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Abstract

Childhood obesity and its negative relation with children’s brain health has become a growing health concern. Over the last
decade, literature has indicated that physical activity attenuates cognitive impairment associated with obesity and excess
adiposity in children. However, there is no comprehensive review that considers the extent to which these factors affect dif-
ferent domains of cognition. This narrative review comprehensively summarizes behavioral, neuroimaging, and neuroelectric
findings associated with chronic physical activity and fitness on brain and cognition in childhood obesity. Based on the litera-
ture reviewed, increased adiposity has a demonstrated relationship with neurocognitive health via mechanisms triggered by
central inflammation and insulin resistance, with the most pronounced decrements observed for cognitive domains that are
prefrontal- and hippocampal-dependent. Fortunately, physical activity, especially interventions enhancing aerobic fitness and
motor coordination, have demonstrated efficacy for attenuating the negative effects of obesity across different subdomains of
structural and functional brain imaging, cognition, and multiple academic outcomes in children with overweight or obesity.
Such mitigating effects may be accounted for by attenuated central inflammation, improved insulin sensitivity, and increased
expression of neurotrophic factors. Lastly, individual differences appear to play a role in this relationship, as the manipulation
of physical activity characteristics, the employment of a wide array of cognitive and academic measures, the inclusion of
different adiposity measures that are sensitive to neurocognitive function, and the utilization of an inter-disciplinary approach
have been found to influence the relationship between physical activity and excess adiposity on brain and cognition.
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Introduction

The obesity epidemic continues to affect a remarkably high
proportion of the world’s population. It is projected that the
percentage of adults who are overweight or obese across
the world could increase from 33% in 2005 to 58% by 2030
(Kelly et al., 2008). Moreover, a 2016 report from the World
Health Organization (WHO) indicated that over 340 million
children and adolescents aged 5 to 19 years old worldwide
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are overweight or obese (WHO, 2020). Given that child-
hood obesity is projected to continuously increase, accu-
mulation of excessive adiposity has become a concerning
public health issue among children and adolescents in the
developed world (WHO, 2020).

Obesity is clinically defined as the excessive accumula-
tion of adiposity that impairs health (Caterson & Gill, 2002).
The most common measure used to characterize obesity is
body mass index (BMI), which is calculated as an indi-
vidual’s weight in kilograms divided by the square of their
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height in meters. Due to the variability of height and weight
that occurs during growth and development, assessment of
a child’s BMI necessitates comparison to an age- and sex-
adjusted reference (Ebbeling & Ludwig, 2008). Moreover,
with advancements in imaging technology, adiposity vari-
ables can be measured using dual-energy x-ray absorptiom-
etry (DXA), which affords characterization of the specific
distribution of fat mass within the body. For example, subcu-
taneous abdominal adipose tissue (SAAT) is the fat present
directly under the skin in the abdominal area. SAAT is not
only a physical buffer for the body but also where excess
energy is stored (Freedland, 2004). In adults, roughly 80% of
all body fat is stored as SAAT (Wajchenberg, 2000). When
the storage capacity of SAAT is exceeded, or the body is not
able to make more fat cells, fat begins to accumulate in other
locations such as the viscera. By contrast, visceral adipose
tissue (VAT) is the fat stored within the abdominal cavity,
including the regions surrounding vital organs such as the
liver, pancreas, and intestines. Increased VAT is related to a
higher risk of metabolic disease, as it produces inflammatory
cytokines and hormones (Chaldakov et al., 2003).
Childhood obesity has been linked to many health
complications, including metabolic (e.g., metabolic syn-
drome [MetS]) and cardiovascular dysfunctions (e.g., dys-
lipidemia, insulin resistance) (Ebbeling et al., 2002). Over
the last decade, a growing body of literature has emerged
to suggest that excessive adiposity may also affect cogni-
tion, brain function, and academic performance in children
(Cadenas-Sanchez et al., 2020a; Davis & Cooper, 2011;
Garcia-Hermoso et al., 2021; Kamijo et al., 2012a, b;
Khan et al., 2015; Raine et al., 2018). Although the under-
lying causes for this relationship are unknown, some have
speculated that reduced energy expenditure may be one
major cause of childhood obesity (Moreno et al., 2011),
which is not surprising given that physical inactivity and
obesity are inherently correlated (Hill et al., 2012; Metcalf
et al., 2011). According to a worldwide report across 49
countries in 2018, approximately 75% of school children
are considered physically inactive (Children’s Hospital of
Eastern Ontario Research Institute, 2018), and a few stud-
ies have linked sedentarism with obesity and poorer cor-
tical integrity during maturation (Zavala-Crichton et al.,
2020). Importantly, intervention data, including rand-
omized controlled trials (RCT), have indicated that physi-
cal activity decreases adiposity (Logan et al., 2021; Raine
et al., 2017) and alleviates the detrimental influence of
adiposity on cognition and brain function in children with
overweight and obesity, particularly higher-order aspects
of cognition including attention, executive function, and
planning/decision making (Davis et al., 2011; Krafft et al.,
2014c; Liu et al., 2018; Logan et al., 2021; Raine et al.,
2017). Cross-sectional evidence in children with over-
weight and obesity has further indicated an association

of increased fitness with better academic performance,
an overall measure of neurocognitive health and integrity
that provides insight into real-world cognitive performance
(Cadenas-Sanchez et al., 2020b; Davis & Cooper, 2011;
Garcia-Hermoso et al., 2021).

Despite the rapid growth of this line of research, which
has led to several literature reviews summarizing the
relationship of physical activity on different domains of
cognition in children with overweight or obesity (Chang
et al., 2017; Martin et al., 2018; Sun et al., 2021), those
reviews have focused exclusively on behavioral outcomes
of cognition and have not considered the developing body
of evidence for changes in brain structure and function
concurrent with behavioral outcomes. That is, to date, no
literature review exists that comprehensively summarizes
findings from both behavioral (i.e., cognitive outcomes,
academic performance) and neuroimaging measures
(e.g., structural and functional magnetic resonance imag-
ing [MRI, fMRI], event-related brain potentials [ERPs]).
A better understanding of the underlying mechanisms
reflected by neuroimaging measures can inform tangible
biomarkers that can be targeted in the treatment of child-
hood obesity and its associated relationship with various
neurocognitive and health outcomes. Hence, the aim of
this review is to consider the recent empirical evidence
exploring the association of physical activity with brain
structure and function, cognition, and academic perfor-
mance in children with overweight and obesity. Further,
this review aims to summarize the neurobiological mecha-
nisms that may underlie the deleterious effect of obesity
and adiposity on brain and cognition and the ameliora-
tive effects of physical activity and fitness on these out-
comes. Here, we summarize evidence pertinent to (a) the
detrimental relationship of obesity and excess adiposity
on brain, cognition, and academic performance during
childhood, and the neurobiological mechanisms that may
account for the detrimental relationship of obesity and
adiposity on brain and cognition, and (b) the effects of
physical activity and fitness on brain, cognition, and aca-
demic performance in children with overweight or obesity,
and the neurobiological mechanisms that may drive the
physical activity-induced effects. The goal of this literature
review is to critically review the current state of litera-
ture addressing the role of physical activity as an effective
means to combat childhood obesity and sedentarism, as
well as its associated negative impact on cognitive and
brain health. It should be noted that, however, the nar-
rative nature of this review precludes estimation of the
size of effects of either obesity or chronic physical activ-
ity on brain and cognition in children. Caution should be
practiced when interpreting the extent in which obesity or
physical activity may affect children’s brain and cognition
in studies summarized by the current review.

