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Abstract
The present study evaluated whether subjects’ expectations and neurofeedback training performance predict neurofeedback 
efficacy in cognitive training by controlling both factors as statistical variables. Twenty-two psychology students underwent 
neurofeedback training, employing beta/theta protocol to enhance beta1 power (13–21 Hz) and suppress theta (4–7 Hz) power. 
Neurofeedback efficacy was evaluated by behavioral components measured on pre-tests and post-tests employing a visual 
continuous performance task. The results revealed a significant interaction term between change in reaction time from pre-test 
to post-test and expectancy effect, indicating that participants with high prognostic expectations showed better improvement 
in reaction time scores. The data did not reveal that actual neurofeedback performance influenced the post-test measurements 
of the visual continuous performance task. No significant differences were found for reaction time variability, omission, or 
commission errors. Possible factors contributing to the results are discussed, and directions for future research are suggested.
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A large body of research appears to confirm the potential 
benefits of brain training programs (Jaeggi et al., 2014; Lil-
ienthal et al., 2013; Rudebeck et al., 2012; Susanne et al., 
2008) and in recent years, the implementation of such pro-
grams has significantly advanced. Many companies are 
attempting to introduce products to schools and therapy cent-
ers with the claim that cognitive performance will improve 
after a certain number of training sessions, positively affect-
ing performance in academic, social, or professional con-
texts, and even reducing symptoms associated with various 
psychological disorders. One such training program involves 
neurofeedback.

The roots of neurofeedback can be traced to the late 
1960s and 1970s, when it was established that it is possi-
ble to recondition or retrain brainwave patterns. The work 

of Sterman, in which cats learned to regulate sensorimotor 
rhythm through operant conditioning, became a milestone in 
neurofeedback research (Sterman & Egner, 2006). A typical 
procedure involves converting EEG parameters into visual or 
auditory signals, and presenting them to participants through 
a human–computer interface in a real-time setting. Feed-
back is the core component of such training, as the process 
reflects the principle of “no feedback, no learning.” Operant 
conditioning is the basis of this learning process (Hammond, 
2011; Pérez-Elvira et al., 2021), reinforcing or inhibiting 
learning by means of positive or negative feedback following 
an evaluation of the actions performed. Every neurofeedback 
training session follows a protocol that specifies the power 
of the frequency band to be trained and the area on the scalp 
where this power will be recorded. A variety of protocols 
exist, each with its own history of development targeting 
different psychological disorders (for review, see Hammond 
(2011)). This study focuses on the so-called theta-beta (also 
referred to as beta/theta) protocol, often used to improve 
certain cognitive abilities, particularly in terms of improved 
attention (Kropotov, 2010).

Previously, several studies employing the beta/theta 
protocol and different cognitive tasks reported significant 
improvement in cognitive performance in both healthy 
individuals and attention-deficit/hyperactivity disorder 
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(ADHD) patients after neurofeedback training (Boulay 
et al., 2011a; Egner & Gruzelier, 2004; Fuchs et al., 2003). 
Research results have also associated training of the beta 
frequency band with improvement in semantic memory 
performance using a computerized conceptual span task 
(Vernon et al., 2003). Other research noted that beta oscil-
lations increased during endogenous top-down processes 
(Engel & Fries, 2010). Moreover, beta band (12–30 Hz) 
activity over the occipital area might be involved in sus-
taining attention processes (Kamiński et al., 2012), and 
is possibly linked to vigilance in humans (Joachim et al., 
2004).

