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Abstract

Internal working memory (WM) gating control policies have been suggested to constitute a critical component of task-sets that
can be learned and transferred to very similar task contexts (Bhandari and Badre (Cognition, 172,33—43,2018). Here, we attempt
to expand these findings, examining whether such control policies can be also trained and transferred to other untrained cognitive
control tasks, namely to task switching and AX-CPT. To this end, a context-processing WM task was used for training, allowing
to manipulate either input (i.e., top-down selective entry of information into WM) or output (i.e., bottom-up selective retrieval of
WM) gating control policies by employing either a context-first (CF) or context-last (CL) task structure, respectively. In this task,
two contextual cues were each associated with two different stimuli. In CF condition, each trial began with a contextual cue,
determining which of the two subsequent stimuli is target relevant. In contrast, in the CL condition the contextual cue appeared
last, preceded by a target and non-target stimulus successively. Participants completed a task switching baseline assessment,
followed by one practice and six training blocks with the WM context-processing training task. After completing training, task-
switching and AX-CPT transfer blocks were administrated, respectively. As hypothesized, compared to CL training condition,
CF training led to improved task-switching performance. However, contrary to our predictions, training type did not influence
AX-CPT performance. Taken together, the current results provide further evidence that internal control policies are (1) inherent
element of task-sets, also in task switching and (2) independent of S-R mappings. However, these results need to be cautiously
interpreted due to baseline differences in task-switching performance between the conditions (overall slower RTs in the CF
condition). Importantly though, our results open a new venue for the realm of cognitive enhancement, pointing here for the first
time to the potential of control policies training in promoting wider transfer effects.
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Cognitive enhancement studies are faced with the challenge to
produce transferable and durable learning effects to untrained
structurally dissimilar contexts (i.e., far transfer) and real-life
situations (Dougherty et al. 2016; Melby-Lervag et al. 2016;
Soveri et al. 2017). Despite early encouraging results, the
effectiveness of cognitive training (CT) remains disputable,
with current training protocols showing at best rather limited
generalization effects to very similar tasks (i.e., near transfer;
Karbach and Verhaeghen 2014; Schwaighofer et al. 2015).
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A central pitfall of current CTs seems to be anchored in
their repetitive nature, that may lead to automatization and
task-specific learning, potentially incurring transfer costs
(Sabah et al. 2018). In contrast, growing evidence suggests
that the occurrence of learning generalization to novel con-
texts relies heavily on the human brain’s ability to learn and
represent abstract knowledge (e.g., task rules) and flexibly
exploit this knowledge across multiple unfamiliar contexts,
allowing rapid adjustment to new demands and situations
(e.g., Badre et al. 2010; Cole et al. 2011, 2013; Collins and
Frank 2013; Dreisbach 2012). Indirect evidence for the con-
tribution of abstract task representation to learning and trans-
fer emerges from CT studies, advocating the importance of
training variability (Gopher et al. 1989; Karbach and Kray
2009; Sabah et al. 2018). For example, recent evidence sug-
gests that the commonly undertaken approach of training
“more of the same” promotes bottom-up learning, limited to
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the trained task (Sabah et al. 2018). In contrast, changing task
information such as task rules and stimuli throughout training
(i.e., content variability) was shown to promote transfer gains
and to prevent negative transfer (costs), presumably by en-
couraging the formation of abstract task-rules (Karbach and
Kray 2009; Pereg et al. 2013; Sabah et al. 2018; Shahar et al.
2018). Additional support for these claims comes from video
game training studies, attributing the favorable transfer out-
comes to variability in contextual information and to the re-
lated variability in cognitive processes offered (for review see
Bavelier et al. 2012).

A form of abstract knowledge that is pertinent for task
execution, are internal control policies or task models—a
mental program that organizes task-relevant information in-
cluding rules, facts, stimuli, responses, and timing in WM to
control current behavior (Bhandari and Badre 2018; Duncan
etal. 2008). Here, we aim to investigate more directly how the
training of internal control policies may influence transfer to
new tasks that might benefit from its application.

Rules We Cannot See or Hear: The Trainability
and Transferability of Working Memory
Gating Control Policies

Internal control policies or task models are considered to en-
compass critical information for task execution, such as facts,
rules, and task requirements, enabling real-time cognitive ad-
justments to task’s dynamical structure (Bhandari and Badre
2018; Bhandari and Duncan 2014; Duncan et al. 2008). Within
the domain of WM, the operation of such control policies can
be embodied by gating mechanisms, which regulate the flow,
updating, and maintenance of information in alignment to task
dynamics through the work of input and output gates (Chatham
and Badre 2015; Frank et al. 2001; Frank and Badre 2012;
O’Reilly and Frank 2006; Todd et al. 2009). According to the
gating framework, information flow to WM is controlled by an
input gate that selects which information is to be entered and
updated in WM while an output gating determines which in-
formation held in WM is response relevant. Recently, WM
gating control policies were suggested to be trainable,
supporting flexible behavior and learning generalization
(Bhandari and Badre 2018). To train and compare between
input and output gating policy training, these authors employed
a second-order context processing task (see Fig. 1).

