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Abstract
Identifying individuals’ profiles of prognostic factors that predict improvements after nonpharmacological interventions such as
memory trainings may help to not only predict individuals’ future outcomes after such intervention, but also tailor new trainings
for individuals with specific characteristics. However, until now, no systematic review on prognostic models, defined as a set of
multiple prognostic factors to predict a future outcome, for changes in memory performance after memory training exist.
MEDLINE, Web of Science Core Collection, CENTRAL, and PsycInfo were searched up to November 2019 to identify studies
investigating prognostic models on verbal and non-verbal short- and long-term memory after conducting memory training in
healthy older adults. The PROBAST tool was used to assess risk of bias. After screening n = 10,703 studies, n = 12 studies were
included. These studies and the investigated statistical models are highly heterogeneous, so that conclusions are limited.
However, one consistent result was that lower age combined with higher education seems to predict higher improvements after
memory training. More studies on prognostic models for memory changes after memory training have to be conducted before
clear conclusions which will help to tailor memory trainings to individuals’ profiles can be drawn. Registration:
CRD42018105803, https://www.crd.york.ac.uk/PROSPERO
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Background

A prognostic or predictive model is a formal combination of
multiple predictors fromwhich risks of a specific endpoint can
be calculated for individuals (Steyerberg et al., 2013).
Prognostic models are regularly used in medical research;

however, their use in neuropsychological research to predict
changes after nonpharmacological interventions, e.g., cogni-
tive training (CT), is rather limited. As data demonstrates that
CT (i.e., a structured approach to strengthen targeted cognitive
functions, e.g., memory, attention, and executive functions
with the help of specific paper and pencil or cognitive tasks)
is effective in improving cognitive outcomes in healthy older
adults (Chiu et al., 2017), identifying individuals’ profiles of
prognostic factors that predict improvements after these kind
of interventions may help to predict individuals’ future out-
come after CT. Further, it may improve informed decision-
making among clinicians to follow a personalized medicine
approach (Altman et al. 2009). It can also be used to improve
the design and analysis of randomized therapeutic trials while
considering person-centered intervention programs
(Roozenbeek et al., 2009).

One particular form of CT targets memory functions and/or
the use of memory strategies. Memory decline is a common
process among older adults and may affect their ability to
function independently in our society (Verhaeghen et al.
2000). Also, pathological memory impairment is indicative
of neurodegenerative diseases such as dementia (Jockwitz
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et al., 2019). Yet, memory training is an effective method for
modifying not only trained memory function, but also some
studies showed that it can maintain further non-trained mem-
ory functions as well as non-cognitive abilities in older adults
(Hitchcock et al. 2017; Rosi et al., 2018; Simon et al., 2018).
However, transfer of memory training to non-trained func-
tions is limited. Notably, results from the literature indicates
that there is a great variability of responsiveness among
healthy older training participants, e.g., with some studies
showing that participants with older age benefit most from
training (Brooks et al., 1999), whereas other studies show that
younger participants benefit most from training (Langbaum
et al., 2009). A recently published systematic review on prog-
nostic factors on memory changes after memory training in
healthy older adults showed high between-study heterogene-
ity with regard to the assessment, statistical evaluation, and
reporting of the investigated prognostic factors. Included stud-
ies used different types of dependent variables (change scores
vs. post-test scores) when defining memory training success
leading to contradictory results. Age was the only variable
investigated throughout most of the studies, showing that
older adults benefit more from training when using the change
score as the dependent variable. Further, the review could
show that the tendency of the prognostic factor (the more of
x/the less of x versus the more of x/the less of y) is dependent
on the used dependent outcome measure of the studies (e.g.,
whether post-test scores or changes scores were used in cal-
culations as the dependent variable, Roheger et al., 2020). Yet,
this review focused on prognostic factors, defined as any mea-
sure that, among people with a given condition (process of
aging, the start point), is associated with a subsequent out-
come (an endpoint, worsening of cognition, Riley et al.,
2013). Until now, no systematic review investigates prognos-
tic models for changes in memory outcomes after conducting
memory training. Prognostic models are defined as a set of
multiple prognostic factors to predict a future outcome. Yet,
prognostic models take into account multiple factors and their
variances, with the ability to reveal potential suppressing fac-
tors. Furthermore, prognostic models provide different infor-
mation than prognostic factor studies, and have to be assessed
with different tools regarding risk of bias judgment.
Therefore, the present paper systematically summarizes prog-
nostic models of memory changes after memory training in
healthy older adults (≥ 55 years) and discusses different statis-
tical methods used to calculate prognostic models.