Even though several studies have reported positive 
results from neurofeedback training, the limitations of 
these findings also require consideration. Several studies 
pointed out on (Arnold et al., 2013; Schabus et al., 2017; 
van Dongen-Boomsma et al., 2013) implemented a control 
group in a double-blind placebo design and found that the 
effectiveness of neurofeedback training was not superior 
to placebo training, indicating that both conditions were 
effective. This fact suggests that neurofeedback training, 
like other brain training programs, faces the problem that 
underlying mechanisms leading to cognitive improve-
ment are not well understood (Greenwood & Parasura-
man, 2015). In addition, the inclusion of a control group 
does not necessarily account for unspecified factors that 
may influence results in both experimental and controlled 
conditions (for a more detailed discussion on this topic, 
see Boot et al. (2013) and Borkovec and Sibrava (2005)). 
Foroughi et al. (2016) proposed one such mechanism, also 
widely recognized in the literature: the expectancy effect. 
Nevertheless, little is known about the effect of expecta-
tions on brain training programs (Rabipour & Davidson, 
2015).

The expectancy effect is a subjective expectation about 
the efficacy of a specific intervention. This concept, related 
to placebo mechanisms, was first theorized by Goldstein 
(1962). The theory was further divided into “prognostic 
expectation” and “participants’ role expectation.” The 
former refers to how participants estimate the positive or 
negative outcomes of their treatment. The latter, which is 
more complex, refers to the ways therapists anticipate par-
ticipants will behave, as well as the participants’ expecta-
tions for their own behavior. In studies with psychological 
interventions, the expectancy effect has rarely been meas-
ured in experimental or control groups (Boot et al., 2013). 
Therefore, any conclusions about the causal efficacy of 
psychological interventions may be doubtful. These argu-
ments are very important and highly relevant to neuro-
feedback training design, as neurofeedback training studies 
face identical issues. Acknowledging the aforementioned 
challenges, the focus of this study is centered on so-called 
prognostic expectations.

Current Study

Several previous studies employing the theta/beta protocol and 
different cognitive tasks (custom Go/No-go reaction time task 
[Boulay et al., 2011b]; the test of variables of attention [Egner 
& Gruzelier, 2004]; and continuous performance task [Egner 
& Gruzelier, 2001]) reported significant improvement of cog-
nitive performance in healthy individuals after neurofeedback 
training that was associated with a change in behavioral data, 
such as reaction time, reaction time variability, and reduction 
of omission and commission errors. However, the results of 
some neurofeedback studies (Schabus et al., 2017; Schönen-
berg et al., 2017) that implemented a control placebo group 
support the hypothesis that the efficacy of neurofeedback train-
ing may be due to unspecified psychological factors rather than 
the training itself. The study of Lee and Suhr (2020) specifi-
cally evaluated the expectancy effect, reporting that this fac-
tor was positively associated with self-reported ADHD symp-
toms. This factor is considered one of the placebo mechanisms 
(Koshi & Short, 2007). Such findings imply that studying 
the expectancy effect individually could benefit the current 
debate in the literature. However, no well-defined hypothesis 
addresses the degree to which the placebo effect affects neu-
rofeedback training. Hence, we avoided the umbrella term 
placebo and focused on a specific placebo effect: prognostic 
expectations. The literature suggests that the expectancy effect 
might serve as a powerful independent factor that increases 
participants’ commitment to the tasks in the study, potentially 
resulting in enhanced performance and increased scores post-
test (Foroughi et al., 2016). If the expectancy effect is a signifi-
cant psychological mechanism that enhances the outcome after 
cognitive training, then this phenomenon might also serve to 
predict the efficacy of neurofeedback training.

In the current study, we employed a visual continuous per-
formance task and tested whether neurofeedback training is 
associated with training gains (change of reaction time scores, 
improvement of reaction time variability scores, and reduced 
number of omission and commission errors). Furthermore, to 
evaluate whether prognostic expectations and actual neuro-
feedback performance contributed to the training outcome, we 
added these factors to our model. Such a design allowed us to 
control these factors statistically and evaluate whether they are 
associated with pre-test-post-test measurement improvement.

Materials and Methods

Design and Procedure

This study implemented an experimental repeated meas-
urement design with a voluntary response sample method. 
The study had one intervention group with pre-test-post-test 
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measurements and intervention in the form of a neurofeed-
back training course.

