a simplicial complex pair. Denoting the subsets of n-dimensional sim-
plices by Xn ⊂ X and Yn ⊂ Y , the chain complex C•(X ,Y ;k) of relative chains of
the pair (X ,Y ) is defined as follows: Its degree-n part is

Cn(X ,Y ;k) = k
{
Xn

}

k
{
Yn

}

i.e., the k-module freely generated by the n-dimensional simplices in X modulo those
in Y , and its differential, referred to as boundary map, is defined on basis elements by

Cn(X ,Y ;k) Cn−1(X ,Y ;k)

x
∑n

i=0(−1)i di x

∂n

where di is the operator that removes the i th element in x with respect to the induced
total order. We refer to C•(X ,∅;k) simply as the absolute chains of X and simplify
its notation to C•(X;k).

The relative cochains of the pair (X ,Y ) is the cochain complexC•(X ,Y ;k) defined
explicitly by

Cn(X ,Y ;k) = Homk(Cn(X ,Y ;k), k)

with

δn(α)(c) = (−1)nα(∂nc).

We refer to C•(X ,∅;k) as the absolute cochains of X and use the notation C•(X;k)

for it. Notice that Cn(X ,Y ;k) is isomorphic to the subspace of Cn(X;k) that vanish
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480 U. Lupo et al.

on Cn(Y ;k). The cohomology of this pair, denoted by H•(X ,Y ;k), is defines as the
cohomology of C•(X ,Y ;k).

Given pairs (X1,Y1) ⊆ (X2,Y2) there are natural maps:

C•(X1,Y1;k) ← C•(X2,Y2;k),

H•(X1,Y1;k) ← H•(X2,Y2;k),

respectively defined and induced by restriction.
Relative and absolute homology in the simplicial context is defined similarly but

we do not use them in this work.

2.5 Persistence theory

In this subsection k is assumed to be a field. We will now review the basic concepts
of the theory of persistence over k from a point of view that prioritizes persistent
cohomology. We refer to Zomorodian and Carlsson (2005) or de Silva et al. (2011)
for a more detailed exposition.

The totally ordered set Z, known as extended integers, is the union of Z with two
elements −∞ and +∞ such that

−∞ < i < +∞

for any integer i .
A persistence moduleM (over k) is a diagram of k vector spaces and linear maps

M(−∞) · · · M(i) M(i + 1) · · · M(+∞).

For i ≤ j in Z we denote by Mi, j the unique composition M(i) ← M( j) in the
diagram. We say that M is pointwise finite-dimensional (p.f.d.) if the dimension of
M(i) is finite for each i ∈ Z.

A graded persistence moduleM• = {Md}d∈Z is a collection of persistence mod-
ules indexed by the integers. We say M• is p.f.d. if each Md is.

Amorphism of persistence modules is a diagram of vector spaces and linear maps

N (−∞) · · · N (i) N (i + 1) · · · N (+∞)

M(−∞) · · · M(i) M(i + 1) · · · M(+∞).

To any morphism φ of persistence modules we can naturally associate persistence
modules corresponding to its kernel ker φ and image imgφ.

Amultiset is a pair (M, μ) where M is a set and μ : M → Z is a function attaining
only values greater than 0. We refer to μ(m) as the multiplicity of m and define the
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Persistence Steenrod modules 481

cardinality of a multiset (M, μ) as

card M =
∑

m∈M
μ(m)

if this sum is defined and +∞ otherwise. We sometimes regard sets as multisets with
multiplicity function constant and equal to 1.

Let M be a p.f.d. persistence module, its barcode is the multiset BarM of pairs
[p.q] ∈ Z × Z such that for any two extended integers i ≤ j

rankMi, j = card
{[p.q] ∈ BarM | p ≤ i ≤ j ≤ q

}
.

The barcode is a complete invariant of p.f.d. persistence modules. We will sometimes

use the notation (p − 1, q] def= [p, q]. The finite and infinite parts of the barcode are
defined by

Bar fin
M = {[p.q] ∈ BarM | p, q ∈ Z

}
,

Bar inf
M = BarM \ Bar fin

M.

The barcode of a graded persistence module M• is the collection

BarM• = {
BarMd

}
d∈Z .

Given a filtered simplicial complex X , define respectively its persistent relative and
absolute cohomology by

H•
R(X;k)(i) = H•(X , Xi ;k), H•

A(X;k)(i) = H•(Xi ;k),

with linear maps induced by restriction. When X and k are clear from the context we
omit them from the notation. We say X is p.f.d. if either, and therefore both, of these
are.