@ Springer



250

Journal of Cognitive Enhancement (2022) 6:248-271

The Detrimental Relationship of Obesity
and Adiposity on Brain and Cognition

Potential Mechanisms

A growing body of evidence has suggested that the det-
rimental effects of excessive adiposity, often character-
ized by the percentage of whole-body fat (%fat) and VAT
in particular, on brain and cognition can be accounted
for by increased secretion of proinflammatory cytokines
leading to central inflammation and exacerbated insulin
resistance resulting in cerebrovascular dysfunctions. Spe-
cifically, the accumulation of VAT induces secretion of a
series of proinflammatory adipokines/cytokines, includ-
ing fibrinogen, C-reactive protein, interleukin (IL)-1, and
IL-6 (Doupis et al., 2011). These cytokines are able to
cross the blood-brain barrier and stimulate hyperactivity
of the sympathetic nervous system that has been associated
with central inflammation (Erion et al., 2014; Lambert
et al., 2015; Miller & Spencer, 2014; Willette & Kapogi-
annis, 2015; Yates et al., 2012). Central inflammation is a
major cause of dysregulation of the hypothalamic—pitui-
tary—adrenal (HPA) axis, which, in turn, results in exces-
sive secretion of stress-related hormones (i.e., cortisol) in
brain areas associated with higher-order cognition, includ-
ing the prefrontal cortex and hippocampus. Excessive
secretion of cortisol in the brain can be accompanied by
oxidative stress that decreases mRNA expression of neuro-
trophic factors, including brain-derived neurotrophin fac-
tor (BDNF), causing cell apoptosis, and decreased synapse
plasticity (Miller & Spencer, 2014; Willette & Kapogian-
nis, 2015; Yates et al., 2012). These mechanisms driven by
central inflammation induce volumetric changes in global
and regional gray matter and hippocampal neurodegenera-
tion (Marsland et al., 2015; Takeda et al., 2014). Indeed,
structural imaging data have indicated a relationship
between greater BMI and decreased gray matter volume
in multiple brain areas, including frontal, temporal, and
parietal cortices, as well as thalamus, and limbic regions
of the cortex (Alosco et al., 2014; Ou et al., 2015).
Additionally, converging evidence has demonstrated
that obesity-associated insulin resistance also manifests
as reductions in brain insulin sensitivity, and this can nega-
tively impact both neurocognitive functioning as well as
synaptic and structural plasticity within the prefrontal
cortex, hippocampus, and medial and temporal cortices
(Cheke et al., 2017; Heni et al., 2015). Peripheral insulin
resistance and hyperinsulinemia negatively affect kidney
function. The associated increase in sodium reabsorp-
tion ultimately results in hypertension or elevated blood
pressure (Alosco et al., 2013), which, in turn, promotes
endothelial dysfunction (e.g., arterial stiffness, increased
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intima-media thickness) and atherosclerosis resulting in
deficits in cerebral perfusion and/or exacerbates global and
regional brain atrophy (Ross et al., 2015), and white matter
hyperintensities (Kullmann et al., 2015; Wickman et al.,
2013). Accordingly, there appear to be multiple possible
mechanisms in play that may underlie the negative influ-
ence of excess adiposity on cognitive and brain health (see
Fig. 1). Figure 1 summarizes the detrimental effects of
excess adiposity and obesity on children’s cognitive and
brain health.

Brain Structure

As noted above, increased central inflammation, decreased
insulin sensitivity, and cerebrovascular abnormalities
induced by excess adiposity could result in structural
changes in the brain. The relatively recent advent of struc-
tural neuroimaging techniques, including structural MRI
measures, affords better resolution of structural changes
induced by excess adiposity and obesity. As such, structural
MRI data have indicated a relationship between greater BMI
and decreased gray matter volume in multiple brain areas,
including frontal, temporal, and parietal cortices, and as well
as thalamic and limbic regions of the subcortex (Alosco
et al., 2014; Ou et al., 2015). Other studies have also found
that increased BMI is associated with reduced global cortical
thickness, as well as specific reductions in cortical thickness
in prefrontal cortical regions (Laurent et al., 2020; Ronan
et al., 2020). Decreased prefrontal cortical thickness was
further found to mediate the association between increased
BMI and poorer performance on executive function tasks
(Laurent et al., 2020). Using diffusion-tensor imaging (DTI),
an MRI technique used to estimate white matter structure,
Yau and colleagues observed reduced white matter integrity
and enlarged cerebrospinal fluid space in the whole brain
and the frontal lobe in particular, in obese adolescents (Yau
et al., 2010). Together, these preliminary findings point to a
detrimental effect of excess adiposity on macro- and micro-
structure correlates of the brain during development.

Brain Function

In addition to structural changes associated with excess adi-
posity, a growing body of literature points to the relation
of adiposity on functional brain correlates of cognition. In
particular, electroencephalography, and more specifically
ERPs, has been used to delineate real-time neural responses
during cognitive tasks (Alatorre-Cruz et al., 2021; Kamijo
et al., 2014; Kamijo et al., 2012b; Tsai et al., 2016; Walk
et al., 2020). ERPs refer to patterns of neuroelectric acti-
vation that occur in response to, or in preparation for, a
stimulus or response (Luck, 2014). This approach offers the
requisite temporal resolution to gain insight into cognitive
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Fig. 1 Diagram of the associa-
tion between excess adiposity
and neurocognitive dysfunc-
tions in children. VAT visceral
abdominal fat. ERPs event-
related brain potentials

Cerebrovascular dysfunctions
[ ] Endothelial dysfunction ®
[ ] Reduced cerebral perfusion L