In this task, two contextual higher-order items (numbers)
were each associated with two lower-order items. The cue 11
was associated with the letters A and G whereas the cue 53
was associated with the symbols ® and 7t. Each trial presented
a sequence of three items: a number cue, a letter, and a sym-
bol. Which of the two items (letter or symbol) was response
relevant in a given sequence was determined by the number
cue. Hence, whenever the cue “11” appears, participants need

to respond to the letter. In contrast, whenever the cue “53”
appears, a response to the symbol is required. To manipulate
input and output gating policies, the number cue that discrim-
inated the response-relevant item either occurred first
(context-first, CF) or last (context-last, CL) As such, the early
appearance of the cue enables the selective entry of the target
item into WM. In the given context-first (CF) example, the
first screen (“117) indicates that the response relevant item
was a letter (Fig. 1, upper panel). Response was determined
in the last screen, here requiring a left-key response because
the letter “A” appeared on the lower /efi side of the response
panel. Conversely, in the CL condition, the number cue ap-
peared last in the sequence, supporting the usage of output
gating processes, as it requires a selective retrieval of the rel-
evant target item (Fig. 1, lower panel). Here, the cue (53)
appeared last after being preceded by the lower-order items
G and ©. Here, the response relevant item was the symbol
(®). Because the response-relevant item (®) appeared on the
lower right side of the response panel, a right-key response is
required. The outstanding finding in Bhandari and Badre
(2018) was that experience with either the CL or CF condi-
tions led to transfer of the trained gating policy to new con-
texts with the same (e.g., CF — CF) and different structure
(e.g., CL — CF).

The current study attempted to examine whether a similar
short-term training in WM gating policies will produce a
wider transfer effect to other cognitive control tasks sharing
similar task dynamics. To this end, we used Bhandari and
Badre’s task (2018) for training, examining possible transfer
effects to cued task switching and to a context processing
paradigm (the AX-continuous performance task (AX-CPT)).

Examining the Contribution of WM Gating
Policies to Task-Switching and AX-CPT
Performance

Task-switching (for reviews, see Kiesel et al. 2010; Monsell
2003; Vandierendonck et al. 2010) and AX-CPT (e.g., Braver
and Cohen 2000; Braver et al. 2009; Hefer and Dreisbach
2016, 2017; Paxton et al. 2008) are prominent paradigms to
study cognitive control processes, underlying goal-directed
and flexible behavior (for reviews see Braver 2012; Gratton
et al. 2018). Importantly, both the task-switching and AX-
CPT paradigms were suggested to involve gating processes
(Braver and Cohen 2000; D’Ardenne et al. 2012; Kessler
2017; Kessler et al. 2017; Rougier and O’Reilly 2002), mak-
ing them adequate transfer tasks for the current study.

The task switching paradigm is a widely used measure for
cognitive flexibility and the main measure being the latency
and accuracy rates when switching as compared to repeating
tasks. A popular variant is the cued task-switching paradigm,
in which a cue announces which of the two tasks has to be
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Fig. 1 The second-order WM
task rules and structure

executed in response to a bivalent stimulus (that in principle
allows the application of both tasks; Meiran 2014). Cue-
processing encourages proactive control (comparable to a
CF condition) and thus eases the selection of the appropriate
task. The AX-CPT is a context-processing task, applied for the
study of WM processes and cognitive control dynamics. In
this paradigm, a target response is required whenever an A-
cue is followed by an X-probe, with AX sequences occurring
with high frequency (70%), making the A-cue highly predic-
tive of the X probe. That way, the A-cue processing (compa-
rable to a CF condition) encourages a proactive control mode
leading to increased behavioral costs (higher error rates) when
the A-cue is not followed by an X probe (i.e., AY trials) and to
less errors when the X-probe is not preceded by an A (i.e., BX
trials). Note that the typical assumption is that using a selec-
tive retrieval of contextual information is assumed to lead to
higher interference on BX trials as the X-probe is strongly
associated with a target response (cf. Gonthier et al. 2016).
Cued task switching and the AX-CPT thus share task dy-
namics with the second-order WM task, used by Bhandari and
Badre (2018). Namely, they require hierarchical task represen-
tation, in which response selection is bound to a higher-order
contextual cue, the task cue or the A-cue, respectively (Braver
and Barch 2002). This structural similarity might facilitate
transfer of cognitive control policies, here learned after expo-
sure to the second-order WM task. For this purpose, a short-
term WM gating policies training was applied, manipulating
the type of trained gating policy by assigning participants to
either a CF (input gating policy training) or a CL condition
(output gating policy training). Task-switching performance
was assessed prior and after training, utilizing a cued bivalent
variation of the task-switching paradigm. Ultimately,
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participants were presented with an AX-CPT transfer block.
It is worth noting that we decided against an AX-CPT block
prior training because the AX-CPT itself can be seen as a
paradigm that promotes proactive control and cue usage like
the CF condition does (for a detailed review on time on task
effects in the AX-CPT, see Hefer and Dreisbach 2020). For
the same reason, the order of task-switching and AX-CPT was
not counterbalanced, but AX-CPT always was presented last.
The following predictions were made:

1. For task-switching, we hypothesized that a selective op-
eration of input gating control policies should encourage a
selective entry of information within WM by means of
enhanced cue processing, allowing for advance prepara-
tion. As such, higher transfer gains are expected to occur
following CF as compared to CL training, reflected in
higher overall reduction in RTs. This is supported by line
of research suggesting benefits of enhanced cue process-
ing and preparation processes to task switching perfor-
mance (e.g., Meiran 1996; Savine and Braver 2010; for
review see Kiesel et al. 2010). When assuming a switch-
specific advanced preparation benefit, it is then expected
that a higher reduction on switches when compared to
repetitions will be observed, leading to a reduction in
switch costs in the CF but not the CL condition (e.g., De
Jong 2000; Rogers and Monsell 1995 but see Dreisbach
et al. 2002; Meiran et al. 2008; Shahar and Meiran 2014;
Sohn and Anderson 2001).

2. For the AX-CPT, CL training was presumed to promote
selective output gating policies that promote enhanced
reactive control mode, leading to lower errors rates on
AY trials in the CL condition and to higher error rates
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on the BX trials in comparison to the CF condition.
Moreover, CF might increase usage of the A-cue, thereby
leading to higher AY errors as compared to the CL
condition.

Method
Participants

Eighty Regensburg University students (16 males; Mg, =
21.96, SD =2.74) were compensated with either 1-h course
credit or were paid €6. All participants reported having normal
or corrected-to-normal vision and gave written consent prior
to their participation in the study.

Although the number of participants was not based on
power analysis conducted in advance, we note that Bayes
Factors Design Analysis (REF; Schonbrodt and
Wagenmakers 2018) assuming a between-subjects effect of
Cohen’s D =0.5 indicates the following (we used this web
page for the analysis—http:/shinyapps.org/apps/BFDA/): If
the effect were present, we would have correctly detected it
in 84.6% of the cases (roughly analogous to Power), would
have wrongly concluded that it is absent in 0.8%, and would
have remained undecided in 14.6%. If the effect were absent,
we would have correctly accepted HO in 77% of the cases,
wrongly accept HI (somewhat analogous to alpha errors) in 1.
4%, and would have remained undecided in 21.6%.

Apparatus and Task Design

All experimental tasks were programmed in E-prime
(Psychology Software Tools, Pittsburgh, PA, USA). The ex-
periment was controlled by Dell computer with a 19” flat
screen.

The Second-Order WM Control Task (Training). The task was
adapted from Bhandari and Badre (2018) based on the work of
Chatham and Badre (2015). On each trial, participants were
presented with three stimuli, appearing in sequential order (see
Fig. 1). Each sequence was composed of a number cue (11 or
53), a letter (A or G), and a symbol (7t or ®). The contextual
cue (number) determined for each trial whether the letter or
symbol (lower level items) was response relevant.
Specifically, participants were instructed to memorize two
rules through which the number 11 was associated with the
letters whereas the number 53 was associated with the sym-
bols (please see Fig. 1). For example, in a sequence composed
of 11 - G — O, the response-relevant item was the letter G
whereas the symbol ® was response irrelevant. Alternatively,
in a sequence composed of 53 — A — 71, the response-
relevant item was the symbol 7t and the letter A was response