The barcodes of these persistence modules contain equivalent information. More
precisely, as shown in de Silva et al. (2011) ormore categorically inBauer and Schmahl
(2020), the finite parts of these are equal as graded multisets after a degree shift and
there is a bijection of multisets between their infinite parts. Explicitly,

BarfinHn
R

BarfinHn−1
A

[p, q] [p, q]

∼=
and Bar infHn

R
Bar infHn

A

[−∞, r ] [r ,+∞].
∼=

(5)

Althoughwe do not use them in thiswork, persistent relative and absolute homology
can be defined similarly and shown to have barcodes containing the same information
encoded by those above.
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3 Steenrod squares

In this section we introduce the cohomology operations

Sqk : H•(X ,Y ;F2) → H•(X ,Y ;F2)

defined for any simplicial complexes pair (X ,Y ) and every integer k. These operations
are natural. In particular, for (X1,Y1) ⊆ (X2,Y2) the diagram

H•(X2,Y2;F2) H•(X2,Y2;F2)

H•(X1,Y1;F2) H•(X1,Y1;F2)

Sqk

Sqk
(6)

commutes. Therefore, as will be developed in Sect. 4, any Sqk defines an endomor-
phism of the persistent (absolute and relative) cohomology of a filtered complex.

3.1 History and definition

The diagonal map of spaces

X X × X

x (x, x)

D

induces a product in cohomology with field coefficients

� : H•(X) ⊗ H•(X)
∼=−→ H•(X × X)

H•(D)−−−−→ H•(X),

which is (graded) commutative, since the diagonal is invariant under the transposition

X × X X × X

(x, y) (y, x).

T

One can then ask if this product can be definedwith integer coefficients. During themid
1930’s Alexander, Kolmogorov, Čech and Whitney defined the cup product dualizing
a simplicial chain approximation to D given by

C• C• ⊗ C•
[0, . . . , n] ∑n

i=0 [0, . . . , i] ⊗ [i, . . . , n].
�
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Persistence Steenrod modules 483

Please consult Whitney (1988) for further historical notes. The chain map � is not
invariant under the transposition map

C• ⊗ C• C• ⊗ C•

a ⊗ b (−1)|a||b|b ⊗ a,

T

that is to say, � − T� �= 0.
In 1947, Steenrod published his seminal paper (Steenrod 1947) introducing the

square operations through an effective construction of “coherent homotopies” cor-
recting the broken symmetry of � (denoted by �0 from now on). To explain this, let
us consider the map (1− T )�0 as a 0-cycle in Hom

(
C•,C⊗2•

)
, a chain complex with

an S2-action induced from T . The cup-1 coproduct, defined explicitly by

�1[0, . . . , n] =
∑

i< j

±[0, . . . , i, j, . . . , n] ⊗ [i, . . . , j],

is a boundary for this cycle (∂�1 = (1−T )�0). The cup-1 coproduct �1 corrects the
lack of symmetry of �0 homologically, but it is itself not symmetric. Steenrod gave
formulae for higher corrections, the cup-i coproducts �i , satisfying

∂(�i+1) = �i − (−1)i T�i .

More abstractly, if W is the minimal resolution of Z by free Z[S2]-modules

Z[Sr ]{e0} 1−T←−− Z[Sr ]{e1} 1+T←−− Z[Sr ]{e2} 1−T←−− · · · ,

he effectively constructed a natural equivariant chain map

W ⊗ C• → C⊗2• , (7)

where C• denotes the chains of a simplicial complex. Passing to mod 2 coefficients,
Steenrod extracted from this construction finer invariants on the cohomology of spaces
which we now review.

Using the linear duality functor on the map (7) and passing to invariant chains we
have a chain map

Hom (C• ⊗ C•,F2)
S2 −→ Hom (W ⊗ C•,F2)

S2 ,

123
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whichwe can complete, using the isomorphisms (3) and (4) of Sect. 2, to a commutative
diagram

Hom (C• ⊗ C•,F2)
S2 Hom (W ⊗ C•,F2)

S2

(C• ⊗ C•)S2 Hom
(
WS2 ⊗ C•,F2

)

C• Hom
(
WS2 ,C

•) ,

cross product

doubleing

where the choice of coefficients ensures the doubling map α �→ α⊗α is linear. Using
the adjunction isomorphism (3), the dashed arrow defines a linear map

C• ⊗ WS2 C•

α⊗ei (α ⊗ α)�i (−)

descending to mod 2 homology, and the Steenrod square operations are defined by
reindexing this map. Explicitly,

Sqk : Hn Hn+k

[α] [
(α ⊗ α)�n−k(−)

]
.

The importance of Steenrod operations in stable homotopy theory is hard to overstate,
see for example Adams (1974). For a more leisure exposition of the construction and
properties of Steenrod squares we refer to, for example, Mosher and Tangora (1968).

Remark The name of these operations comes from the fact that Sqk([α]) = [α] �
[α] where k is the cohomological degree of α and � denotes the cup product on
cohomology. The non-triviality of Steenrod squares is an obstruction to the existence
of a commutative product of cocycles lifting �.

Remark The operation Sq1 agrees with the Bockstein homomorphism. Namely, the
connecting homomorphism induced from the following exact sequence of coefficient

0 → Z/2Z
2−→ Z/4Z → Z/2Z → 0.

Remark Steenrod square operations are parameterized by classes on themod 2 homol-
ogy of S2. From this viewpoint, Steenrod defined operations at odd primes non-
constructively using the mod p homology of Sp. For his construction please consult
Steenrod and Epstein (1962). We do not treat these operations in the present paper.
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3.2 Cup-i formulas

Throughout the rest of this article we set the ground ring k to be the field with two
elements F2. We will describe explicitly a natural equivariant chain map

W ⊗ C• → C• ⊗ C•

or, equivalently, an equivariant chain map

W Hom (C•,C• ⊗ C•)
ei �i .