Functional impairments [ERPs)
Larger task-evoked conflicts
Poorer attention regulation
Poorer action monitoring
Poorer motor preparation

operations that occur between stimulus engagement and
response execution, and may be more sensitive in parsing
the negative effects of childhood obesity on the various
cognitive operations underlying overt task performance.
As such, Kamijo et al. (2012b) investigated the association
of childhood obesity and the N2 component of an ERP in
preadolescent children. The N2-ERP occurs approximately
200 to 400 ms after stimulus onset, with a topographic
maximum over the frontocentral scalp area (Larson et al.,
2014). Studies have proposed that the N2-ERP is associated
with processes underlying conflict detection, with greater
amplitude representing greater task-evoked conflict between
task-relevant and task-irrelevant information (Larson et al.,
2014). Specifically, Kamijo et al. (2012b) found that chil-
dren with obesity had larger N2 amplitude during trials with
greater inhibitory control demands relative to lower-demand
trials, whereas this task-related difference was not seen in
normal-weight children. Further, data from Alatorre-Cruz
et al. (2021) indicated that children with obesity revealed
no difference in N2 latency between trials with varied
inhibitory control, whereas their normal-weight peers mani-
fested longer N2 latency, along with higher response accu-
racy, during trials with greater inhibitory control relative

Excess adiposity

®  Whole body %fat
[ ] VAT

[ ] Central adiposity

Proinflammatory cytokines
Increased insulin resistance

Central inflammation
Oxidative stress
Reduced synaptic plasticity

Structural dysfunctions Poorer cognition & academic
Reduced regional gray matter performance
volume ] Inhibitory control
Reduced global/prefrontal [ ] Relational memory
cortical thickness ®  Language, mathematics
White matter abnormalities,
global and regional

lower-demands trials. This suggest that while children with
normal weight triggered a conflict-monitoring response
that compensated for the need of greater inhibitory control,
such compensation was not seen in children with obesity
due to a decreased ability to modulate conflict-monitoring.
The larger task-evoked conflicts and decreased ability in
modulate conflict-monitoring mechanism in children with
overweight and obesity may reduce efficiency of concomi-
tant processing streams hindering the effective modulation
of attentional resource allocation signified by the P3-ERP
component. The P3 is elicited between 300 and 700 ms after
stimulus onset and is indicative of attentional engagement
in the stimulus environment (reflected in the magnitude of
the P3 potential) and cognitive processing speed (indexed
by the timing of the P3 potential) (Polich, 2007). Data from
Kamijo et al. (2012b) found that normal weight children
had a more frontally distributed P3 during trials requiring
greater inhibitory control relative to trials with low inhibi-
tory control demands, whereas overweight or obese children
had similar topographic scalp distributions between trials
with low and high inhibitory control demands, suggesting
that overweight or obesity children were less capable of
flexibly allocating attentional resources between tasks that
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varied in their inhibitory control requirements. Similar find-
ings were found by Alatorre-Cruz et al. (2021) and Tsai et al.
(2016), where ERP data indicated smaller P3 amplitude at
the posterior site in obese children relative to their normal-
weight counterparts during an inhibitory control (Alatorre-
Cruz et al., 2021) or a visuospatial attention task (Tsai et al.,
2016). Collectively, these N2- and P3-ERP findings indi-
cate that, relative to normal weight children, who are able
to more flexibly modulate attentional resources allocation
based on inhibitory control demands, obese children have
greater task-evoked conflict along with less flexible atten-
tional adjustment when cognitive demands increase, which
may be a result of naturally biasing their responses toward
task components with low cognitive demands.

In addition to adiposity-related differences in ERP indi-
ces of stimulus processing, adiposity also appears to influ-
ence ERP indices of response execution, including action
monitoring and motor preparation. Specifically, error-related
negativity (ERN) is an ERP component that is thought to
reflect the action monitoring system, with larger amplitude
following an error response that reflects better implementa-
tion of top-down cognitive control and behavior adjustment
(Gehring et al., 1993). Kamijo et al. (2014) demonstrated
that obese children had smaller ERN amplitude, along with
poorer post-error response accuracy, compared to their nor-
mal weight counterparts. Such findings imply a maladaptive
relationship between excess adiposity and action monitor-
ing that may reflect slower development of the prefrontal-
cingulate network (Kamijo et al., 2014). Moreover, Walk
and colleagues (2020) indicated that children with greater
whole body %fat have lower amplitude of the lateralized-
readiness potential (LRP), an ERP component reflecting
neural resource allocation during motor preparation (Hsieh,
2006). Such findings were observed during task components
requiring the upregulation of inhibitory control, suggesting
that children with greater adiposity were unable to recruit
sufficient neural resources to support response preparation.
Additionally, whole body %fat was negatively related to
the onset of the LRP during task trials with lower inhibi-
tory control demands, implying that children with greater
adiposity have a prolonged window of time between motor
response activation and the motor movement itself. The
ERN and LRP findings, collectively, indicate that obesity
appears to be associated with poorer behavioral adjustment
following an error response and failures in motor response
preparation in preadolescent children.

Cognition
Task Performance

Cross-sectional investigations have pointed to a negative
association between excess adiposity and performance on
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higher-order cognitive operations. For example, in pre-
adolescent children, Chojnacki et al. (2018) and Kamijo
et al. (2012a) observed a relationship between increased
adiposity (measured via a DXA scan) and poorer inhibi-
tory control, an aspect of executive function that describes
the ability to suppress task irrelevant information in the
stimulus environment and halt an ongoing but undesir-
able behavioral response (Wostmann et al., 2013). The
results indicated that higher BMI (Kamijo et al., 2012a),
greater whole body %fat (Chojnacki et al., 2018; Kam-
ijo et al., 2012a), and greater central adiposity (Kamijo
et al., 2012a) were inversely related to performance on
tasks that modulated inhibitory control, as reflected by
lower response accuracy during task components requir-
ing greater amounts of inhibitory control (Kamijo et al.,
2012a) and greater response time variability, a measure
of response stability (Chojnacki et al., 2018). Analogous
findings were reported by Scudder et al. (2015), who
examined risk factors of metabolic syndrome (MetS) on
inhibitory control. MetS risk factors included (1) high-
density lipoprotein cholesterol <50 mg/dL, (2) waist
circumference > 75" percentile scores, (3) systolic and/
or diastolic blood pressure > 90'" percentile scores, (4)
triglyceride > 100 mg/dL, and (5) fasting blood glu-
cose > 110 mg/dL. Group comparisons indicated that chil-
dren without any MetS risk factors demonstrated overall
faster response speed than the at-risk children, who met at
least one of the abovementioned risk criteria. In addition,
at-risk children experienced larger failures of inhibition
(i.e., reduced response accuracy) between task-relevant
and task-irrelevant information (Scudder et al., 2015).
The negative relationship of excess adiposity can be
extended to other aspects of cognition, including rela-
tional memory (i.e., often termed: associative memory),
which is hippocampal-dependent. Specifically, in pre-
adolescent children, research has associated excess adi-
posity with both hippocampal-dependent and hippocam-
pal-independent (i.e., item recall) memory (Hassevoort
et al., 2017; Khan et al., 2015). Relational memory
refers to the ability to bind information together into
memory including the relationship among constitu-
ent elements of an experience, such as co-occurrences
of people, places, and/or objects and their spatial and
temporal context, which is thought to be hippocampal-
dependent (Konkel & Cohen, 2009). Item memory,
by contrast, requires no binding of memory between
related representations but simply their recall. This
cognitive domain requires modest engagement of the
hippocampus (Sullivan Giovanello et al., 2004). The
existing data suggests that greater central adiposity is
associated with poorer accuracy for relational memory
tasks in overweight and obese children. Such an inverse
relationship, however, was not seen in item memory,
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suggesting a selectively negative influence of central
adiposity on hippocampal-dependent memory. These
findings, which stem from behavioral outcomes of task
engagement, provide support for prefrontal- and hip-
pocampal-dependent cognition as the most vulnerable
to increased adiposity in children.