irrelevant. Simultaneously with the presentation of the last
item in a sequence, a response panel appeared on the lower
part of the screen. On each side of the response panel, two
pairs of lower level items, each comprising a letter and a
symbol, appeared. Participants were asked to press either a
left (y) or right (m) response key, depending on where the
target appeared in the response panel. For example, in the
sequence 11 > G — ©®, “G” was the target. Hence, the re-
quired response was the (right/left) side on which “G” ap-
peared. In the response panel, there was an equal chance of
congruent and incongruent item arrangement. In a congruent
arrangement, the target and irrelevant item which appeared in
a sequence appeared together on the same side of the response
panel, hence both associated with the same response key. For
example, the arrangement in the context-first (upper) panel of
Fig. 1 is congruent since the target “A” and irrelevant item “7t”
appeared together on the left side of the response panel, both
affording a left-key response. In contrast, in an incongruent
arrangement, the target and irrelevant item which appeared in
a sequence were presented on opposing sides of the response
panel, each associated with different response key. As such,
the context-last example in Fig. 1 (lower panel) depicts an
incongruent arrangement as the target “®” and irrelevant item
“G” are associated with opponent response keys (the right and
left response key, respectively). The location of the lower
level items in the response panel was randomized, each
appearing equally often on either the left or right side of the
screen, with half of the trials requiring a right/left target re-
sponse. Which of the lower item appeared first in the sequence
was also randomized and balanced. All stimuli were printed in
white, on a black background. We used the same stimuli set as
Bhandari and Badre (2018), extracted from https://osf.io/
exyks/.

Training consisted of six blocks, preceded by a short
practice block to familiarize participants with the task and
assure that the instructions were understood. Each block
started with four instruction screens, followed by 48 trials.
Two possible task structures were introduced, depending
on the group assignment (see general procedure). For the
CF group, each trial started with the cue (“11 or “537),
followed successively by two lower-level items, one
response-relevant and the other response irrelevant (one
letter and one symbol). In contrast, for the CL group, the
cue appeared last in the sequence.

The first two items in the sequence appeared always for
300 ms whereas presentation of the last item was terminated
upon response within a window of 3000 ms. A fixation
cross was presented between stimulus presentation
(pseudo-randomly jittered between 600 and 1600 ms) and
between trials (ITI; 500). In the practice block, feedback
was provided following incorrect trials, presenting the
German word “Falsch” [incorrect] printed in red in the cen-
ter of the screen.
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Task-Switching (Baseline and Transfer Blocks). We used a
modified version of the task-switching paradigm, including
only mixed-tasks blocks. As stimuli, we used bivalent picture
stimuli (meaning that the stimuli were relevant for the two
tasks) depicting animals and objects. The size of the pictures
was 1.57" x 1.18". Participants switched between two task
rules. One task rule was to classify the animals/objects as
fly/cannot fly (rule 1). The other rule was to classify these
stimuli as living or non/living (rule 2). We used four stimuli
all affording the two task-rules that were assigned to either a
left response key (y) or right response key (m) on a QWERTZ
keyboard, depending on the respective category. The response
key assignment was counterbalanced across participants.

In both baseline and transfer, the task-switching block
started with two instructional slides presenting the task rules,
followed by eight practice trials and a block of 64 experimental
trials. Each trial started with a fixation cross for 500 ms, follow-
ed by a cue for 650 ms. The target stimulus was then presented,
remaining on screen either until a response was given or until
3500 ms had elapsed. Feedback was only presented for errors
or too slow reaction times (slower than 3500 ms).

AX-CPT (Transfer). This paradigm (Servan-Schreiber 1996) is
utilized as a measure of context-dependent cognitive control
processes in which the cue determines the relevant response to
a consecutive lower-level item (i.e., probe). A target response
was required whenever the letter A appears as a cue, followed
by the letter X (AX trials), occurring 70% of all trials. Three
non-target trial conditions were introduced (10% each): (1)
AY condition in which the “A” cue was followed by a Y-
probe (Y—all letters other than X); (2) BX condition in which
the “X” probe was preceded by a B-cue (B—all letters other
than A) or BY condition (the cue and probe were neither the
letters A nor X). The higher frequency of the AX trials results
in a strong expectation for a target response following the A-
cue, leading to high error rate on AY trials.

For response collection, a left response key (y) and right
response key (m) on a QWERTZ keyboard were used. The
assignment of the response key to target and non-target re-
sponse was counterbalanced between participants. The letters
were printed in 24px Calibri Light font.

The block started with three instructional slides followed
by 120 experimental trials. Each trial started with a cue
(300 ms), a delay of 1500 ms which was then followed by
the probe (300 ms). Participants had 1300 ms to respond. A
feedback was presented for too slow reaction times (slower
that 1300). The trial ended with a blank screen (ITT; 1000 ms).

General Procedure
Participants were randomly assigned to one of two equal-sized

training groups: (1) CF condition and (2) CL condition. They
attended a 1-h experimental session, starting with task-
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switching baseline block, followed by one practice block with
the WM training task, six training blocks, and subsequently
with task- switching and AX-CPT transfer blocks,
respectively.

Results
Data Processing

Analysis focused on error rates and response times across all
experimental tasks. For the training task, we followed the
same data cleaning protocol as in Bhandari et al. (2018). To
calculate mean RTs, erroneous trials as well as trials on which
response was faster than 250 ms were discarded (6% of over-
all trials). For task-switching, practice trials as well as the first
experimental trial were excluded from analysis. In addition,
for calculating mean RTs, erroneous trials, trials following an
error and trials deviating 3 SDs from the individual partici-
pant’s mean in each block and trial type, were discarded (16%
of overall trials). Prior to mean median RT analysis in the AX-
CPT task, error trials as well as erroneous trials were excluded
(5% of overall trials).