Methods

The reporting of the present review follows the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guideline (Moher et al., 2009). The “PRISMA for
Abstracts Checklist” and the “PRISMA checklist for

systematic reviews” are depicted in Supplementary Tables 1
and 2. The pre-registered review protocol can be assessed at
(CRD42018105803, ht tps: / /www.crd.york.ac.uk/
PROSPERO).

Search and Study Selection

MEDLINE Ovid, Web of Science Core Collection,
CENTRAL, and PsycInfo were systematically searched up
to October 2018. An update-search was conducted until
November 2019. Further, reference lists of all identified trials,
relevant review articles, and current treatment guidelines were
hand searched. If no full text could be obtained, the authors
were contacted and asked to provide full-text publications
within a 2-week time frame. The full search strings for each
database are presented in the Supplementary Material,
Tables 3–6.

Two review authors (MR, AKF) screened titles and ab-
stracts according to the predefined eligibility criteria. Full-
text articles, whose abstracts met the inclusion criteria, were
further reviewed by two authors ([blinded for peer review]) for
inclusion in the review. In cases where no consensus could be
reached, a third author (EK) was asked and the case was
discussed until a final consensus was obtained.

Eligibility Criteria

The review focused on peer-reviewed studies with no limita-
tions regarding publication date which investigated prognostic
models of changes in memory test performance after memory
training. The studies could be published in English or
German. Full study reports needed to be available.We exclud-
ed abstracts, books, book chapters, study protocols, and con-
ference abstracts. We further excluded studies on prognostic
factors on changes after memory training, as these were
reviewed in another paper (Roheger et al., 2020).

Prognostic model studies on healthy older participants
(age ≥ 55 years) were included. Data from participants with
mild cognitive impairment or dementia diagnosis and neuro-
logical and/or psychiatric diseases were excluded.

All prognostic models which investigate changes in mem-
ory test performance after memory training were included in
the review. Memory training was defined as a CT that targets
primarily on memory performance with a minimum of two
sessions in total. The memory training can include paper-
pencil or computerized tasks with clear cognitive rationale,
which are administered either on personal devices or in indi-
vidual or group settings held by a facilitator. When cognitive
multi-domain trainings were conducted, memory had to be the
main component of the program (at least 50% of the
exercises).

The included model studies had to investigate changes in
verbal or non-verbal short- or long-term memory after
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memory training as an outcome, irrespectively, whether it was
assessed directly after the training and/or at FU. The outcomes
had to be measured with established objective neuropsycho-
logical tests. We excluded subjective self-rated memory
scales, as well as measures of memory strategy use. The factor
measurement of the included studies had to be conducted be-
fore the memory training started, and there was no limitation
regarding follow-up testing of outcomes.

The present review focuses on prognostic models for
changes in memory performances after memory training only,
due to different reasons: first, memory belongs to the most
vulnerable cognitive functions in aging (e.g., Salthouse,
2013). Second, as research is very limited so far in this field,
we wanted to start with a rather narrow focus on a relevant
field within the topic.

Data Extraction

Two review authors (MR, AKF) independently extracted the
data according to the critical appraisal and data extraction for
systematic reviews of prediction modeling studies
(CHARMS) checklist (Moons et al., 2014) to investigate the
quality of reporting of prognostic models.

Quality Assessment

Two reviewers (MR, AKF) independently assessed the ex-
tracted studies for the risk of bias using the “Prediction
model Risk of Bias Assessment Tool (PROBAST)”
(Wolff et al., 2019) to examine the risk of bias in prognos-
tic model studies across four domains: participants, predic-
tors, outcome, analysis. Each of the domains was judged
with “yes,” “probably yes,” “no,” “probably no,” and “no
information.” The studies were overall rated with low risk
of bias, if all domains were rated low risk of bias. It was
rated high risk of bias, if at least one domain was judged to
be at high risk of bias or if a prediction model was devel-
oped without any external validation and all other domains
were rated as low risk of bias. A model without any exter-
nal validation can only be considered low risk of bias, if
the development was based on a very large data set and
included some form of internal validation (Wolff et al.,
2019). Studies were rated as having an unclear risk of bias,
if an unclear risk of bias was noted in at least one domain
and it was low risk for all other domains.