Academic Achievement

The negative effects of increased adiposity have been
further extended to academic achievement, an overall
measure of neurocognitive health and integrity that also
provides insight into real-world cognitive performance
(Martin et al., 2017; Santana et al., 2017). Research has
shown a close relationship between children’s academic
performance and higher-order cognition, including
inhibitory control (Hillman et al., 2012) and relational
memory (Hassevoort et al., 2018), and its associated
structural (Chaddock-Heyman et al., 2015; Cheema &
Cummine, 2018) and functional (Chaddock-Heyman
et al., 2018; Westfall et al., 2020) modulation. Hence,
it is not surprising that the negative effects of adiposity
extend to scholastic performance. For example, Kamijo
et al. (2012a) were the first to indicate that greater BMI,
whole body %fat, and abdominal fat mass are associ-
ated with lower performance on academic achievements
tests of reading, spelling and mathematics. Such find-
ings were supported by Raine et al. (2018), who showed
that obese children had lower performance on tests of
reading and math than their normal-weight peers. Fur-
ther, these relationships may begin early in childhood, as
Khan et al. (2020) recently found that greater VAT was
associated with poorer early academic skills, including
reading-writing ability and oral language performance
in a group of preschoolers. Such preliminary evidence
is suggestive of a negative effect of increased adiposity
(i.e., central adiposity in particular) on various academic
skills in children.

Summary

In short, the current state of the literature suggests a
negative relationship of obesity and excess adiposity on
cognitive and brain health on structural, functional, and
behavioral correlates of executive function and memory.
The negative effects of obesity are extended to poorer per-
formance in multiple academic outcomes. The negative
effects may be triggered by central inflammation induced
by the over-secretion of proinflammatory adipokines/
cytokines, increased insulin resistance, and cerebrovascu-
lar abnormalities.

The Beneficial Role of Physical Activity
on Brain and Cognition in Children
with Obesity

Despite the known negative effects of obesity on brain,
cognition, and academic performance in children, there is
a growing body of evidence supporting physical activity
as an effective means to counteract, in part, obesity-related
impairments during childhood (Davis et al., 2011; Krafft
et al., 2014c; Liu et al., 2018; Logan et al., 2021; Raine
et al., 2017). Physical activity refers to any bodily move-
ment produced by skeletal muscles that requires energy
expenditure (Donnelly et al., 2016). Fitness, on the other
hand, is a physiological state of well-being that reduces
the risk of hypokinetic disease, a basis for participation
in sports, and good health, which enables one to com-
plete the tasks of daily living. Subcomponents of fitness
include aerobic fitness, muscle strength and endurance,
and flexibility (Donnelly et al., 2016). Recent studies also
shed light on motor coordination, another domain of fit-
ness, and its association with brain health given the close
relationship between motor and cognitive development
during childhood (Diamond, 2000), Motor coordination
represents the degree of proficiency in performing a wide
variety of motor skills including both gross (e.g., jump-
ing, hand-eye coordination) and fine (e.g., manual dex-
terity, precision) motor skills as well as the underlying
mechanisms including coordination, control, and quality
of movement (Haga, 2008). The ensuing section sum-
marizes the relationship of physical activity, physical fit-
ness, and motor coordination on brain and cognition from
a behavioral, structural, and functional level. We further
summarize preliminary evidence regarding the association
of physical activity and fitness on scholastic performance
in children with excess body mass. Figure 2 depicts how
physical activity may alleviate the negative influence of
excess adiposity and obesity on brain, cognition, and aca-
demic performance in children.

Possible Mechanisms

Although structural and functional findings provide mark-
ers of cognition, molecular mechanisms underlying physi-
cal activity effects provide a more detailed understanding
of neural alterations after intervention in overweight or
obese children. As such, rodent models have indicated that
aerobic exercise decreases the secretion of proinflamma-
tory cytokines (e.g., IL-1), which may, in turn, result in
attenuated central inflammation, decreased oxidative stress
in the brain, and eventually normalized synaptic plastic-
ity and cortical growth (Erion et al., 2014). Similarly,
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Fig.2 Diagram of the alleviative effects of physical activity on brain and cognition in children with overweight and obesity. HIIT high-intensity

interval training

human research found that aerobic exercise decreases
plasma proinflammatory cytokines (i.e., CRP, IL-6, lep-
tin) and attenuates insulin resistance in individuals with
overweight or obesity (Many et al., 2013; Trachta et al.,
2014). Importantly, research has indicated the mediat-
ing role of insulin resistance on the relationship between
aerobic fitness and memory. That is, increased aerobic fit-
ness may favor memory performance via decreased insu-
lin resistance (Tarumi et al., 2013). This finding has been
expanded by a study showing close relationships between
increased aerobic fitness, increased insulin sensitivity, and
greater cortical thickness in the frontal lobes in adolescent
children, with higher insulin sensitivity showing stronger
association with frontal cortical thickness (Ross et al.,
2015). Considering that insulin resistance is a major cause
of vascular and endothelial dysfunctions in cortical areas
(Miller & Spencer, 2014; Willette & Kapogiannis, 2015;
Yates et al., 2012), the mediating role of insulin resistance
is not surprising. On the other hand, one recent study in
children with overweight and obesity found that higher
levels of daily moderate-to-vigorous physical activity, as
assessed by accelerometry, was related to higher plasma
BDNF levels (Mora-Gonzalez et al., 2019¢). Findings
from that study imply that, in children with overweight
and obesity, greater amounts of daily physical activity
are associated with increased expression of neurotrophic
factors, such as BDNF. The above findings suggest that
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physical activity may counteract the detrimental effects of
obesity and adiposity on brain functioning and cognition
via (a) decreased secretion of proinflammatory cytokines
(and thereby attenuated central inflammation and oxidative
stress in the brain), (b) increased insulin sensitivity (and
therefore normalized vascular and endothelial functions),
and (c) increased expression of neurotrophic factors that
favor neural growth and plasticity. However, it should be
noted that the majority of findings stem from either ani-
mal models or cross-sectional human studies, data from
studies using a RCT design in children with overweight
and/or obesity are needed to provide a clearer picture of
neural and molecular mechanisms underlying the effects
of physical activity in childhood obesity.