Let X be a simplicial complex and x ∈ Xn . For a set

U = {u1 < · · · < ur } ⊆ {0, . . . , n}

we use the notation dU (x) = du1 . . . dur (x).

Definition 1 (Medina-Mardones 2021c) The simplicial cup-i coproduct

�i : C•(X;F2) → C(X;F2)
⊗2•

is the linear map defined on a basis element x in dimension n by

�i (x) =
∑

U

dU0(x) ⊗ dU1(x),

where the sum is taken over all sets U = {u1 < · · · < un−i } with u j ∈ {0, . . . , n}
and

U 0 = {u j | u j + j ≡ 0 mod 2}, U 1 = {u j | u j + j ≡ 1 mod 2}.

These formulas are in a sense dual to Steenrod’s original in Steenrod (1947) but,
as shown in Medina-Mardones (2022), they are equivalent. We have the homological
relation

∂(�i+1) = (1 + T )�i

for any integer i , and naturality for pairs (X1,Y1) ⊆ (X2,Y2) making the diagram

C•(X2,Y2;F2) C•(X2,Y2;F2)
⊗2

C•(X1,Y1;F2) C•(X1,Y1;F2)
⊗2

�i

�i

(8)

commute.
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Fig. 1 Real projective plane
RP2 together with a chosen
representative of the non-zero
class in H1(RP2;F2)

6

4

2

6

4

2

3

15

Definition 2 Let (X ,Y ) be a pair of complexes. The k-th Steenrod square

Sqk : H•(X ,Y ;F2) → H•(X ,Y ;F2)

is the linear map sending a class [α] represented by a cocycle α ∈ Cn(X ,Y ;F2) to
the class represented by the cocycle whose value on c ∈ Cn+k(X ,Y ;F2) is

(α ⊗ α)�n−k(c).

We notice that thanks to (8), the Steenrod square operations are natural for pairs
(X1,Y1) ⊆ (X2,Y2), i.e., diagram (6) commutes.

Example 1 Let us consider the model of the real projective plane RP2 presented in
Fig. 1 together with the cocycle α, dual to

a = [2, 4] + [2, 3] + [3, 5] + [1, 5] + [1, 4],

representing the generator of H1(RP2;F2) ∼= F2. According to Definition 2, the
cocycle (α ⊗ α)�0(−) represents the class Sq1

([α]) ∈ H2(RP2). Using Definition 1
and bilinearity, we are looking for basis elements [i, j] ⊗ [i ′, j ′] appearing in a ⊗ a
with j = i ′ and such that [i, j, j ′] ∈ RP2. The cocycle (α ⊗ α)�0(−) is given by
adding together [i, j, j ′] for each such basis element. In our case, out of 25 basis
elements appearing in a ⊗ a only [2, 3] ⊗ [3, 5] contributes a non-zero term and,
therefore, Sq1

([α]) is represented by the cocycle dual to [2, 3, 5], and

rank
(
Sq1 : H1(RP2;F2) → H2(RP2;F2)

) = 1.

Remark The �i maps are deeply rooted in the combinatorics of simplices. To illus-
trate their primitive nature wementioned that another fundamental construction can be
derived from them: the nerve of n-categories (Street 1987; Medina-Mardones 2020b).
This is a reflection of a profound connection between convexgeometry, higher category
theory and Steenrod higher diagonals (Kapranov and Voevodsky 1991; Laplante-
Anfossi et al. 2022).
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Persistence Steenrod modules 487

Remark We have focused on simplicial complexes since they are better known and
lead to faster computations, but there are also effective constructions of Steenrod
cup-i coproducts for cubical complexes (Kadeishvili 2003; Krčál and Pilarczyk 2016;
Kaufmann and Medina-Mardones 2021a). Our algorithms, presented in Sect. 4.4, can
be adapted using these to compute Steenrod barcodes of cubical complexes.

Remark To define Steenrod operations effectively at any prime p, the cup-i coproducts
where generalized in Kaufmann and Medina-Mardones (2021b) to cup-(p, i) coprod-
ucts for simplicial and cubical chains using the operadic methods of P. May (1970)
and the model of the E∞-operad introduced by the second named author (Medina-
Mardones 2020a, 2021b). These have been implemented in the computer algebra
system ComCH (Medina-Mardones 2021a). The incorporation into the persistence
pipeline of Steenrod operations at odd primes is left to future work.

3.3 Self-intersections

From a geometric viewpoint, the cup product can be interpreted in terms of inter-
sections of cycles in certain cases. For any space, Thom showed that every mod 2
homology class is represented by the push-forward of the fundamental class of a
closed manifold W along some map to the space. Furthermore, if the target M is a
closed n-manifold and therefore satisfies Poincaré duality

Hk(M;F2)
∼=−→ Hn−k(M;F2),

the cohomology class dual to the homology class represented by the intersection
of two transverse maps V → M and W → M , or more precisely their pull-back

(a) Torus (b) Klein Bottle
Fig. 2 The torus is obtained by gluing together horizontal and vertical boundary components with no twists.
The self-intersection for any 1-cycle is always even. The Klein bottle is obtained by gluing horizontal and
vertical boundary components with a twist. The self-intersection of the depicted 1-cycle is odd
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W ×M V → M , is the cohomology class [α] � [β]where [α] and [β] are respectively
dual to the homology classes represented by W → M and V → M .