Participants

A total of 22 (16 females, six males, aged 18–31 years, 
M = 24, SD = 3.1) university students participated in the 
study. All participants gave their informed consent. The 
study complied with the ethical standards outlined in the 
Declaration of Helsinki and was approved by the Norwegian 
Regional Committees for Medical Research Ethics (REK) 
(n 2014/497).

Participants’ Prognostic Expectations

Participants were introduced to neurofeedback training in 
a psychology course at the Norwegian University of Sci-
ence and Technology. Their prognostic expectations about 
the effectiveness of neurofeedback training were measured 
using a visual analogue scale (Cline et al., 1992) before all 
neurofeedback training sessions. The scale was presented 
as a 10 cm horizontal line, with a verbal descriptor at each 
extreme. Before the first neurofeedback training session, 
subjects were asked to indicate their level of expectation 
for the entire course of training, with the request that they 
answer instinctively and mark their current state of feelings. 
On the left end of the scale was the descriptor “Neurofeed-
back will not improve attention” and at the right end was 
“I will feel a difference,” indicating neurofeedback would 
significantly improve attention. The students were asked to 
draw a perpendicular line to the point on the scale that rep-
resented their expectations. The scores were quantified by 
measuring the distance in millimeters from the left end to 
the point where a participant made their mark. The distance 
in millimeters, ranging from 0 to 100, represented each par-
ticipant’s score.

Neurofeedback Method

Neurofeedback training was performed with a Mitsar Bio-
feedback Trainer Amplifier using the Braintuner 1.5.23 
software package (http:// www. mitsar- eeg. com/). Electro-
encephalogram (EEG) signals were acquired at 125 Hz, 
with refreshing time at 250 ms and band-pass filtered to 
extract theta (4–7 Hz) and beta (13–21 Hz) bands. The arti-
fact detection threshold was set to 70 uV, and the signal 
was recorded with the help of two tin electrodes attached to 
region of training according to the theta/beta protocol, spe-
cifically at Fpz and Fz. The reference electrode was attached 
to the left earlobe.

Neurofeedback Training Sessions

All neurofeedback training sessions (10 in total) took place 
at one of the EEG labs in the Department of Psychology 
at the Norwegian University of Science and Technology. 
All training sessions were performed between 9 a.m. and 
3 p.m. and lasted no longer than 3 months. All partici-
pants had at least two training sessions per week, with 
a minimum 1 day break between sessions. Each training 
session was carried out in a sound-isolated room. The par-
ticipants sat in a comfortable chair, looking at a computer 
screen (22-inch monitor) 1.5 m in front of them. Each 
training session lasted 30 min and consisted of four train-
ing blocks of 5 min each, interrupted by a 2-min break 
between blocks (Fig. 1). Before each training session, the 
participant’s theta/beta ratio was calculated for 2 min (eyes 
open), which was then used as a baseline for the following 
session.

When the filtered EEG signal was transmitted to the 
computer, it was converted and displayed visually for the 
participant as a line graph (Fig. 1). The line was constantly 
moving during the training session from left to right. No 
particular strategy was suggested for maintaining focus on 
the feedback line. Instead, participants were instructed to try 
different focusing strategies to find the one that suited them 
best. If the participant managed to increase their beta/theta 
ratio (increased beta band power and suppressed theta band 
power), the line moved up; suppressing beta band power 
and increasing theta band power moved the line down. After 
each training session, the software displayed a percentage 
for each training block, reflecting how long the training line 
was above the midline during each block. The higher the 
number, the better the subject's performance. In other words, 
a high percentage suggested that the participant managed to 
increase their beta/theta ratio during the training. During the 
breaks, the training participants were instructed not to focus 
on anything in particular. The average performance from all 
four blocks was used to evaluate the entire training session.

Each training session concluded with a short debriefing, 
during which the results were discussed and participants 
could share their experiences. This procedure is considered 
one of the core components of neurofeedback training: “no 
feedback, no learning” (Hammond, 2011). If the participants 
perceived their results as negative, attempts were made to 
neutralize these perceptions during the debriefing, in order 
to maintain motivation and keep expectations at a consist-
ent level. To assess the course of training, neurofeedback 
performance was operationalized as a variable representing 
the final result. This variable shows a percentage relative 
to time within training session (how long beta/theta ratio 
was above the baseline FFT). Since it was expected that the 
last training session would represent the participant’s best 
results in terms of ability to increase their theta/beta ratio, 
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the results of the last training were calculated by averaging 
the four blocks of the session.