Brain Structure

As indicated above, increased adiposity has detrimental
effects on gray matter volume and white matter integ-
rity, particularly in the prefrontal cortex and hippocam-
pus (Marsland et al., 2015; Takeda et al., 2014; Wick-
man et al., 2013). Fortunately, data stemming from DTI
has indicated a positive influence of physical activity
on structural integrity of white matter in children with
overweight and obesity. The majority of data stem from
cross-sectional research (Esteban-Cornejo et al., 2019b;
Rodriguez-Ayllon et al., 2020). For example, the current
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state of the literature suggests that increased aerobic fit-
ness measured by a field-based shuttle run test and motor-
coordination fitness (e.g., coordination, speed-agility)
are associated with white matter coherence in fiber tracts
(i.e., superior and inferior longitudinal fasciculus) link-
ing frontal-parietal, parietal-occipital, and temporal lobes
(Esteban-Cornejo et al., 2019b), but not global white
matter integrity (Rodriguez-Ayllon et al., 2020). In addi-
tion, upper-limb muscular strength was associated with
white matter integrity within the left lateral frontal lobe
(Rodriguez-Ayllon et al., 2020), thalamic radiations, and
projection fiber tracts linking fronto-cingulate regions
(Esteban-Cornejo et al., 2019b). Using structural MRI, a
few cross-sectional studies have indicated that increased
aerobic and motor-coordination fitness, but not muscular
fitness, are associated with greater gray matter volume
in frontal, temporal, and hippocampal regions as well as
greater global cortical thickness (Esteban-Cornejo et al.,
2017). In fact, it has recently been reported that the over-
all brain volume is larger in fit children with overweight/
obesity than in their unfit peers (Cadenas-Sanchez et al.,
2020a). Notably, decreased adiposity appears to medi-
ate the relationship between increased fitness and greater
cortical thickness (Esteban-Cornejo et al., 2019a). Please
see Table 1 for details of abovementioned cross-sectional
studies.

Furthermore, by implementing 8 months of a multi-
faceted after-school physical activity intervention (run-
ning games, jump rope), Krafft et al. (2014b) and Schaef-
fer et al. (2014) found improved white matter structural
coherence and myelination in the uncinate fasciculus
(Schaeffer et al., 2014), a white matter tract linking the
dorsolateral prefrontal cortex and hippocampus (Schmah-
mann et al., 2007), and the superior longitudinal fascicu-
lus (Krafft et al., 2014b), which links the frontal-pari-
etal network governing executive function (@stby et al.,
2011; Vestergaard et al., 2010). Interestingly, Krafft et al.
(2014b) further indicated a dose-related effect within the
exercise group, such that better attendance, higher inten-
sity (reflected by in-exercise HR), and a greater total
dose of exercise (reflected by attendance x in-exercise
HR) were associated with greater changes in white mat-
ter integrity. Collectively, structural data corroborate the
behavioral data indicating that aerobic and motor-coor-
dination fitness are relevant components embedded into
physical activity which foster structural integrity in brain
regions that are vulnerable to obesity (e.g., frontal, tem-
poral regions), as well as regions that are closely related
to attention and executive function (e.g., frontal-parietal
and frontal-cingulate regions). There is also preliminary
evidence indicating that muscular strength appears to be a
relevant means to support regional white matter integrity,
but the current data remains contradictory. For further

information of abovementioned RCT studies, please see
Table 2.

Brain Function

Neuroimaging research using EEG and functional MRI
(fMRI) has supported a positive influence of physical activ-
ity or fitness on brain functioning in children with over-
weight and obesity. For example, cross-sectional data indi-
cate that higher aerobic fitness and better motor-coordination
(measured by speed-agility performance) are associated
with larger P3 amplitude during task components modu-
lating inhibitory control and working memory, suggesting
increased activation of neural networks underlying atten-
tional engagement during task components with varied
amounts of inhibitory control (Mora-Gonzalez et al., 2020)
or working memory requirements (Mora-Gonzalez et al.,
2019b). Higher speed-agility fitness was also associated
with shorter P3 latency during a working memory task,
indicating faster stimulus processing speed (Mora-Gonzalez
et al., 2019b). The positive association of aerobic fitness
and motor-coordination with the P3-ERP is supported by
findings from a 9-month RCT where overweight or obese
children who underwent an aerobic- and motor coordina-
tion-based intervention showed sustained P3 amplitude over
time, along with sustained inhibitory control performance,
whereas overweight or obese children in the waitlist control
group showed decreased P3 amplitude from pre- to post-
test despite no change in task performance (Logan et al.,
2021). Such findings corroborate cross-sectional data which
suggest that physical activity may be relevant to maintain
brain functioning during inhibitory control in children with
overweight or obesity. In contrast, a few studies point to an
association between muscular strength and P3-ERP, with
greater muscular strength (measured by upper-limb strength)
found to be associated with larger P3 amplitude during a
working memory task (Mora-Gonzalez et al., 2019b), but
not during an inhibitory control task (Mora-Gonzalez et al.,
2020). These findings, together, suggest that the associa-
tion of fitness with neuroelectric outcomes of cognition in
overweight and obese children may be dependent upon the
specific aspect of fitness enhanced by intervention and/or
aspect of cognition assessed (please see Table 1 and Table 2
for further information of abovementioned cross-sectional
studies and intervention study, respectively).

By way of contrast, the current data on the association
of objectively measured physical activity (using accelerom-
etry) and P3-ERP is rather contradictory (see Table 1 for
more details). Unlike intervention studies in which children’s
physical activity behavior is increased beyond their normal
physical activity patterns, studies using objectively meas-
ured physical activity assess children’s daily, lifestyle-based
physical activity. Specifically, data from Mora-Gonzalez
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Table 1 (continued)

&

Higher aerobic fitness was
associated better attention,

Outcomes

attention, simultaneous, and

Cognitive/academic measures
successive tasks

Cognitive task: planning,

Fitness/PA measures

170 children with overweight Aerobic fitness (VO,,;.,)

9.3+ 1.0 years; 56% girls

Participants

Cross-sectional

Design

Davis and Cooper (2011)