By taking [α] = [β] of cohomological degree k, we have that Sqk
([α]) = [α] �

[α] is represented by the transverse self-intersection of W → M , that is, the intersec-
tion of this map and a generic perturbation of itself.

For example, let us consider the Torus T and the Klein bottle K. Two manifolds
with the same mod 2 Betti numbers. These surfaces are distinguished by the fact that

rank
(
Sq1 : H1(T;F2) → H2(T;F2)

) = 0,

rank
(
Sq1 : H1(K;F2) → H2(K;F2)

) = 1,

whichwe can verify geometrically, as depicted in Fig. 2, by noticing that the transverse
self-intersection of a map S1 → T parallel to any boundary component is always an
even number of disjoint points, whereas that of amap S1 → K parallel to the untwisted
boundary component is always an odd number.

In manifold topology, the relationship at the (co)homology level between cup
product and intersection is classical. For a comparison between these at the level
of (co)chain see Friedman et al. (2021).

3.4 Relations and further structure

The cup-i coproducts or, equivalently, their linear dual products, arise from effectively
constructing coboundaries that coherently enforce the commutativity relation of the
cup product in cohomology. This is an example of a general principle: constructing
cochains enforcing cohomological relations lead to further cohomological structures.
In our case, the commutativity relation of cup product gives rise to Steenrod operations.

There are two notable relations satisfied by the Steenrod square operations. The first
one, known as the Cartan relation, expresses the interaction between these operations
and the cup product:

Sqk
([α][β]) =

∑

i+ j=k

Sqi
([α]) Sq j ([β]),

whereas the second, the Adem relation (Adem 1952), expresses dependencies appear-
ing among the iteration of operations:

Sqi Sq j =
�i/2�∑

k=0

(
j − k − 1

i − 2k

)
Sqi+ j−k Sqk (9)

where �−� denotes the integer part function and the binomial coefficient is reduced
mod 2.

To tap into the secondary structure associated with these relations, one needs to
provide effective proofs for them, that is to say, construct explicit cochains that enforce
the relations when passing to cohomology. Such effective proofs were recently given
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respectively in Medina-Mardones (2020c) and Brumfiel et al. (2021), and we expect
that the additional structure they unlock will also play a role in applied topology.

4 Persistence Steenrodmodules

In this section we define persistence Steenrod modules and their associated barcodes.
We also introduce, for finite filtered simplicial complexes, a complete algorithmic
pipeline for their computation.

Definition 3 A persistence Steenrod module (over F2) is a graded persistence module
M• of F2 vector spaces together with a degree-k endomorphism

Sqk : M• → M•

for each integer k, such that Sqk(i) satisfies the Adem relations (9) for every i ∈ Z.

Similar to how persistence modules can be thought of as modules over the poly-
nomial algebra F2[x], persistence Steenrod modules correspond to modules over the
algebraA[x] whereA is the Steenrod algebra, the free algebra generated by symbols
Sqk modulo the ideal generated by the Adem relations.

4.1 Steenrod barcode

The following computable invariant of persistence Steenrod modules is central to
applications.

Definition 4 For any integer k, the Sqk -barcode of a persistence SteenrodmoduleM•,
denoted by Sqk BarM• , is the barcode of the image persistence module img Sqk . We
refer to the collection of all of these as the Steenrod barcode of M•.

The following example illustrates that, unlike barcodes of regular persistence mod-
ules, Steenrod barcodes of persistence Steenrod modules are not a complete invariant.
Let M• be the graded vector space given by

M0 = F2{x0}, M1 = F2{x1}, M2 = F2{x2, y2},

and equal to 0 in all other degrees. LetM be the graded persistence module

M•(i) =
{
M• i = 0,

0 otherwise.

We make M• into a persistence Steenrod module in two non-isomorphic ways, but
with the same Steenrod barcodes, by defining

Sq2(x0) = x2, Sq1(x1) = x2, Sq0 = id,
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and

Sq2(x0) = x2, Sq1(x1) = y2, Sq0 = id.

We thank Prasit Bhattacharya for suggesting this example.
The most prominent examples of persistence Steenrod modules are given by persis-

tent relative and absolute cohomology of a filtered complex X . In this case, denoting
both H•

R and H•
A by H•, we have

Sq0BarH•(X;F2) ∼= BarH•(X;F2)

since Sq0 is the identity.

4.2 Duality

The following example illustrates that, unlike the case of regular barcodes discussed
in (5), the Steenrod barcode of persistent relative and absolute cohomology need
not completely determine each other. Let M be the Möbius band and consider the
filtration S1 → M where the circle is included as the boundary of M. Given that
H•(M, S1) is isomorphic to the reduced absolute cohomology of the real projective
plane M/S1 ∼= RP2, and that M is homotopy equivalent to its central circle, one can
verify that the Steenrod barcode of absolute cohomology is empty but that of relative
cohomology is not.