Visual Continuous Performance Task

Both pre-test and post-test measurements were taken in the 
same lab where the neurofeedback training took place. A 
visual continuous performance task was used to evaluate 
the training outcomes in terms of sustained attention (Ric-
cio et al., 2002). While performing the cued Go/No-Go task, 
participants sat in a comfortable chair in a sound-isolated 
room, approximately 1.5 m from a 22-inch screen. The task 
consisted of 400 pairs of images, with each image belong-
ing to one of three categories of stimuli: animal, human, or 
plant. Each category contained 20 different images to reduce 
habituation to the repetition of stimuli. The stimuli were 
presented in four equally probable combinations: animal-
animal, plant-plant, animal-plant, and plant-human (Fig. 2). 
The images in pairs animal-animal and plant-plant were 
always identical. The first stimulus of each pair served as 
a cued stimulus where participants were asked to respond 
as soon as a second stimulus appears. The combination of 
animal-animal was defined as the Go condition, in which 
participants were asked to respond—as quickly and accu-
rately as possible—by pressing the left mouse button. In 
the No-Go condition, participants were asked to withhold 

Fig. 1  The visual interface of a single training session. The training 
line moves from left to right during a training session. This line repre-
sents a participant’s brain activity. The participant tries to control this 
line by concentrating and using different focusing strategies to move 
the line upwards. Results represent the participant’s achievement for 

each separate training block, with 100% the maximum result. The 
baseline is represented by the theta/beta ratio (fast Fourier transform 
[FFT]) of participants prior to the training session. The baseline was 
manually changed to better visualize training effects

Fig. 2  Illustration of cued paired stimuli. Participants were asked to 
respond to animal-animal pairs (Go trials), withhold for animal-plant 
(No-Go trials) pairs, and ignore all other pairs (irrelevant trials)
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responses when presented with animal-plant images (Fig. 2). 
No responses were required for plant-plant and plant-human 
conditions, rendering these two conditions irrelevant. Each 
stimulus pair was presented separately for 100 ms, with 
a stimulus interval of 1000 ms, and for a trial duration of 
3500 ms. No stimuli were presented during trial intervals.

The 400 trials were divided into four blocks. Each block 
consisted of 100 trials and lasted for 5 min. After each block, 
participants were given a break for about 1 min to maintain 
alertness and to neutralize boredom. On both pre-tests and 
post-tests, the participants were asked to respond as quickly 
as possible in the Go condition and to make as few errors as 
possible in the No-Go condition. Research has shown that 
behavioral components are highly sensitive to the instruc-
tions subjects receive (Aasen & Brunner, 2016). Therefore, 
every single participant in this study received identical ver-
bal instructions.

Reaction time is a behavior component derived from the 
visual continuous performance task. This variable represents 
participants’ reaction speed in all Go trials (100 trials). A 
response was regarded as correct if it occurred between 
150 and 1000 ms after the second stimulus in each Go trial. 
Reaction time variability represents the within-person fluc-
tuation of reaction time response in Go trials. This score 
reflected the stability of response performance and was cal-
culated using the following formula: SDrt / RTmean (Tamm 
et al., 2012). Omission and commission errors represent the 
number of errors participants made by failing to respond 
to target stimuli (omission) and the number of incorrect 
responses to non-target stimuli (commission).