Authors

Springer

planning, reading scores, and

math scores

Academic tests: math, reading

PA physical activity, MRI magnetic resonance imaging, DTI diffusion tensor imaging, /-RM one repetition maximum, ERP event-related brain potentials, BMI body mass index

et al. (2020) indicated that higher vigorous physical activ-
ity was associated with larger P3 amplitude during trials
with greater inhibitory control, but this relation disappeared
upon adjusting for aerobic fitness; further, higher moderate
and moderate-to-vigorous physical activity were found to
be associated with longer P3 latency during an inhibitory
control task. In contrast, no association was found between
objectively measured physical activity and P3-ERP during a
working memory task (Mora-Gonzalez et al., 2019b).
Research assessing resting-state fMRI measures revealed
that overweight and obese children with greater fitness
had more favorable resting-state hippocampal connectiv-
ity (Table 1). Specifically, using the resting-state blood
oxygenation level dependent (BOLD) signal from fMRI,
Esteban-Cornejo and colleagues (2021) found that over-
weight and obese children with greater aerobic fitness had
greater connectivity between the anterior hippocampus and
the frontal regions, and increased motor-coordination was
associated with diminished connectivity between the poste-
rior hippocampus and frontal regions. These differences in
frontal-hippocampal connectivity were attributed to regional
specificities of aerobic fitness and motor coordination. That
is, data from rodent models support the role of aerobic
exercise on neurogenesis in the frontal hippocampus (i.e.,
the dentate gyrus) (van Praag et al., 2005), whereas motor
activity appears to increase synaptic activity in the cerebel-
lar cortex (Black et al., 1990). It is therefore reasonable to
speculate that the role of motor fitness on synaptogenesis
may spread to the posterior hippocampus. These findings
suggest a favorable albeit differential effects of aerobic ver-
sus motor-coordination on functional connectivity between
frontal regions and the hippocampus (Esteban-Cornejo et al.,
2021). In contrast, Esteban-Cornejo and colleagues did not
find a relation between increased muscular strength and hip-
pocampal functional connectivity at a resting state (Table 1).
Further, Krafft et al. (2014a) randomly assigned chil-
dren who were overweight or obese to either an 8-month
physical activity intervention (running games, jump rope;
40 min per session, 5 session per week) or an active con-
trol intervention (instructor-led attention games), and found
that physical activity resulted in decreased spatial synchrony
(i.e., decreased coherence of BOLD activation between
cortices within specific brain networks) over time in the
default-mode network (medial prefrontal cortex, anterior
and posterior cingulate cortex, inferior parietal cortex), the
executive function network (prefrontal and parietal cortex),
and the motor network (supplementary and primary motor
cortex, thalamus, putamen, cerebellum) during resting
state (see Table 2 for more details), implying better corti-
cal specialization (decreased between-network synchrony
and increased within-network synchrony) and better corti-
cal maturation (Kannurpatti et al., 2012; Rubia, 2013) as a
function of physical activity. Furthermore, studies assessing
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BOLD signal changes during executive function tasks
revealed that overweight children who underwent physi-
cal activity intervention had better in-task cortical resource
recruitment, particularly in the prefrontal cortex (Table 2).
That is, Davis et al. (2011) found that overweight children
who engaged into a 3-month vigorous aerobic- and motor
coordination-based physical activity intervention (running
games, basketball drills, soccer drills, jump rope; 5 sessions
per week), with 20 to 40 min per session, had increased
bilateral prefrontal activation and decreased bilateral pari-
etal activation during an inhibitory control-related task,
suggesting that multifaceted physical activity facilitates pre-
frontal development and prefrontal cortical recruitment in
overweight children (Davis et al., 2011). In addition, Krafft
et al. (2014c) found differential physical activity-induced
effects on task performance and brain functioning. In their
study, overweight children were randomly assigned to either
an 8-month physical activity intervention (running games,
jump rope) or an active control intervention. The results
indicated that, compared to the active control group, the
exercise group showed decreased BOLD activation in brain
regions supporting attentional performance (i.e., precentral
gyrus, posterior parietal cortex) and increased activation in

Exercise effects were not mediated

by aerobic fitness gains
Only high-dose PA (i.e., 40 min/ses-

in inhibitory control than normal-
in enhanced exercise intervention;

post-intervention improvements
weight children only if involved

sion) benefited planning perfor-

control in higher- than lower-fit
mance

children; Overweight children

Results showed better inhibitory
had more pronounced pre- to

Outcomes

and inhibitory control tasks
Fitness: aerobic fitness (20-m shut-

Cognitive task: working memory
tle run test)

Cognitive/fitness measures
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2019b; Mora-Gonzalez et al., 2020) and motor-coordination
(measured by speed-agility performance; Mora-Gonzalez
et al., 2019a, 2019b, 2020) on inhibitory control (Davis &
Cooper, 2011; Mora-Gonzalez et al., 2020), working mem-
ory (Mora-Gonzalez et al., 2019b), and cognitive flexibility
(Mora-Gonzalez et al., 2019a) tasks; the latter of which is
an aspect of executive function involved in the adjustment
of attention allocation between two distinct mental represen-
tations and/or rule sets. Others have also found significant
associations of aerobic fitness (Davis & Cooper, 2011) and
muscular strength (measured by handgrip strength; Mora-
Gonzalez et al., 2019a) with planning, a higher-order execu-
tive function involved in maintaining task-relevant informa-
tion in mind while organizing and adjusting goal-directed
actions simultaneously (Dehaene & Changeux, 1997; Polk
et al., 2002).

The positive relationship between fitness and executive
function in children with overweight and obesity has been
further supported by RCTs to test the effects of a structured
moderate-to-vigorous physical activity intervention. For
example, Crova et al. (2014) randomly assigned overweight
children into either a 6-month physical education program
including cognitively demanding exercise (curricular physi-
cal education + additional hours of skill-based and tennis-
specific training) or curricular physical education only,
with one session per week. Results showed that overweight
children had more pronounced pre- to post-intervention
improvements in inhibitory control than their normal-weight
counterparts only if involved in the enhanced physical activ-
ity program, and such an intervention effect was not medi-
ated by changes in aerobic fitness. The authors concluded
that the cognitive and social interaction components inher-
ent in the enhanced physical activity program, even when
embedded in a lower dose (one session per week), may
represent an effective means to promote inhibitory control
in overweight children. However, results from Crova et al.
may have been confounded by either greater physical activ-
ity time in the enhanced physical activity program (i.e., 58%
of intervention time in contrast to 46% of intervention time
in the curricular physical education intervention) or the addi-
tion of cognitive and social intervention components on top
of curricular physical activity. In contrast, Gallotta et al.
(2015) controlled both the physical activity dose and ses-
sion duration in their random assignment of overweight and
obese children into two school-based interventions: tradi-
tional physical activity (aerobic circuit training, shuttle run)
and coordinative physical activity (basketball mini-games
and drills). Sustained attention was assessed before and after
5 months of intervention. The authors found that while both
physical activity groups improved sustained attention, the
coordinative physical activity had stronger facilitative effect,
implying that an aerobic- and motor coordination-based
physical activity intervention may be an effective means of

@ Springer

fostering attention performance in overweight or obese chil-
dren. Interestingly, by manipulating the duration of interven-
tion (40 min per session vs. 20 min per session), Davis and
colleagues (2007) only found facilitative effects of a 40-min
session of vigorous aerobic- and motor coordination-based
intervention (running games, basketball drills, soccer drills,
jump rope) over a 3-month period on planning performance.
Such an effect was not observed in the 20-min session inter-
vention in overweight children, suggesting a “threshold
effect” of physical activity in modulating behavioral out-
comes of cognition.