It is noteworthy that 11 participants were replaced during
data collection phase following exceptionally overall high er-
ror rate on either the training task (>30%; CF,n=2;CL,n=
3) or testing tasks (>50%; task switching, n =2; AX-CPT,
n =4). For the same reason, after replacement, one participant
from the CL was excluded from analysis due to exceptionally
high error rate (40%), leaving only seven analyzable trials in
the switch condition for that participant. Thus, data from 79
participants entered analysis eventually, utilizing error rates
and response time (RT) measures.

Baseline Differences: Task-Switching

To look for potential initial differences between the training
groups, 2 %2 ANOVA was conducted just for the baseline
block on both RTs and error rates, with trial type (repeat or
switch) as a within-subjects variable and group (CF or CL) as
a between-subjects variable. For the RT data, the results re-
vealed the typical switch cost pattern, such that slower re-
sponses were obtained on task-switch (M =811 ms, 95% CI
[765, 857]) as compared to task-repeat trials (M =743 ms,
95% CI [703, 784], F(1, 77)=26.75, p<0.001, np2=0.26,
BF;¢ > 100). Unexpectedly, the main effect group reached
significance with the Bayes Factor (BF) favoring H1, F(1,
76)=6.25, p<0.05, npz =0.07, BF;o=4.80. Participants in
the CF group showed overall slower RTs as compared to the
CL group. In contrast, the evidence for an interaction between
group and trial type provided evidence in favor of HO, F=
1.09, p=0.30, BF;(=0.32.
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Table 1 Main effects and
interaction of the Group x Block Statistic p value Effect size (7Ip2 ) BFg
ANOVA in the context —
processing training task (RTs and RTs Group F(1,77)=93.37 <0.001 0.55 >100
error rates) Block F(5,385)=3.13 0.009"" 0.04 1.08
Group % Block F(5, 385)=2.05 0.07 0.03 0.32
Error rates Group F(1,77)=10.04 0.002"" 0.11 15.17
Block F(5, 385)=0.86 0.50 0.01 0.01
Group x Block F(5, 385)=0.84 0.52 0.01 0.04

*¥p<.01, ¥*¥¥p<.001

No significant effects were obtained in error data (all ¥
<2.23, all p>0.13). The BFs for trial and group were
indecisive tending to favor HO, BFg (rriay=0.49, BFyg
(Group) = 0.40, whereas evidence for HO was obtained for
the interaction Group X Trial, BF;o=0.28.

Training Performance—Context Processing Task

A 2 x 6 mixed-factors ANOVA was performed with training
block as a within-subjects variable (1-6) and group (CF or
CL) as a between-subjects variable for both RTs and error
rates (see Table 1 and Fig. 2).

As seen in Table 1, the main effect for group was signifi-
cant for both RTs and error data, pointing to generally faster
RTs and lower error rates in the CF as compared to the CL
group, thus replicating the findings of Bhandari and Badre
(2018). The BF for group was aligned with the frequentist
analysis, favoring H1.

The main effect for training block was significant in the RT
data only, indicating to a reduction in RTs from training block
1 to block 6. The BF for block in the RT data provided only
anecdotal evidence for H1 while that for the error data provid-
ed evidence for HO. The two-way interaction Group X
Training Block was neither significant in RT nor error data
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(see Fig. 2 and Table 2). The respective BF was indecisive for
RT but provided evidence for the HO in the error data.

Transfer Performance—Task Switching

To examine training effects on task switching performance, a
2 x 2 mixed-factors ANOVA was conducted, with pre-test
versus post-test, trial type (repeat, switch) as a within-
subjects variable and group (CF, CL) as a between-subjects
variable (for full table of statistics and corresponding
performance summary data, see Tables 3, 4, and 5).

Response Times As seen in Table 3, the main effect of block
was significant, pointing to a reduction in RT from the base-
line to the transfer block. The BF provided very strong evi-
dence for H1. In addition, the main effect for trial type reached
significance, denoting the typical switch costs, namely, slower
RT on switch (M =731 ms, 95% CI [691, 770]) as compared
to repeat trials (M =680 ms, 95% CI [645, 714]). This was
further confirmed by Bayesian analysis, providing evidence in
favor of H1. Conversely, the main effect of group did not
reach significance, obtaining only anecdotal evidence for HO.