Data Preparation and Analysis Approach

For our study, we chose a mixed-model analysis, which was 
developed to account for participant responses correlated 
over time (Twisk, 2013). The R software package was used 
to prepare and analyze the data (R Core Team, 2021). To 
apply mixed linear models, we used the lme4 and lmerTest 
packages (Bates et al., 2015). For post hoc comparison, we 
used the emmeans package (Russell, 2021). For a fixed effect 
in our mixed model, we entered the pre-post as our predic-
tor with two levels (pre-test, post-test). To address skewed 
response times, our response variable (reaction time) was 
log transformed (Judd et al., 1995). Participants’ expecta-
tions and neurofeedback performances were entered as two 
additional predictors to our regression model, as well as their 
interaction term. For random effect, we entered the inter-
cept of participants, thereby accounting for by-participant 
variability. Using the Wilkinson notation, the model was 
specified as follows:

      RT model = rt log ~ pre-post × nf-performance × expec-
tations + (1|participant)

We analyzed the omission and commission errors sepa-
rately, using the same approach. The models were speci-
fied as follows:
      Omission model = omission errors ~ pre-post × nf-
performance × expectations + (1|participant)
      Commission model = commission errors ~ pre-
post × nf-performance × expectations + (1|participant)

Before fitting regression models, we analyzed all Go 
responses (N = 4341). Prior to response time analysis, we 
removed all response errors (commission and omission, 
1.35% of the total amount). For within-subject procedure, 
we identified and removed outlier responses with a stand-
ardized residual value greater than three standard deviations 
from zero (1.33% of the total amount). For between-subject 
procedure, we used a boxplot method (Tukey, 1977) and 
analyzed all Go responses for pre-test and post-test scores 
separately. Pre-test scores of one participant (2.3% data lost) 
and post-test scores of another participant (2.2% data lost) 
were identified as outlier responses, which were excluded 
from the analysis.

Results

Descriptive Statistics (Table 1)

Response Times

A reaction time analysis did not reveal a significant simple 
main effect of pre-test and post-test F (1, 4047) = 0.10, 95% 
CI [− 0.07, 0.10], p = 0.748. An interaction term between 
the pre- and post-test and neurofeedback performance did 
not reach significance F (1, 4042) = 0.14, 95% CI [− 0.00, 
0.00], p = 0.706. The analysis revealed a significant inter-
action term between the pre- and post-tests and prognos-
tic expectations F (1, 4042) = 3.68, 95% CI [− 0.00, 0.04], 
p = 0.055. Lastly, a three-way interaction between the pre- 
and post-test, neurofeedback performance, and participants’ 
expectations was not significant F (1, 4083) = 0.04, 95% CI 
[− 0.00, 0.00], p = 0.174.

This outcome indicates that participants’ expecta-
tions moderated the change from pre-test to post-test. We 
explored this two-way interaction term further by applying 
the median split (Iacobucci et al., 2015) to our predictor 
prognostic expectation Mdn = 3.8. Figure 3 illustrates a plot 
of this interaction.

Post Hoc Comparison (Reaction Time)

Further post hoc analysis with the Games-Howell adjust-
ment revealed a significant difference between pre- and 
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post-test measurements in the high expectations group 
(Mdiff = 18 ms) t(4072) =  − 10.06, p < 0.001, ηp

2 = 0.003. 
A significant difference between pre- and post-test 
scores was also found in the low expectations group with 
(Mdiff = 11 ms) t(4071) =  − 7.25, p < 0.001, ηp

2 = 0.001. The 
difference in pre-test scores between groups (Mdiff = 5 ms) 
was not significant t(22) = 0.54, p = 0.946. The difference in 
post-test scores between groups (Mdiff = 11 ms) was also not 
significant t(22) = 1.23, p = 0.615.

Omission and Commission Errors

Omission Errors The analysis did not reveal any signifi-
cant change between pre- and post-test measurements F 
(1, 8708) = 0.00, 95% CI [− 0.01, 0.01], p = 0.953. Neither 
neurofeedback performance F (1, 8708) = 0.53, 95% CI 

[− 0.00, 0.00], p = 0.465 nor prognostic expectation F (1, 
8708) = 0.00, 95% CI [− 0.00, 0.00], p = 0.984 influenced 
post-test results. The three-way interaction between all 
predictors was not significant F (1, 8708) = 0.00, 95% CI 
[− 0.00, 0.00], p = 0.647.