To better characterize whether changes in task perfor-
mance are associated with changes in adiposity following
physical activity intervention, a few RCTs expanded previ-
ous findings by showing an inherent relationship between
energy expenditure, adiposity, and cognition. For example,
Raine et al. (2017) was the first to test whether changes in
adiposity and specific types of adipose tissue were related
to the effectiveness of a physical activity intervention
on changes in cognition. Obese children were randomly
assigned to a 9-month, after-school aerobic- and motor
coordination-based physical activity intervention or a wait-
list control group, with 5 sessions per week. Following the
9-month physical activity intervention, children exhibited
a reduction in whole body %fat as well as VAT. Further,
the degree of reduction in VAT was related to the degree
of gain in inhibitory control in obese children. Similarly,
in overweight or obese adolescents, Liu et al. (2018) ran-
domly assigned participants into either a 4-month motor-
coordination exercise program or a waitlist control group.
The exercise program involved an after-school multifaceted
jump rope program performed twice weekly. The authors
found that the jump rope group had improved inhibitory con-
trol, along with improved aerobic and muscular fitness, and
decreased BMI. However, pre- to post-intervention change
in aerobic fitness, muscular fitness, and BMI did not mediate
enhanced inhibitory control performance. Together, research
incorporating behavioral outcomes of cognition support the
positive influence of physical activity, aerobic fitness, and
motor coordination on cognition in children with overweight
and obesity, with a few studies supporting the inherent rela-
tionships between increased physical activity, decreased
adiposity, and improved cognition (Raine et al., 2017). Pre-
liminary data also indicated the potential of muscular fitness
for further investigation.

Academic Achievement

To date, only a few studies examined the association between
physical activity, fitness, and academic achievements in chil-
dren with overweight and obesity (Cadenas-Sanchez et al.,
2020b; Davis & Cooper, 2011; Garcia-Hermoso et al.,
2021; Table 1). Cadenas-Sanchez and colleagues (2020b)
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examined the association between objectively measured
physical activity and academic achievements but found no
signification associations. In contrast, a few studies have
demonstrated a positive association of fitness with academic
achievement. For example, Davis and Cooper (2011) found a
positive association of aerobic fitness with reading and math
performance in overweight children. In addition, Cadenas-
Sanchez and colleagues (2020a) replicated findings from
Davis and Cooper (2011) and extended aerobic, muscular
strength (measured by handgrip strength), and speed-agility
fitness with language skills, and further found that muscular
fitness was correlated with mathematics skills as well as
natural and social sciences. However, it should be noted that
the significant associations for muscular strength and speed-
agility were attenuated and disappeared after additional
adjustments for BMI and aerobic fitness, suggesting that the
two fitness dimensions did not independently associate with
academic skills. One recent longitudinal study supported a
positive relationship between aerobic fitness and academic
achievement in overweight and obese children, wherein
increased aerobic fitness over a 2-year period alleviated the
negative effects of increased BMI on language, mathemat-
ics, and grade point average (Garcia-Hermoso et al., 2021).
These preliminary data, collectively, point to a positive
effect of increased fitness on various academic skills in chil-
dren, especially for aerobic fitness. However, to date, there
is no study in the extant literature using an interventional
design to test whether increased fitness and/or decreased adi-
posity induced by a physical activity intervention results in
improved academic achievement in children with overweight
and obesity. Preliminary data from Davis and colleagues
(Davis et al., 2011) found facilitative effects of a 40-min ses-
sion, not a 20-min session, of vigorous aerobic- and motor
coordination-based intervention (running games, basketball
drills, soccer drills, jump rope) over a 3-month period on
math performance (Table 2). This finding corroborates data
from behavioral measures and, again, may imply a “thresh-
old effect” of exercise dose. Nevertheless, since this study
did not collect data on fitness or adiposity, whether changes
in fitness induced by physical activity would be associated
improved academic performance remains underexplored.

Summary

In summary, the current state of literature supports a posi-
tive effect of chronic physical activity, ranging from 3
to 9 months, across different subdomains of cognition at
a structural, functional, and behavioral level. There is
also preliminary data supporting a positive influence of
increased fitness on academic achievement in children with
overweight or obesity. Such mitigating effects of physical
activity may be underpinned by decreased secretion of pro-
inflammatory cytokines, increased insulin sensitivity, and

increased expression of neurotrophic factors in association
with increased energy expenditure or decreased adiposity.
Of note, aerobic fitness (e.g., running) and motor coordina-
tion (e.g., speed of movement, agility, coordination) could
be two relevant fitness dimensions integrated into physical
activity interventions, whereas the impact of muscular fit-
ness remains underexplored. Further, a multifaceted physical
activity intervention of moderate-to-vigorous intensity could
be most effective in manifesting the physical activity-related
benefits. Lastly, it is noteworthy that physical activity may
have a “threshold effect” of the exercise dose on behavioral
and academic outcomes, such that longer sessions of physi-
cal activity (e.g., 40 min) may manifest larger benefits rela-
tive to shorter sessions (e.g., 20 min).

Future Research Directions

While we have learned much over the years about the rela-
tionship of physical activity and fitness on cognitive and
brain health in children with overweight or obesity, there are
still many questions worth investigating. First, the majority
of studies in this line of research only recruited overweight
and/or obese children, with only four studies additionally
recruiting normal weight children for comparison (Crova
et al., 2014; Gallotta et al., 2015; Logan et al., 2021; Raine
et al., 2017). Preliminary findings have pointed to differen-
tial modulations of physical activity to behavioral (Crova
et al., 2014) and neuroelectric outcomes of inhibitory control
in overweight and obese children (Logan et al., 2021), such
that physical activity has larger effects in overweight and
obese children than their normal-weight peers (Crova et al.,
2014; Logan et al., 2021). More research focusing on other
subdomains of cognition are needed to better elucidate the
moderating role of obesity/adiposity.

Second, more research employing a broader measure
of cognition as well as academic achievement is needed.
The current state of the literature exclusively focused on
executive function (i.e., inhibitory control, working memory,
cognitive flexibility) and the planning aspect of cognition,
leaving the effects of physical activity and fitness on other
subdomains of cognition that are vulnerable to increased
adiposity (e.g., hippocampal-dependent relational memory;
Khan et al., 2015) unclear. Also, it remains unclear regard-
ing the modulatory effects of physical activity and fitness on
several neuroelectric correlates of cognition, including the
N2, ERN, and LRP component from ERP (Kamijo et al.,
2012b; Kamijo et al., 2014; Walk et al., 2020), in children
with overweight and/or obesity. Moreover, as noted above,
only three studies (Davis & Cooper, 2011; Cadenez-Sanchez
et al., 2020b; Garcia-Hermoso et al., 2021) examined the
association of fitness and academic achievements in child-
hood obesity. More research is needed to strengthen the
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educational and practical implications of physical activity as
an effective means to prevent and manage childhood obesity
and its associated negative impact on health and learning.