Importantly, the two-way interaction Group x Block was
found to be significant. Despite the disadvantage in RT on the

]

=)

Error Rates (%)

N

[¥)

1 2 3 4 5 6
Block

S CL
= CF

Fig. 2 Mean RT in ms (left panel) and error rates in % (right panel) across the training blocks as a function of group. Error bars denote 95% CI of the

means
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Table 2  Data summary for performance (accuracy, response times means and Cls) on the training task

Response times (ms)

Accuracy (errors %)

Group

Block

Block

731 + 65
1113 + 66

744 £ 71 740 + 63 754 + 76 730 + 65 710 + 66
1153 + 65 1165 + 67

1189 + 72

0.04 £ 0.02
0.09 £ 0.02

0.04 £ 0.03 0.04 + 0.03 0.04 £ 0.03 0.04 £ 0.02 0.03 + 0.02
0.09 + 0.03 0.08 £ 0.03 0.08 £ 0.02 0.08 + 0.02

0.10 £ 0.03

CF

1163 + 77

1202 + 64

CL

baseline block as compared to the CL group, higher reduction
in RTs from baseline to the transfer block was found in the CF
group (M =—193 ms) as compared to the CL group (M =—
97 ms), #(77)=2.89, p <0.01, d=0.65. The BF provided very
strong evidence for H1. The two-way interaction Group x
Trial Type was not significant, finding a strong evidence for
HO. A significant three-way interaction was found between
group trial type and block (see Fig. 3), indicating to a re-
duction in switch costs in the CF group, #39)=3.50,
p<0.01, d=0.55, but not in the CL group (p =0.64). In
the transfer block, the CL group produced significantly
higher switch costs as compared to the CF group, #(77) =
2.07, p<0.05, d=0.46. However, the BF for the three-way
interaction was indecisive.

Due to pre-existing differences between the groups in over-
all RT, we ran an additional ANCOVA, inserting baseline
RTs for repeat and switch trials as covariates, which revealed
a significant two-way interaction between group and trial
type, F(1, 75)=6.86, p <0.01, 13,> = 0.08.

Overall, the results indicate that CF training seems to lead
to improved overall task switching performance as compared
to CL training condition, indicating a transfer of learned con-
trol policies to novel untrained contexts. Moreover, our data
did not provide strong support for the reduction of switch
costs in the CF group as compared to the CL group.

Error Rates. The results point to significant main effect for
block and very strong evidence for H1, indicating a reduction
in error rates from baseline to the transfer block. Moreover, the
main effect for trial type was also significant, pointing to typ-
ical switch costs, namely, higher error rates on switch com-
pared to repeat trials. The BF for trial was indecisive, tending
to favor H1. No other effect reached significance. The found
BF of group and that of the interaction Trial X Block x Group
were indecisive, favoring HO whereas the BFs for all two-way
interaction provided strong evidence for HO.

Transfer Performance—AX-CPT

A 4 x2 mixed-model ANOVA was performed on both RT
and error rate, including condition as a within-subject inde-
pendent variable (AX, AY, BX, BY) and group (CF, CL) as a
between-subject independent variable (see Tables 6 and 7 for
the ANOVA results and Table 8 for performance summary
data).

Response Times The results revealed the typical effect for
condition, pointing to slower RT on AY as compared to AX.
All other effects were not significant, with results favoring HO
(all F<1, p>0.45, BF;(<0.26).

Error Rates The expected main effect for condition was signif-
icant, pointing to higher error rates on the AY as compared to
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Table 3 Main effects and

interaction of the Group x Block Statistic p value Effect size (1,”) BF1o

ANOVA in task-switching (RTs)
Group F(1,77)=2.93 0.09 0.03 0.88
Block F(1,77)=77.18 <0.001"" 0.50 >100
Trial Type F(1,77)=29.82 <0.001"" 0.28 24.01
Group x Block F(1,77)=8.34 0.005™" 0.11 >100
Trial Type x Block FQ,77)=7.14 0.009™" 0.08 0.40
Trial Type x Group F(1,77)=0.07 0.79 0.001 <0.01
Trial Type x Block x Group F(1,77)=6.76 0.01" 0.08 0.56

p < 05, *p < .01, #*%p < 001

AX. The main effect of group reached significance showing
higher error rates in CF group as compared to CL group.
However, in contrast to our hypothesis, the two-way interac-
tion Group x Condition did not reach significance, finding
anecdotal support for HO.

Discussion

The goal of the current study was to examine whether prac-
ticing WM gating control polices can lead to beneficial trans-
fer to different cognitive control tasks that arguably involve
similar control policies. To this end, we used Bhandari and
Badre’s (2018) second-order WM task and assigned partici-
pants to either an input-gating or output-gating policy training.
Following training, transfer effects were assessed using the
cued task-switching task and the AX-CPT task.