An important case where the Steenrod barcodes of persistent relative and absolute
cohomology determine each other is when there are only finite bars in their regular
barcodes. More precisely, let X be a p.f.d. filtered complex such that for some integer
n either

BarHn
R(X;F2) = BarfinHn

R(X;F2)

or, equivalently,

BarHn−1
A (X;F2) = BarfinHn−1

A (X;F2) .

Then, for every integer k there is a bijection of multisets

Sqk BarHn
R(X;F2) Sqk BarHn−1

A (X;F2)
[p, q] [p, q].

∼=
(10)

We illustrate the argument in an example that contains all the ideas of the proof.
For complete details we refer to the study of dualities in the categorical framework
presented in Bauer and Schmahl (2020). Consider Sq1 and a two stage filtration
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X1 → X2 or, more explicitly,

Xn =

⎧
⎪⎨

⎪⎩

∅ n < 1,

X1 n = 1,

X2 n > 1,

and the diagram

δn+1←−− Hn+1(X1) Hn+1(X2) Hn+1(X2, X1)
δn←−

δn←− Hn(X1) Hn(X2) Hn(X2, X1)
δn−1←−−

δn−1←−− Hn−1(X1) Hn−1(X2) Hn−1(X2, X1)
δn−2←−−

i∗n+1 j∗n+1

Sq1

i∗n
Sq1

j∗n

Sq1

Sq1

i∗n−1

Sq1

j∗n−1

Sq1

where the horizontal maps are part of the long exact sequence of the pair (X2, X1).
Consider β ∈ Hn(X2, X1) with Sq1β �= 0. Since all regular bars are finite j∗n β = 0
so j∗n+1Sq

1β = 0 and we have an Sq1-bar (0, 1]nR . By exactness, δn−1α = β for some
α ∈ Hn−1(X1) where δn−1 is the (n − 1)th connecting homomorphism. Since these
commute with Steenrod squares, we have Sq1α �= 0. Furthermore, Sq1α is not in the
image of i∗n since otherwise Sq1β would be 0. Therefore, there is a Sq1-bar (0, 1]n−1

A .
Conversely, given α ∈ Hn−1(X1)with Sq1α �= 0 the finiteness assumption implies

that δn Sq1α �= 0 so we have a Sq1-bar (0, 1]n−1
A . Denote by β the element δn−1α and

notice that Sq1β �= 0 with exactness implying j∗n Sq1β = 0, so we have a Sq1-bar
(0, 1]nR .

4.3 Truncations

Given a filtered complex X and an integer n there are two naturally associated filtered
complexes X≥n and X≤n defined respectively by

(X≥n)k =
{
Xn k < n,

Xk k ≥ n,
(X≤n)k =

{
Xk k ≤ n,

Xn k > n,

and referred to as the above and below truncations at Xn . Persistent relative (resp.
absolute) cohomology behaves well with respect to above (resp. below) truncations.
Explicitly, there exist canonical inclusions

BarH•
R(X≥n) → BarH•

R(X),

BarH•
A(X≤n) → BarH•

A(X),
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and

Sq•BarH•
R(X≥n) → Sq•BarH•

R(X),

Sq•BarH•
A(X≤n) → Sq•BarH•

A(X).

We remark that this formof “stability” of Steenrod barcodesmay fail when considering
persistent relative (resp. absolute) cohomology and below (resp. above) truncations.
For example, consider the filtration S1 → M → CM, where CM is the cone on the
Möbius band. The Steenrod barcode of the relative absolute cohomology of this filtra-
tion is empty whereas, as discussed at the beginning of Sect. 4.2, its below truncation
at M is not.

4.4 Computing the Steenrod barcode

In this subsection we provide algorithms to compute the Steenrod barcode of the
persistent relative cohomology of a finite filtered simplicial complex X

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xm = X ,

together with a total order of its elements

a0 < a1 < · · · < am

such that for all j ∈ {0, . . . ,m} we have

X j = {ai ∈ X | i ≤ j}.

Most of this pipeline is applicable to other filtered cellular complexes, with the excep-
tion of Algorithm 2.

4.4.1 Regular barcode

Let us begin by reviewing an effective construction of the barcode of the persistent
relative cohomology of X . Let D be the matrix representing

∂ : C•(X;F2) → C•(X;F2)

in the canonical ordered basis {a0 < · · · < am}. We index columns and rows in this
matrix starting at 0, and denote j = m − j for all j ∈ {0, . . . ,m}. Consider D⊥
defined by

D⊥
p, q = Dq, p.

Notice that D⊥≤ j,≤ j represents the coboundary of C•(X , X j−1;F2).
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Fig. 3 Column reduction
algorithm

Algorithm 1: reduce
Input: matrix M
R = M
while ∃ i < j, pivot(Ri) = pivot(Rj) do

Rj = Ri +Rj

Output: R

Applying to D⊥ a version of Algorithm 1 in Fig. 3 that remembers the performed
operations we produce a reduced matrix R and an upper triangular invertible matrix
V satisfying

R = D⊥V .