Commission Errors Similarly, the analysis did not show any 
significant change between pre- and post-test measurements 
F (1, 8690) = 0.50, 95% CI [− 0.05, 0.02], p = 0.475. Nei-
ther neurofeedback performance F (1, 8690) = 0.28, 95% CI 
[− 0.00, 0.00], p = 0.591 nor prognostic expectation F (1, 
8690) = 0.10, 95% CI [− 0.00, 0.02], p = 0.749 influenced 
post-test results. The three-way interaction between all 
predictors was not significant F (1, 8690) = 0.00, 95% CI 
[− 0.00, 0.00], p = 0.776.

Table 1  Descriptive statistics 
of behavioral components 
measured by visual continuous 
performance task, prognostic 
expectations, and neurofeedback 
performance

Note: N represents the number of observations for reaction time and error rate variables. For prognostic 
expectations, neurofeedback performance, and reaction time variability, N represents the number of partici-
pants. Prognostic expectations were measured prior to all neurofeedback training sessions, whereas neuro-
feedback performance represents the results of the last training session.

Pre-test Post-test

N Mean SD N Mean SD

Reaction time (ms) 2033 259.81 50.6 2051 243.57 40
Reaction time variability 22 0.178 0.03 22 0.165 0.001
Omission errors (%) 4341 0.18 0.04 4375 0.04 0.12
Commission errors (%) 4341 1.05 0.10 4375 1.41 0.11
Prognostic expectations 22 4.17 1.39
Neurofeedback performance 22 57 19.29

Fig. 3  Visual illustration of 
two-way interaction between 
pre-tests-post-tests and prognos-
tic expectations. Bars represent 
reaction time mean scores with 
95% confidence intervals for 
pre- and post-tests, divided by 
prognostic expectations (low 
versus high)
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Reaction Time Variability

The analysis did not reveal significant differences between 
pre-test and post-test F (1, 20) = 0.97, 95% CI [− 0.25, 
0.08], p = 0.336. Neither neurofeedback performance F (1, 
20) = 0.85, 95% CI [− 0.00, 0.00], p = 0.365 nor prognos-
tic expectations F (1, 20) = 0.581, 95% CI [− 0.02, 0.06], 
p = 0.454 had any effect on reaction time variability. The 
three-way interaction between all predictors was not sig-
nificant F (1, 20) = 0.665, 95% CI [− 0.00, 0.00], p = 0.424.

Discussion

The present study aimed to investigate the efficacy of neu-
rofeedback training on sustained attention and determine 
whether actual neurofeedback training performance or 
prognostic expectations can predict this efficacy. In terms of 
behavioral components of VCPT, and only after accounting 
for participants’ prognostic expectations, our results are sim-
ilar to previous findings that successful training, designed 
to enhance beta1 power and suppress theta power, leads to 
improved reaction time scores (Egner & Gruzelier, 2004). 
In addition, our findings also support previously published 
results (Foroughi et al., 2016; Lee & Suhr, 2020; Schönen-
berg et al., 2017), showing that the expectancy effect influ-
ences cognitive training. Participants with high expectations 
had better change of reaction time scores from pre-test to 
post-test. In addition, the present findings did not show that 
actual neurofeedback performance affected post-test results 
of the visual continuous performance task.

We evaluated participants’ prior prognostic expectations 
as a predictor marginally influencing post-test reaction time 
scores. On the one hand, such results support previous find-
ings that participants with high expectations might have 
had more interest in a given cognitive training, resulting in 
greater commitment and motivation to achieve positive out-
comes (Foroughi et al., 2016; Hicks et al., 2016; Katerelos 
et al., 2015; Oken et al., 2008; Rutherford et al., 2010). On 
the other hand, the marginal effect could be related to other 
factors involved in cognitive training. One plausible expla-
nation is that participants’ expectations changed during the 
course of the training, diminishing final results. Benedetti 
(2020) noted that expectations are not static beliefs and can 
change due to many aspects of the intervention procedure. 
Although we took note of the participants’ perceptions of 
performance, motivation, and interest in continuing the 
course during the debriefing sessions, we did not control 
these factors statistically. Therefore, the question of how 
prognostic expectations change during the training course 
remains. Furthermore, the pre-post-test difference was also 
significant in the low expectation group, possibly indicating 
that other confounding factors influenced the results.