First, and in line with our hypothesis, CF structure training,
more than CL structure training, led to improvement in task
switching performance, as evidenced in RT in both switch and
repeat trials. Second, we did not find any effect of CL versus
CF training on performance in the AX-CPT task. There exists
the possibility that this null effect reflects a methodological
limitation which we were well aware of. Remember that the
AX-CPT always occurred after task switching. This means
that all participants had already worked through the cued
task-switching blocks where they experienced a condition in-
volving CF. As a result, whatever group differences existed
beforehand could have been eliminated.

Adhering to Bhandari and Badre (2018), we choose to
interpret our findings within the working-memory gating
framework, attributing the advantage of the CF over CL train-
ing in task-switching to the learning and transfer of selective
input-gating policies. Specifically, the early appearance of the

Table 4 Main effects and

interaction of the Group x Block Statistic p value Effect size (npz) BF
ANOVA in task-switching (error
rates) Group F(1,77)=1.51 0.22 0.02 0.38
Block F(1,77)=52.32 <0.001"" 0.40 >100
Trial Type F(Q1,77)=8.04 0.006™ 0.09 1.77
Group x Block F(1,77)=0.04 0.84 0.001 0.16
Trial Type x Block F(1,77)=0.31 0.57 0.004 0.18
Trial Type x Group F(1,77)=0.71 0.40 0.01 0.24
Trial Type x Block x Group F(1,77)=0.001 0.82 0.001 0.34
*p < .01, ¥*¥p <.001
Table 5 Data summary for performance (accuracy, response times means and CIs) on task switching
Group Block Accuracy (% error) Response times (ms)
Repeat Switch Overall Repeat Switch Overall
CF Baseline 0.08 + 0.03 0.10 £ 0.03 0.09 + 0.02 792 + 57 873 + 65 833 + 58
Transfer 0.03 £ 0.01 0.05 +0.02 0.04 +£0.01 632 £ 50 648 £ 58 640 + 53
CL Baseline 0.10 £ 0.03 0.11 £ 0.03 0.11 £ 0.02 696 + 57 750 + 66 723 + 59
Transfer 0.04 £ 0.01 0.06 £ 0.02 0.05 +0.01 599 + 51 652 £ 59 626 £ 53

@ Springer



338 J Cogn Enhanc (2021) 5:330-342
Fig.3 Mean RT in ms in baseline 1000
and transfer task-switching blocks
in the CF (left panel) and CL
condition (right panel). Error bars 900
denote 95% CI of the means
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cue in the CF condition encouraged participants to exploit this
contextual information in order to optimize their performance
through selective selection of information into WM.
Successful transfer of such form of control policy to task
switching produced performance gains, presumably by pro-
moting advance preparation for the upcoming task, shown
previously to benefit task switching (e.g., De Jong et al.
1999; Dreisbach et al. 2002; Meiran 1996; Meiran and
Chorev 2005; Schuch and Koch 2003). With respect to switch
costs, our results were less clear. The seemingly promising
and novel switch-cost reduction in the CF condition, as shown
in the frequentist data analysis, was not supported by the
Bayesian analysis. While such outcome can point to noise in
our data, one cannot exclude the possibility that the absent
Bayesian support for the alternative hypothesis is due to meth-
odological limitation such as sample size or training dosage.
Nonetheless, as argued by several authors, in the cued version
of the task switching task, switch and repeat trials share pre-
paratory processes (Dreisbach et al. 2002; Meiran et al. 2008;
Shahar and Meiran 2014; Sohn and Anderson 2001).This is
inherent in the unpredictable ordering of the task, requiring
participants to know in advance the nature of the upcoming
task (regardless if it repeats from the previous trial). These

theories thus predict a benefit of CF training in both switch
and repeat trials. With regard to training dosage, it remains
less clear what is the optimal training dose for effective learn-
ing and promoting transfer effects. While some advocate for
the importance of high training dose for transfer emergence,
others suggest to the lack of any modulating effects for train-
ing dose on transfer (Brehmer et al. 2014; Jaeggi et al. 2008,
Karbach and Verhaeghen 2014; Melby-Lervag et al. 2016;
Peng and Miller 2016; Soveri et al. 2017). In fact, recent
studies suggest than transfer can actually occur even after
single training sessions (Sabah et al. 2018; Shahar et al.
2018). This in turn seems to in line with existing evidence
suggesting that the occurrence of skill acquisition per se re-
quires only limited amount of practice with individuals
reaching fast ceiling performance, developing automaticity
(Anderson 1982; Logan 1988).