Denoting the j-th column of R by R j , let

P = { j | R j = 0}, N = { j | R j �= 0} E = P \ {pivots of R}.

There exists a canonical bijection between the union of N and E , and the barcode of
persistent relative cohomology given by

N � j �→ [
j, pivot R j

] ∈ Barfin
Hdim(a j )+1

R

E � j �→ [− 1, j
] ∈ Bar inf

Hdim(a j )

R

that provides a preferred cocycle representative for each of these bars:

[i, j] �→
{
Vj , i = −1,

Ri , i �= −1.

More specifically, a basis for H•(X , X j−1) thought of as a subspace in the direct sum

ker δ = img δ ⊕ H•(X , X j−1;k),

is given by the set of cochains corresponding to the vectors in the union of

{
Rk | k ∈ N , j < pivot(Rk)

}
and {Vi | i ∈ E, i ≤ j},

and a basis for img δ is given by

{Ri | i ∈ N , i ≤ j}.
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4.4.2 Steenrod barcode

We now describe an effective construction of the Steenrod barcode of the persistent
relative cohomology of X . For any integer k ≥ 0, let sqk be an algorithm taking as
input a vector corresponding to a cochain α ∈ Cn(X , Xi ) and producing the vector
corresponding to the cochain

(α ⊗ α)�n−k(−).

Such an algorithm, based on the explicit formulas of Sect. 3, is presented asAlgorithm2
in Fig. 4. Let Qk be the square matrix with columns given by

Qk
i =

⎧
⎪⎨

⎪⎩

sqk(Vi ) i ∈ E,

sqk(R j ) i = pivot(R j ),

0 otherwise.

For matrices M and N of dimensions m × p and m × q we define the m × (p+ q)

matrix M | N by

(M | N )i =
{
Mi , i ≤ p,

Ni−p, i > p.

We now have all the elements needed to introduce Algorithm 3 in Fig. 5 whose
output is the Sqk-barcode of the persistent relative cohomology of X . Intuitively, the
step from j−1 to j either adds a newnon-zero coboundary R j (which implies Qk

j = 0)

or the image Qk
j of a persistent cocycle generator (which implies R j = 0). In either

case, we need to reduce with respect to the subspace of coboundaries, generated by
R≤ j , the image of Sqk , which is generated by Qk

≤ j . This process is done keeping

Algorithm 2: sqk

Input: A = {a1, . . . , am} ⊆ Xn

B = ∅
forall ai and aj with i < j do

aij = ai ∪ aj
if aij ∈ Xn+k then

ai = ai \ aj ; aj = aj \ ai ; aij = ai ∪ aj
index : aij → {0, 1}
forall v ∈ aij do

p = position of v in aij ; p = position of v in aij
index(v) = p + p residue mod 2

if index(ai)� index(aj) = {0, 1} then
B = B �{aij}

Output: B

Fig. 4 Algorithm producing for a simplicial complex X , non-negative integer n, integer k between 1 and n,
and cocycle α, presented as a set A ⊆ Xn , a cocycle representing Sqk ([α]) identified with a set B ⊆ Xn+k .
We use the notation S � S′ = S ∪ S′ \ (S ∩ S′) and index(S) = {index(s) | s ∈ S}
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Fig. 5 Algorithm producing the
Sqk -barcode of a filtered
simplicial complex given its
reduced anti-transposed
boundary matrix R and a matrix
Qk containing as a columns the
images under Sqk of cocycles
representing the barcode of its
persistent relative cohomology

Algorithm 3: st bar

Input: R, Qk

Alive = {0, . . . ,m}
Barcode = ∅
for j = 0, . . . ,m do

R≤j | Qk
≤j = Reduce R≤j | Qk

≤j

)

for i = 0, . . . , j do
if i ∈ Alive and Qk

i = 0 then
remove i from Alive
if i < j then

add [m − j,m − i] to Barcode
for i ∈ Alive do

add [−1,m − i] to Barcode
Output: Barcode

track of when columns in Qk become zero and extracting from this information the
Sqk-barcode of the filtration.

We leave the development of a pipeline for persistent absolute cohomology to future
work, remarking that, as described in (10), its associated Steenrod barcode is equal
to that of persistent relative cohomology if all regular bars are finite, a situation often
countered in practice.

5 Examples

To demonstrate the feasibility of extracting Steenrod barcodes from realistic datasets
using the computational pipeline described in Sect. 4, we have produced two open-
source software implementations: one1 is a Python package optimized by means of
the Numba library (Lam et al. 2015), and the other2 is a performance-oriented C++
package inspired by the PHAT library (Bauer et al. 2014).

While detailed performance benchmarking is beyond the scope of this paper, some
remarks are in order. First, we note that both our implementations apply the clearing
optimization (Chen and Kerber 2011) to Algorithm 1. It is well-known (see e.g. the
discussion in Bauer (2021)) that clearing is particularly effective when computing
relative persistent cohomology – and even more so when the filtration is constructed
via a Vietoris–Rips process. Second, although the computation of matrix Qk (input to
Algorithm3) is in principle embarrassingly parallelizableby tasking fully independent
threads with the calculation of different columns, we have not yet pursued this path in
our code.