Statistical Analyses

In the pre-registration of the study, we registered a meta-
analysis to investigate the predictive performance of the prog-
nostic models. However, after the data extraction, we found
that data on prognostic models of changes in memory test
performance after memory training were too heterogeneous

and based mostly on the same population (cf. 7 out of 12
studies reporting results of the ACTIVE trial) to conduct a
meta-analysis.

Results

Study Selection

The total number of retrieved references and the numbers of
included and excluded studies are documented in Fig. 1 in a
flow chart as recommended in the PRISMA statement (Moher
et al., 2009). N = 10,703 studies were identified through the
database search until October 2018 and by scanning the in-
cluded studies in previously published systematic reviews and
meta-analysis on memory training success in healthy older
adults. N = 2271 studies were identified in an update search
in November 2019. After removing the duplicates, n = 9979
studies were screened. We assessed 845 full texts for eligibil-
ity. Finally, n = 12 studies were included in the present review.
All studies were published in English.

Study Characteristics

Table 1 gives an overview of the main characteristics of the
included studies. Notably, n = 7 of the included studies inves-
tigated the same population (Gross et al., 2013; Gross &
Rebok, 2011; Jones et al., 2013; Langbaum et al., 2009;
Meyer et al., 2017; Rebok et al., 2013; Zahodne et al.,
2015), namely the cognitive training trial ACTIVE.

The sample sizes varied between studies, ranging from n =
29 (Lövdén et al., 2012) to n = 703 (Gross et al., 2013; Gross
& Rebok, 2011).

The mean age of the sample ranged from 66.90 years
(Lövdén et al., 2012) to 76.13 years (Macdonald et al.,
2006), with one study giving no data on the age of the memory
training group (Zahodne et al., 2015). In most studies, the
sample consisted of more female than male participants (over-
all: 71% female). The samples were highly educated through-
out the studies, ranging from a mean of 11.96 years of educa-
tion (Macdonald et al., 2006) to a mean of 15.70 years
(Zelinski et al., 2014). Themean score of the cognitive screen-
ing instrument Mini Mental State Examination (MMSE),
which was assessed in seven studies at baseline to describe
the baseline overall cognitive status of the study participants,
has a maximum of 30 points indicating absolute cognitive
health. The mean MMSE values of the study participants
ranged from 27.00 points (Jones et al., 2013) to 28.90 points
(McKitrick et al., 1999). All studies varied in their integration
of different follow-up measurements with the n = 7 ACTIVE
studies including most follow-up measurements: at 1, 2, 3, 5,
and 10 years after intervention conduct, and n = 3 studies not
assessing a follow-up measurement, but only a post-test
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measurement directly after the intervention (Beck et al., 2013;
Lövdén et al., 2012, McKitrick et al., 1999).

A description of the different memory training interven-
tions used (regarding main content, length, and frequency) is
provided in Table 1.

Risk of Bias

Figure 2 displays the risk of bias rating of the included studies,
assessed with the PROBAST tool (Wolff et al., 2019).
Overall, the studies demonstrated a high risk of bias mainly

Fig. 1 PRISMA flow diagram
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due to the fact that their analysis was not conducted and/or
reported according to the established guidelines and that inter-
nal and external model validation was missing. Only in the
domain “participants” all studies showed a low risk of bias
rating.

Prognostic Models of Changes After Memory Training

Table 2 summarizes the analysis of methods and results of the
included studies. Concerning statistical methods which are
used in the included studies, six studies used a latent growth
curve model to calculate their prognostic models (Gross et al.,
2013; Gross & Rebok, 2011; Jones et al., 2013; Lövdén et al.,
2012; Rebok et al., 2013; Zahodne et al., 2015), four studies
used a regression approach (Beck et al., 2013; Langbaum
et al., 2009; McKitrick et al., 1999; Meyer et al., 2017), one
study used a multilevel modeling approach (Macdonald et al.,
2006), and one study used structural equation modeling
(Zelinski et al., 2014).

Over all models, the following predictors were investigat-
ed: age (integrated in n = 11 prognostic models), sex (n = 8),
education (n = 7), ethnicity (n = 6), neuropsychological base-
line values at the beginning of the training (n = 6), self-rated
health status (n = 4), depressive status (n = 1), socioeconomic
variables (i.e., living in major cities, neighborhood variables,
employment status (n = 2)), and training-related variables
(length of training, type of pre-training (n = 1)).

The studies investigated verbal short- and long-term mem-
ory as well as non-verbal short- and long-term memory as
primary outcomes. However, due to the fact that composite
scores were built (n = 4 studies) or outcome parameters were
not adequately described, a clear classification of outcome
variables was difficult.