The findings of this study only show statistical evidence 
relating to reaction time scores. We did not uncover sta-
tistical evidence of any improvements in reaction time 
variability or omission and commission errors. Therefore, 
our results are similar to the study of Egner and Gruzelier 
(2004), who reported that reduced amount of omission 
errors and reaction time variability were found when partici-
pants underwent neurofeedback training using sensorimotor 
rhythm training protocol (SMR: 12–15 Hz), whereas train-
ing of beta1 (15–18 Hz) was associated only with reduced 
reaction time. However, our data did not provide statistical 
evidence that actual neurofeedback performance was associ-
ated with improved reaction time scores. While such results 
could be considered supportive of the arguments of Vernon 
(2005), in that neurofeedback results are not associated with 
training frequency derived from EEG data, the absence of 
statistical evidence could still be related to methodological 
limitations. Specifically, we only evaluated neurofeedback 
performance from the last training session, when the per-
formance of some participants was potentially affected by 
confounding factors (tiredness, mood state, etc.). Therefore, 
evaluation of neurofeedback performance from all the train-
ing sessions could provide more quality data. Furthermore, 
results from studies that used EEG power spectrum analysis 
and compared those results between pre- and post-test meas-
urements of different tasks dispute the arguments of Vernon 
(2005). Whereas Janssen et al. (2020) reported that EEG 
data from pre- and post-tests of a resting-state task are not 
associated with theta/beta neurofeedback training, Benito 
et al. (2021), using a working memory task, and Wang et al. 
(2016), using an aberrant behavior checklist and theta/beta 
neurofeedback protocol, reported opposite results. There-
fore, additional EEG power spectrum comparison is required 
to validate the point that training beta1 power (13–21 Hz) 
and suppressing theta power (4–7 Hz) is not associated with 
post-training results of the visual continuous performance 
task.

Comparing these findings with those of other neurofeed-
back studies is challenging because other studies did not 
evaluate potential unspecified factors statistically. Double-
blind placebo studies only point out that such factors may 
contribute to the measured behavioral outcome (Borkovec 
& Sibrava, 2005; van Dongen-Boomsma et al., 2013). An 
evaluation of the expectancy effect is often ignored in other 
brain training programs; researchers prefer using a control 
group over controlling expectations as a statistical variable 
(Boot et al., 2013). Nevertheless, the literature has addressed 
the question of whether the potential effects of prognostic 
expectations contribute to therapeutic gains. For example, 
one meta-analysis conducted by Constantino et al. (2011) 
examined the effectiveness of prognostic expectations in 
46 psychotherapy studies. The researchers found a small 
but significant correlation (d = 0.24) between expectations 
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and therapeutic outcomes. Although the authors noted the 
methodological limitations of the studies, including some 
confusion over theoretical concepts and different types of 
measurements, they also argued that expectations appeared 
to change throughout the therapy.

A study by Schönenberg et al. (2021) reported that expec-
tancy did not influence neurofeedback training success, and 
such success was dependent on the repetition of accuracy 
during neurofeedback performance. However, the prognostic 
expectations were not evaluated as the expectancy manipula-
tion was achieved by providing different information to par-
ticipants about what frequency band should be trained, even 
though participants trained the same SMR (15–18 Hz) band. 
Lee and Suhr (2020) implemented an approach similar to our 
study by operationalizing the expectancy effect (prognostic 
expectations) and reported statistical evidence that positive 
prognostic expectations about treatment outcome influenced 
the post-test of the self-reported ADHD symptoms question-
naire. However, the authors did not specify what protocol 
was used for neurofeedback training. Nevertheless, our study 
supports the results of Lee and Suhr (2020) that prognostic 
expectations are a possible psychological factor that may 
predict neurofeedback training results.