More generally, our findings provide further support that
internal control policies constitute a critical component of task
switching and task-sets in general, which are independent from
S-R associations. This in turn bares significant implications for
the study of task switching, counteracting previous theoretical
models speaking against the involvement of endogenous exec-
utive control processes (e.g., task reconfiguration upon

Table 6 Main effects and

interaction of the Group x Statistic p value Effect size (7]p2) BF

Condition ANOVA in the AX-

CPT block (RTs) Group F(1,77)=0.65 0.42 0.01 0.26
Condition F(3,231)=125.10 <0.001™" 0.61 >100
Group x Condition F(3,231)=0.14 0.94 0.001 0.04

wkp < 001

@ Springer



J Cogn Enhanc (2021) 5:330-342 339

Table 7 Main effects and . - 5

interaction of the Group x Statistic p value Effect size (1,7) BFg

Condition ANOVA in the AX- ”

CPT block (error rates) Group F(1, 77)=8.66 0.004 0.10 8.63
Condition F(3,231)=26.93 <0.001"" 0.26 >100
Group x Condition F(3,231)=2.03 0.11 0.02 0.38

#xp < 01, ##%p < 001

switching and/or inhibition of previously activated task set) in
cued task-switching procedures, attributing switch costs to the
benefits emerging on repeat trials due to mere cue priming
effects (i.e., cue repetition; Logan and Bundesen 2003;
Schneider and Logan 2005). Importantly and for the first time,
we were able to show that the learning of control policies is not
only transferable between very similar tasks (either CL or CF
tasks; Bhandari and Badre 2018) but also transfers to superfi-
cially dissimilar cognitive control tasks sharing similar task
control dynamics. This in turn brings forward a new direction
in cognitive training research, emphasizing the necessity to step
back and reconsider the learning mechanisms of cognitive con-
trol. For example, a relevant and new theoretical contribution
comes from recent studies, looking at the interaction between
learning and cognitive control. This line of research points to
the critical role of building up and leveraging task-set structures
extracted via contextual information in the service of learning
and transfer of abstract policies that support cognitive control
processes (Braun et al. 2010; Collins and Frank 2013;
Gershman et al. 2010; Huys et al. 2015). Interestingly, such
approaches draw among others on principles of categorical
learning. Specifically, in their model, Collins and Frank
(2013) propose that clustering via shared similarities between
higher-order contextual features, that is, how S-R contingencies
are conditioned by contexts, allows to identify applicable pol-
icies across unrelated contexts. Only recently, categorization-
based learning has also been claimed to play an important role
in the transfer problem, enhancing the frequency of spontane-
ous transfer (Kurtz and Honke 2020). Others highlight the pos-
sibility that even abstract control settings such as flexibility can
be learned and explained by way of associative learning
(Abrahamse et al. 2016; Braem 2017; Braem and Egner
2018). As such form of learning seems to occur on higher
hierarchical levels of abstraction, similar context training ap-
proaches might allow to promote wider transfer effects as

compared to the currently applied training protocols, limited
to specific task-rules and S-R association (e.g., Badre et al.
2010; Bhandari and Badre 2018; Collins and Frank 2013;
Frank and Badre 2012).

One possible noteworthy caveat of the current study might be
the lack of control group (i.e., who did not undergo any control
policy training) to decide whether it was really the CF training
that improved and not the CL training that hampered task-
switching performance. However, this seems implausible here
when considering that in both CF and CL groups, a reduction
in overall RTs from baseline to transfer was observed. An addi-
tional downside to consider is the absence of rest periods during
training that might have led to fatigue, explaining as such the
quite modest obtained learning effects. Instead, including rest
periods has been shown to enhance cognition compared to
non-rest conditions, which might have encouraged here a steeper
learning curve and even stronger transfer effects (Steinborn and
Huestegge 2016). An additional interesting facet to consider in
future studies is the inclusion of within-subject manipulations,
comparing performance on cued versus uncued trials or manip-
ulating the preparation interval.

To conclude, our results support suggestions that internal
control processes are an additional critical abstract entity con-
stituting a task set that participants can learn through experi-
ence and reutilize across varied novel contexts (cf. Bhandari
and Badre 2018). For the first time, such control policies were
shown to be transferable to novel untrained cognitive control
tasks (i.e., far transfer), inducing performance gains. These
results open a new venue for investigation for the domain of
CT, allowing to better understand possible underlying mech-
anisms for its effectiveness.

Funding Open Access funding enabled and organized by Projekt DEAL.
Research presented in this article was funded by Deutsche
Forschungsgemeinschaft (DFG), DR 392/9-1 to N.M. und G.D.

Table 8 Data summary for performance (accuracy, response times means and CIs) on the AX-CPT

Group Accuracy (% Error) Response times (ms)
AX AY BX BY AX AY BX BY
CF 0.22 £0.09 0.03 £0.08 0.26 +0.08 0.23 £0.09 359 £ 18 499 £ 21 345 £ 42 344 + 33
CL 0.02 + 0.09 0.16 +£0.08 0.09 +0.08 0.05 = 0.09 339 £ 18 490 + 22 333 £43 327 £ 34
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