Third, we expect (and observe experimentally) that “sparsifying” our filtrations
via simplicial collapses (Pritam 2020; Boissonnat and Pritam 2020), operations that
preserve the homotopy type of each complex, can lead to a cascade of space and time
improvements across our computational pipeline. This is presumably because:

(1) the run-time and memory usage in Algorithm 1 is reduced, yielding sparser R and
V matrices and hence cocycle representatives with smaller sizes on average;

1 Available at https://github.com/Steenroder/steenroder.
2 Available at https://github.com/Steenroder/steenroder_cpp.
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(2) the outer forall loop in Algorithm 2 becomes faster for smaller cocycles;
(3) the leaner R matrix reduces the computational run-time and memory usage once

again in the final Steenrod barcode computation, Algorithm 3.

(2) above deservesmore emphasis: our experiments suggest that, in typical datasets, the
main bottleneck in the entire pipeline is the computation ofsqk for a few exceptionally
sizable cocycle representatives. This is due to the quadratic complexity of the forall
loop in Algorithm 2. By replacing the largest cocycle representatives returned by (any
implementation of) Algorithm 1 with cohomologous ones with a smaller size, one
could presumably alleviate this problem. Our preliminary attempts using right-to-left
reductions on the matrix R output by Algorithm 1 have yielded promising results; in
the future, we hope to further improve our implementations in this direction, as well
as making it easily accessible through its incorporation into giotto-tda (Tauzin
et al. 2021).

We now report the results of computing Sq1-barcodes in a synthetic and a natural
dataset. In both cases we start from a point cloud and construct an associated filtered
simplicial complexes through the Vietoris–Rips process with a fixed simplex dimen-
sion threshold of 3 (simplices with 4 or less vertices) and some distance threshold. We
close this section with a comparison of the Sq2-barcode of two filtered complex mod-
els of the cone on the suspension of, respectively, CP2 and S2 ∨ S4. Our experiments
are fully reproducible as Jupyter notebooks.1

5.1 Flat Klein bottle

Our first example is constructed from a matrix of geodesic distances among N points
in a metrically flat Klein bottle. This is the Riemannian manifold M = (R2/∼, g)
obtained from R

2 with its usual metric via the equivalence relation (x, y) ∼ (x +
n, 1 − y + m) ∀ m, n ∈ Z. To define this point cloud we selected N = 100 points
corresponding to the vertices of a square grid inside the unit square [0, 1]2.

5.1.1 Persistent relative cohomology

Let X be the Vietoris–Rips filtered complex associated to this point cloud with dis-
tance threshold R = 0.3. We apply our pipeline to compute the regular barcode of
Hi

R(X; F2) for i = 1, 2 and their associated Sq1-barcode. The results are presented in
Fig. 6. There are three infinite bars: two in degree 1 – which happen to have identical
birth and death due to the symmetry in our construction – and one in degree 2. Our
implementation detects an infinite bar in img(Sq1) ∩H2

R . This cohomological profile
agrees with that expected from a filtered Klein bottle.

5.1.2 Persistent absolute cohomology

Let X be the Vietoris–Rips complex obtained from the same point cloud with no
distance threshold. In Fig. 7 we present the regular barcode ofHi

A(X; F2) for i = 1, 2
and associated Sq1-barcode, obtained using our pipeline and the duality of Steenrod
persistent cohomology (Sect. 4.2). Our implementation detects a single Steenrod bar
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Fig. 6 Regular barcode of Hi
R(X; F2) for i = 1, 2 and associated Sq1-barcode. Here X is the Vietoris–

Rips filtered complex associated to N = 100 points in a metrically flat Klein bottle and distance threshold
R = 0.3. Arrowheads indicate infinite bars and integers over a bar denote its multiplicity (otherwise, the
multiplicity is 1). Vietoris–Rips filtration values are shown on the horizontal axis

2
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Persistent absolute cohomology barcode

H1
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H2
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Steenrod barcode

img(Sq1) ∩ H2
A

Fig. 7 Regular barcode ofHi
A(X; F2) for i = 1, 2 and associated Sq1-barcode.Here X is theVietoris–Rips

filtered complex associated to N = 100 points in a metrically flat Klein bottle and no distance threshold

in img(Sq1) ∩ H2
A, which is born with the H1

A bars and dies with the H2
A bar. Once

again, this cohomological profile is consistent with that of a filtered Klein bottle.

5.2 Conformational space of cyclo-octane

Our second example involves a sampling of the conformational space of the cyclo-
octanemolecule C8H16.We started with a dataset, originally fromMartin et al. (2010),
which consists of 6040 vectors in R

24. Each of these vectors collects the 3D coordi-
nates of all 8 carbon atoms in a given cyclo-octane conformation after alignment to
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Fig. 8 Regular barcode of Hi
R(X; F2) for i = 1, 2 and associated Sq1-barcode Here X is the R = 1.2

Vietoris–Rips filtered complex associated to the N = 3547 “Klein bottle component” of the sampled
conformational space of C8H16. Bars in the persistent relative cohomology barcode with lifetime shorter
than 0.2 are not shown to reduce clutter

a reference one. In Martin et al. (2010), this dataset was used to argue that the full
conformational space of cyclo-octane is not a manifold, being in fact the union of
a 2-sphere with a Klein bottle glued together along two circles of singularities. The
reader can consult the papers Membrillo-Solis et al. (2019), Adams and Moy (2021)
for further details and references.