Limitations and Future Directions

In light of the presented findings, it should be highlighted 
that many neurofeedback studies suffer from methodologi-
cal weaknesses (Loo & Makeig, 2012). Many neurofeed-
back studies assessed the effectiveness of neurofeedback 
training as a change in symptoms. However, the efficacy of 
neurofeedback training should be first assessed as an abil-
ity to produce changes in the EEG profile, and changes in 
symptoms or behavior should be considered a consequence 
of changes in the EEG profile (Pérez-Elvira et al., 2021). 
Although we applied a widely used protocol (beta/theta) for 
attentional enhancement, we did not account for the EGG 
profile of the group. Therefore, this protocol could not have 
been ideal for all participants in the sample due to individual 
EEG profile variation.

We acknowledge that our study’s lack of a control group 
prevents us from drawing any strong conclusions. Evaluat-
ing prognostic expectations in an intervention group and 
a control group could provide more clarity about this psy-
chological mechanism. Furthermore, in order to investigate 
the expectancy effect and its relationship to neurofeedback, 
future studies could counterbalance participants’ prognostic 
expectations. Participants’ expectations are formed at the 
beginning of a course of training, when a particular brain 
training program is presented (Boot et al., 2013; Borko-
vec & Sibrava, 2005; Foroughi et al., 2016). In addition to 
statistically controlling expectations as a group variable in 
the analysis, dividing participants into intervention/control 

groups, and counterbalancing those groups with high/low 
expectations by presenting a brain training program differ-
ently, can provide deeper insights into this psychological 
mechanism.

Another possible limitation of this study might be related 
to the number of neurofeedback training sessions. Due to 
individual differences, more training sessions are required to 
strengthen results for some participants (Wang et al., 2016). 
However, the number of training sessions might be more 
relevant when neurofeedback training is used to treat differ-
ent psychological disorders, such as anxiety, depression, or 
ADHD (Hammond, 2011). Regarding optimal performance, 
Gruzelier et al. (2006) reported that at least 5–10 training 
sessions are required before improvement can be observed. 
Furthermore, the evaluation of healthy subjects could poten-
tially be affected by the ceiling effect (Ho & Yu, 2015). Since 
little is known about the physiological limits of the behav-
ioral components of visual continuous performance tasks, 
evaluating the effects of expectations on specific psychologi-
cal disorders may be preferable to examining peak perfor-
mance in healthy individuals.

This study highlights an important factor in the design of 
a study aimed at evaluating potential placebo effects. Lack 
of specificity in various theoretical concepts is a recognized 
problem (Katerelos et al., 2015). Such confusion leads to 
flexibility in definitions which, in turn, yields biased results. 
These arguments are highly relevant to neurofeedback stud-
ies because those who are implementing control groups do 
not clearly distinguish between different placebo concepts. 
Without distinctively defined theoretical concepts, assessing 
the placebo effects on cognitive training becomes problem-
atic. Therefore, using well-defined concepts, along with a 
statistical assessment, is essential and will allow for an easier 
comparison of independent studies.

Conclusion

Our results showed that prior prognostic expectations influ-
enced neurofeedback training results in terms of faster reac-
tion times. Prognostic expectations are an important start-
ing point not only in cognitive training but also in other 
intervention programs aimed at treating different dysfunc-
tions. Therefore, we want to highlight the importance of 
including this mechanism in future studies, in order to gain 
better insights into participants’ preparedness, motivation, 
and mental state prior to intervention. This may help read-
just behavior, if necessary, and contribute to the training 
outcome. We must also emphasize the importance of using 
more specific theoretical concepts to reduce the flexibility 
of definitions related to placebo effects, allowing the com-
parison of results from different studies. This lack of precise 
theoretical concepts has yet to be resolved. Studying such 
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concepts further can provide a better understanding of the 
underlying psychological mechanisms that may trigger a pla-
cebo response to therapy or brain training programs.
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