Third, it should be noted that most previous studies did
not have measures on obesity and/or adiposity. As such, it
remains unclear whether physical activity improved brain
function and cognition via changes in obesity/adiposity,
which limits the interpretation to a causal relationship
between physical activity, adiposity, and cognition. Further,
in studies who took measures on obesity and/or adiposity,
there is a lack of coherence between changes in adiposity
and changes in cognition following intervention. While a
few studies demonstrated that changes in adiposity/obesity
are associated with changes in cognition following months
of physical activity intervention (Raine et al., 2017), oth-
ers found either no association between changes in obesity
and changes in cognition (Liu et al., 2018; Schaeffer et al.,
2014) or no change in obesity following intervention despite
improved neurocognitive function (Gallotta et al., 2015;
Krafft et al., 2014b). One reason for the lack of coherence
could be that the majority of research only included BMI
and/or whole body %fat as a measure of obesity/adipos-
ity, and thus it is possible that BMI or whole body %fat is
not a sensitive marker of increased energy expenditure or
changes in cognition. In contrast, measures such as VAT
and abdominal fat mass may be a more sensitive marker.
This assumption may be supported by findings from Raine
et al. (2018), who showed that whole body %fat and SAAT
were not related to cognitive performance in obese chil-
dren; rather, higher VAT, which is associated with increased
central inflammation and insulin resistance (Doupis et al.,
2011), was associated with poorer intellectual abilities and
cognitive performance. With this in mind, future research
should include VAT and/or abdominal fat measures to better
characterize the association between changes in adiposity
and changes in cognition following intervention.

Fourth, despite ample data indicating that physical activ-
ity incorporating aerobic fitness and motor coordination
have facilitative effects on behavioral, structural, and func-
tional neural correlates of cognition in childhood obesity,
the effects of muscular fitness remains underexplored, with
no intervention study incorporating this fitness dimension
and the evidence remains inconsistent across cross-sectional
studies. Given that lean body mass is associated with neu-
rocognitive integrity (Gracia-Marco et al., 2020) and insu-
lin levels (Torres-Costoso et al., 2017), it is worthwhile to
investigate if physical activity tapping muscular fitness could
increase lean body mass and insulin sensitivity, whereby
improve neurocognitive function in children with obesity.
Likewise, high-intensity interval training (HIIT) that con-
sists of repeated bouts of vigorous exercise, interspersed by
short periods of recovery, has recently been recommended
as an effective means to decrease adiposity (Andreato et al.,
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2019) and facilitate performance of different subdomains
of cognition in children (Hsieh et al., 2021). Considering
that the relationships of fitness and physical activity to neu-
rocognitive function in childhood obesity may be fitness-
dependent, it could be informative to examine whether
manipulations of physical activity characteristics (e.g.,
intensity, mode, duration, fitness dimension tapped) moder-
ate the physical activity-induced neurocognitive changes.
Notably, given that children with overweight and obesity
may be less motivated and have lower adherence to physi-
cal activity (Alberga et al., 2013), it might be worthwhile to
increase the diversity and enjoyability of exercise interven-
tions by incorporating other activities (e.g., dual-tasking,
cognitive games), rather than implementing exercise alone,
when investigating the effects of manipulations of physical
activity characteristics.

Fifth, despite the extant literature does not support a
positive association between objectively measured physical
activity with executive function, brain function, or academic
achievements in children with overweight and obesity, we
argue that more studies in this regard are needed given that
most of the existing research are stemming from the same
dataset (Cadenas-Sanchez et al., 2020b; Mora-Gonzalez
et al., 2019a, 2019b, 2020). Further, objectively measured
physical activity may be advantageous as it represents chil-
dren’s daily, lifestyle-based physical activity, which provides
an accurate measure of children’s typical, daily activity pat-
terns without additional activities imposed by interventions.
As such, more research incorporates objectively measured
physical activity, along with measures on physical fitness
and motor coordination, would better clarify the associa-
tions between daily physical activity, fitness, and cognition
in children with overweight and obesity.

Lastly, the molecular mechanisms underlying physi-
cal activity effects on cognition and brain function remain
underexplored. Despite preliminary data pointing to sev-
eral possible tangible biomarkers (e.g., proinflammatory
cytokines, insulin, BDNF), more research with an inter-
disciplinary approach that also includes obesity-related
biomarkers may expand the current knowledge base by
examining the mediating effects of molecular changes in
the association between physical activity and neurocogni-
tive function in childhood obesity. A better understanding
of the role of these biomarkers may be informative for the
development of effective physical activity regimens in chil-
dren with obesity.

Conclusion

The aim of current narrative review was to consider the
recent empirical evidence pertinent to the associations of
chronic physical activity and fitness on brain and cognition
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in children with overweight or obesity. The contribution of
this review is an up-to-date and comprehensive considera-
tion of cognitive and academic outcomes, brain structure,
and brain function. In summary, the current state of litera-
ture points to a detrimental effect of obesity/adiposity on
behavioral, structural, and functional correlates of cognition
during childhood, especially in cognitive domains that are
prefrontal- or hippocampal-dependent. Preliminary data also
extended this negative effect to academic achievement. Such
negative effects may be undermined by central inflamma-
tion and insulin resistance induced by excessive adiposity.
Fortunately, a growing body of evidence supports a positive
effect of physical activity, especially interventions tapping
aerobic fitness and motor coordination, across different sub-
domains of cognition at a brain, behavioral, and academic
level in children with overweight and obesity, including
cognitive indices that are shown to be vulnerable to obe-
sity. A piecemeal of research further indicates an associa-
tion between increased fitness and better performance across
multiple academic subjects. Such mitigating effects of physi-
cal activity could be accounted for by decreased secretion
of proinflammatory cytokines, increased insulin sensitivity,
and increased expression of neurotrophic factors in associa-
tion of increased energy expenditure or decreased adiposity.
This area should be expanded via the further exploration
of individual differences (e.g., obese children vs. normal
weight children), the manipulation of physical activity char-
acteristics, the employment of a broader array of cognitive
and academic measures, the inclusion of adiposity measures
that are sensitive to neurocognitive function, and the utili-
zation of an inter-disciplinary approach. It should be noted
that, however, the narrative nature of this review precludes
estimation of the size of effects of either childhood obesity
or chronic physical activity on brain and cognition. Future
systematic and/or meta-analytical review that provide a bet-
ter estimation of the effects of childhood obesity as well as
the effects of chronic physical activity on brain and cogni-
tion in children with overweight/obesity is needed.
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