The numbers of predictors integrated in the prognostic
models ranged from n = 1 (Jones et al., 2013, one predictor
at several timepoints) to n = 15 (McKitrick et al., 1999). The
predictors integrated in the model were highly heterogeneous:
eight of twelve studies, however, integrated the
sociodemographic predictors age, sex, and education in their
models (with sometimes further additional predictors) (Beck
et al., 2013; Gross et al., 2013; Gross & Rebok, 2011;
Langbaum et al., 2009; Meyer et al., 2017; Rebok et al.,
2013; Zahodne et al., 2015; Zelinski et al., 2014). In four of
these studies (Meyer et al., 2017; Rebok et al., 2013; Zahodne
et al., 2015; Zelinski et al., 2014), lower age and higher edu-
cation predicted improvements in the memory outcomes (ver-
bal short- and long-term memory) after training. However, it
should be noted that three of these four studies are subsamples
of the same study population of the ACTIVE trial (Meyer
et al., 2017; Rebok et al., 2013; Zahodne et al., 2015).
Female sex predicted gains in the memory outcome (compos-
ite scores of verbal and non-verbal memory, separated for
short- and long-term memory) after memory training in twoT
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of the investigated studies (Beck et al., 2013; Zahodne et al.,
2015), yet both studies integrated also several further different
predictors in the model (age, sex, education, ethnicity, health,
depression vs. age, sex, education, marital status, baseline
values, employment status). Three prognostic models found
none of the investigated predictors (age, sex, and education as
predictors in all three models; neuropsychological baseline
values in two of the studies) to have a significant influence
on the outcome (Beck et al., 2013; Gross et al., 2013; Gross &
Rebok, 2011), indicating that all participants improved re-
gardless of their individual characteristics.

Discussion

This is the first review investigating prognostic models for
changes in memory after memory training in healthy older
adults. Our main finding is that although memory training
has frequently been investigated in healthy older adults, only
twelve studies so far exist which have published prognostic
models; and notably, most of them (n = 7) are based on the
same population (ACTIVE trial). Furthermore, our review
indicates that the investigated models are highly heteroge-
neous regarding the number and the type of the prognostic
factors as well as the statistical models. Finally, one result that
has been found in several studies is that lower age combined
with higher education seems to predict improvements in ver-
bal short- and long-term memory after memory training over
time. Furthermore, different statistical methods were used

throughout the studies for calculating prognostic models and
the overall reporting can be rated as deficient.

Identified Predictors of Changes After Memory
Training

Results showed that in four of the included studies (Meyer
et al., 2017; Rebok et al., 2013; Zahodne et al., 2015;
Zelinski et al., 2014), lower age and higher education predict-
ed improvements in the memory outcomes (verbal short- and
long-term) after training; three of these studies are subsamples
of the same study population of the ACTIVE trial (Meyer
et al., 2017; Rebok et al., 2013; Zahodne et al., 2015). This
result is contrary to findings from our recently conducted re-
view on prognostic factors of changes in memory after mem-
ory training in healthy older adults (Roheger et al., 2020),
which shows that when using the change scores as the depen-
dent variable in prognostic factor calculations, older partici-
pants benefit most from memory training. This result was
discussed in terms of the compensation account, indicating
that older participants may have more room for cognitive im-
provement (Lövdén et al., 2012), while those who are already
functioning at optimal levels have less room for changes in
memory training performance. In both systematic reviews, the
present at hand on prognostic models and the one on prognos-
tic factors for changes after memory training (Roheger et al.,
2020), different types of memory trainings were investigated
using either strategy-based or task-based trainings, individual
or group settings, or paper-pencil or computerized exercise.

Fig. 2 Risk of Bias.. Note. Risk of bias assessment using the “Prediction
model Risk of Bias Assessment Tool (PROBAST)” (Wolff et al., 2019) to
examine the risk of bias in prognostic factors studies across four domains:

participants, predictors, outcome, analysis. Each of the domains was
judged with “low risk” (depicted in green), “high risk” (red), “unclear
risk of bias” (yellow)
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Yet, no clear systematic pattern related to the investigated
results could be found. For a better interpretation and a deeper
understanding of the mechanisms of memory training, and for
the future setup of more individualized memory training ap-
proaches, a clear conceptualization of different memory train-
ing types should be designed, in which future memory studies
could be clustered to shed further light on the differences of
the direction of the prognostic factors in the two reviews. As
“education”might be a proxy variable for, e.g., socioeconom-
ic status, early life factors, occupational health, or even the
willingness to engage in lifelong learning or new activities
(Krieger, Williams, & Moss, 1997), integrating education in
the prognostic model could have a further impact on all other
investigated variables, maybe even explaining the observed
differences in the “age” variable throughout studies (as in
Roheger et al., 2020). Different results may be due to the
impact of other prognostic factors in the model, leading to a
different weighting of the prognostic factors in the models
compared to single prognostic factor studies. Therefore, it is
of high importance to evaluate prognostic factors in a stepwise
modulation process, and not integrate all possible prognostic
factors at once in a model at hand, especially when no cross-
validation can be done, and it is not known whether and how
the single prognostic factors explain variance in the models.
Further, it should be noted that interpreting results of studies
that are subsamples of the same study population is always
complex, as the samples are not independent. Instead of cre-
ating subsamples to investigate different models, subsamples
should be used to cross-validate the found results in a similar
prognostic model. Further, to ensure a high research quality,
specific a priori hypothesis about prognostic models results
should be stated.

Two of the studies included in our review showed that
female sex predicted gains in the memory outcome after mem-
ory training (Beck et al., 2013; Zahodne et al., 2015), fitting to
the notion of sex-specific plasticity (Beinhoff et al., 2008).
This result is also supported by a study of Munro et al.
(2012) showing that healthy older female participants perform
better on tests of memory and verbal learning than men in
general (Munro et al., 2012). However, in this study, no mem-
ory training was conducted. A study by Rahe et al. (2015)
could show that after a CT, female patients with mild cogni-
tive impairment (MCI) showed stronger improvements after
the training in the domains delayed verbal episodic memory,
and working memory (Rahe et al., 2015). While further stud-
ies are needed to elucidate this topic in more detail, it could be
possible that women’s larger gains delayed verbal episodic
memory tasks after CT might be easier to find in patients with
cognitive decline, including MCI and Alzheimer’s disease
(Beinhoff et al., 2008). Furthermore, as women are at an in-
creased risk of Alzheimer’s disease (Scheyer et al., 2018), it
could again be possible that they have more “room for im-
provement” at an earlier stage. This would again fit to the

compensation account (Lövden et al., 2012). Yet, it is impor-
tant to be aware that these sex differences often have small
effect sizes and further research is urgently needed, especially
in healthy older participants in the context of CT (Choleris
et al., 2018).

Three models found none of the investigated predictor to
have a significant impact on changes after memory training
when including among others age, sex, education, and neuro-
psychological baseline variables (Beck et al., 2013; Gross
et al., 2013; Gross & Rebok, 2011), which indicates that train-
ing gains were independent of specific prognostic factors. Yet,
two of these studies are again a sub-cohort of the ACTIVE
trial (Gross et al., 2013; Gross & Rebok, 2011), which showed
significant prognostic factors in other investigated models.
Therefore, it is possible that results are obliterated by a spe-
cific sample selection.

Summarized, data is highly heterogeneous regarding inves-
tigated predictors in the prognostic models on the one hand,
and on the other hand only of limited explanatory power, as
seven of the studies are based on the same population
(ACTIVE trial). We could not find a clear pattern with regard
to the memory training content. More studies are needed in-
cluding robust a priori hypotheses with a profound theoretical
basis and internal and external model validation processes to
strengthen results.

Identified Statistical Methods Used for Prognostic
Models

The representation and measurement of change is a funda-
mental concern in scientific disciplines, as longitudinal re-
search designs pose several unique problems because they
involve variables with correlated observations (Duncan &
Duncan, 2004). Therefore, it is stated that an appropriate de-
velopmental model is one that not only describes a single
individual’s developmental trajectory, but that also integrated
individual differences in these trajectories over a period of
time (Duncan & Duncan, 2004). In the investigated studies,
different statistical methods were used to calculate prognostic
models for changes after memory training, namely structural
equation models (especially latent growth curve models), re-
gression models, and multilevel models.