Candidate singular points in this dataset can be identified in a variety of ways; we
used a set of 627 singular points isolated in Stolz et al. (2020) via local persistent
cohomology.3 We removed these points from the dataset, and clustered the remain-
ing 5413 points using the HDBSCAN algorithm of Ricardo et al. (2013) to obtain
(samplings of) four 2-strata – presumably corresponding to a dense open subset of the
Klein bottle, and three open connected subsets of the 2-sphere.

As computed in Membrillo-Solis et al. (2019), the persistent absolute homology
H• of the Vietoris–Rips filtered complex associated to the point cloud with N = 3547
elements supported on the presumed Klein bottle has, excluding the basic bar from
H0, three prominent bars in its barcode. Their birth and death values occur respectively
before and after the value R = 1.2 and two come fromH1 while the other from H2.

5.2.1 Persistent relative cohomology

We study the persistent relative cohomology of X , the Vietoris–Rips filtered com-
plex associated to this point cloud with distance thresholds R = 1.2. In Fig. 8 we
show, discarding short-lived bars (< 0.2) for ease of visualization, the regular barcode
of Hi

R(X; F2) for i = 1, 2 and their associated Sq1-barcode. Our implementation
detects two Sq1-bars. One is infinite and born with one of the two infinite H1

R bars,
while the other is born with the otherH1

R bar and dies with the most prominent finite

3 Data retrieved from https://github.com/stolzbernadette/Geometric-Anomalies.
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Fig. 9 Regular barcode of Hi
A(X; F2) for i = 1, 2 and associated Sq1-barcode. Here X denotes the

R = 1.5 Vietoris–Rips filtered complex associated to an N = 800 random subsample of the “Klein bottle
component” of the conformational space of C8H16

H2
R bar. The infinite parts of these barcodes are consistent with a filtered Klein bottle,

where one of the infinite degree 1 bars interacts non-triviallywith the degree 2 one. The
finite Steenrod bar adds extra information revealing a non-trivial interaction between
the other infinite degree 1 bar and a finite degree 2 bar. Refinements to the model for
the conformation space of the cyclo-octane molecule resulting from the incorporation
of this finer feature go beyond the scope of this example and are left unexplored.

5.2.2 Persistent absolute cohomology

For this data set we will also compute a Steenrod barcode for absolute persistent
cohomology. We will use a distance threshold chosen to be larger than the death value
of all prominent features. To do so we consider a subsample consisting of N = 800
randomly selected points. The persistent homology barcode of the associatedVietoris–
Rips filtered complex with no distance threshold contains three prominent bars, and
their death values are all less than R = 1.5. As expected, two of these are associated to
H1 and the other toH2. Let X be the the Vietoris–Rips filtered complex with distance
thresholds R = 1.5 obtained from this subsample.We remark that the threshold chosen
ensures a correspondence between persistent relative and absolute cohomology of the
Steenrod bars associated to their prominent features (Sect. 4.2). In Fig. 9 we show,
discarding no bars, the regular barcode ofHi

A(X; F2) for i = 1, 2 and associated Sq1-
barcode. As expected, the interaction between the more prominent bars witnessed by
the Steenrod barcode is consistent with a filtered Klein Bottle.

5.3 Complex projective space and a wedge of spheres

We conclude this section comparing the Sq2-barcodes of the persistent absolute coho-
mology of two filtered simplicial complexes. On one hand, we have a filtration of the
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Fig. 10 Persistence diagram representations of the regular and Sq2-barcodes of the persistent absolute
cohomology of (a) a filtered complex modeling the cone on the suspension of S2 ∨ S4, and (b) a filtered
complex modeling the cone on the suspension of CP2

cone on the suspension of the complex projective space C	 CP2, and, on the other,
one of C	 (S2 ∨ S4), where, as usual, Sn denotes the n-dimensional sphere. As men-
tioned in the introduction,	 (S2∨ S4) and	 CP2 have isomorphic cohomology rings
over any coefficients, but they can be distinguished by the action of Sq2 on their mod 2
cohomology.

Interpreting bars as points in the plane, we plot in Fig. 10 the regular and Sq2-
barcodes of the persistent absolute cohomology of these filtrations. After rescaling by
the number of simplices, we can see that the regular barcodes, symbolized by colored
circles, are very similar; yet there is a Sq2-bar, represented by a brown diamond,
present in the second figure only.

6 Conclusion

Steenrod barcodes increase the discriminatory power of traditional barcodes, providing
finer computable topological invariants of filtered spaces. Furthermore, as we showed
using the conformation space of C8H16, the additional information these invariants
reveal is non-trivially present in real-world examples.
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