Multiple regression models, as well as analyses of variance
(which Cohen demonstrated in 1968 are essentially identical
data analytic systems (Cohen, 1968)), mainly focus on differ-
ences in mean changes instead of intra-individual variability
and growth trajectories (Voelkle, 2007). Latent growth curve
models, on the other side (which belong to the family of struc-
tural equation models), are interpreted as individual differ-
ences in factors of growth trajectories over time (mainly the
rates of changes and initial status), meaning that it allows for
the study of individual differences in the parameters that con-
trol the pattern of growth over time—on the group and
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individual level (McArdle, 1988). Further, predictors of these
differences can be studied to answer which variables explain
effects on the rate of development. Even though there was a
long debate on which model is “more appropriate” to model
change, Voelkle (2007) could show that both approaches are
essentially identical, and that multiple regression models are
special cases of the more general latent growth curve approach
(Voelkle, 2007). Multilevel models (which are also known as
hierarchical linear models, mixed models, or random effects
models) answer similar questions as the latent growth curve
modeling approach (Raudenbush & Bryk, 2002) and are
widely seen as an “improvement” compared with classical
regression models as they give more accurate predictions than
the no-pooling or complete-data-pooling regressions
(Gelman, 2006).

Summarized, latent growth curve model and multilevel
model approaches seem to be the most appropriate to model
predictors of change over time, even though also multiple re-
gression models can lead to similar results when meeting spe-
cific assumptions (e.g., the choice of an adequate dependent
variable as the choice of the dependent variables [change scores
vs. raw scores] may influence the direction of the results in
multiple regression analyses but not in other statistical model
approaches as they modulate their dependent variables in a
different way; for a further discussion on dependent variables
in multiple regression analyses, see Mattes & Roheger, 2020).
Therefore, all investigated studies in the systematic review used
appropriate modeling approaches. Even though the overall
reporting quality of the studies was quite high, future studies
could be more precise in the correct and consistent naming of
the modeling techniques they have used and provide detailed
descriptions why they have chosen a specific modeling ap-
proach. Further, especially in complex modeling approaches,
results should not solely be presented in statistical language, but
filled with results with regard to content and examples in order
to help the reader to better understand the specific results and
interpretations of the prognostic models. Yet, all statistical
models should be validated by either internal validation, exter-
nal validation, or temporal validation (Altman et al., 2009).

Limitations of the Present Systematic Review

Some limitations have to be taken into account when
interpreting the results of the present review. First, it was
difficult in the study search process to distinguish between
factor finding and prognostic model studies, as the statistical
methods were often not clearly reported so that in some cases
it was not possible to determine which prognostic variables
were used in the final calculations. Therefore, it might be
possible that studies were not correctly classified and studies,
which would have been within the scope of the review, were
excluded or investigated in the review on prognostic factors

due to incomprehensive statistical analyses resulting in only a
few investigated studies in the present review.

Further, interpretation of the results was difficult as seven
of the included studies were based on the same population
(partly only subsamples were used) and a summary of the
results may therefore be not representative or redundant.
None of the included prognostic model studies conducted an
external model validation and therefore results may be insuf-
ficient. In the present review, we only included studies in
English or German language, so that we may therefore have
missed studies published in other languages. The present sys-
tematic review only focuses on memory outcomes after mem-
ory training, hereby disregarding other cognitive domains, as
well as other non-cognitive outcomes (e.g., depression, qual-
ity of life, activities of daily living). Further systematic re-
views are needed to elaborate the knowledge on prognostic
models of CT success. Yet, the present review can be seen as a
starting signal for further and more accurate research and
reporting on prognosticmodels studies for changes after mem-
ory training.

As a final limitation, we could not perform a meta-analysis
on the investigated prognostic models as planned and stated in
the pre-registration of the present systematic review due to the
heterogeneity of the investigated models and the fact that most
studies were based on the same population, which would have
led to distorted results.

Strengths of the Present Systematic Review

This is the first review dealing with prognostic models for
changes after memory training in healthy older adults
highlighting not only the statistical modeling approaches
used, but also the need for further and theory-based prognostic
model assumptions and validation of currently existing
models. A further strength of the review is that it was conduct-
ed using Cochrane standards, and that the search was conduct-
ed in several databases to ensure an exhausting overview of
this important research topic.

Implications and Conclusion

Only a few studies investigate prognostic models of changes
after memory training, most of which are based on the same
study population so that no clear pattern could be detected.
Overall, the investigated model studies showed high risks of
bias ratings and a clear need for a better reporting of their used
statistical methods and the need for internal and external mod-
el validation. Therefore, more prognostic model studies are
needed, which are not only well reported in their design, but
also cross-validated to ensure a high research quality. As prog-
nostic model studies are of high importance regarding an in-
dividual prevention approach of cognitive decline in higher
age, further research is urgently needed.
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