
Vol.:(0123456789)

Transactions of the Indian National Academy of Engineering (2021) 6:377–394 
https://doi.org/10.1007/s41403-021-00209-y

123

ORIGINAL ARTICLE

Modeling Transmission Dynamics and Risk Assessment for COVID‑19 
in Namibia Using Geospatial Technologies

Kedir Mohammed Bushira1  · Jacob Otieno Ongala2

Received: 15 September 2020 / Accepted: 1 February 2021 / Published online: 17 February 2021 
© Indian National Academy of Engineering 2021

Abstract
The SARS-CoV-2 infections continue to increase in Namibia and globally. Assessing and mapping the COVID-19 risk 
zones and modeling the response of COVID-19 using different scenarios are very vital to help decision-makers to estimate 
the immediate number of resources needed and plan for future interventions of COVID-19 in the area of interest. This study 
is aimed to identify and map COVID-19 risk zones and to model future COVID-19 response of Namibia using geospatial 
technologies. Population density, current COVID-19 infections, and spatial interaction index were used as proxy data to 
identify the different COVID-19 risk zones of Namibia. COVID-19 Hospital Impact Model for Epidemics (CHIME) V1.1.5 
tool was used to model future COVID-19 responses with mobility restrictions. Weights were assigned for each thematic 
layer and thematic layer classes using the Analytical Hierarchy Process (AHP) tool. Suitably ArcGIS overlay analysis was 
conducted to produce risk zones. Current COVID-19 infection and spatial mobility index were found to be the dominant and 
sensitive factors for risk zoning in Namibia. Six different COVID-19 risk zones were identified in the study area, namely 
highest, higher, high, low, lower, and lowest. Modeling result revealed that mobility reduction by 30% within the country 
had a notable effect on controlling COVID-19 spread: a flattening of the peak number of cases and delay to the peak number. 
The research output could help policy-makers to estimate the immediate number of resources needed and plan for future 
interventions of COVID-19 in Namibia, especially to assess the potential positive effects of mobility restriction.
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Introduction

The coronavirus disease 2019 (COVID-19) is a contagious 
disease caused by severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) (Huang et al. 2020). This virus which 
is believed to have been originally circulating in wild ani-
mals has a similar transmission route with the severe acute 
respiratory syndrome (SARS) virus (Zhao et al. 2020). It is 
a respiratory illness with clinical symptoms such as cold, 

throat infection, cough, fever, and difficulty in breathing 
(Huang et al. 2020). The outbreak of COVID-19 was first 
reported on 31 December 2019, in Wuhan, China (WHO 
2020). The virus spread rapidly throughout China and 
within 1 month, and several other countries, including Italy 
the United States, Germany, and United Kingdom reported 
their first cases (Giovanetti et al. 2020; CDC 2020; Rothe 
et al. 2020). The rapid outbreak and development of the 
epidemic is contributed to the disease characterization of 
its long incubation period, high infectivity, and difficulty 
in detection (Franch-Pardo et al. 2020). In Africa, the first 
reported case was in Egypt on 25 February 2020. Since then, 
the outbreak has spread across the continent (Rasheed et al. 
2020). Namibia reported its first case on the 14 March 2020 
and by the end of June 2020, the total number of confirmed 
cases remained below 300. However, it started to increase 
exponentially from the beginning of July. By the end of July 
2020, the number of confirmed cases had reached 2052 
(Worldometer 2020).
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As the curve increases exponentially for the number of 
confirmed cases, Namibia and any other African counties are 
in worries of possible overwhelming situation in the health 
care system. The World Health organization (WHO) (WHO 
2020) released guidelines to be used to slow down transmis-
sion and manage confirmed cases such as case isolation, 
contact tracing and quarantine, physical distancing, hygiene 
measures, and improving the health care system. Due to the 
rapid and continuous spread of the COVID-19 epidemic, 
several countries or regions all over the world have been 
forced to take emergency measures such as closing cities, 
stopping production, suspending school classes, and restrict-
ing population movement, causing great harm to economic 
development and residents’ health (An and Jia, 2020). 
Namibia enforced lockdown of cities from March 2020 and 
cascaded further control measures guidelines to its region. 
However, from May 2020 started to relax some measure 
stage by stage to save its economy (Republic of Namibia 
2020). It has now emerged that the epicenter of COVID-19 
in Namibia shifted to Erongo Region with more that 50% 
of the current confirmed cases (Worldometer 2020). Under-
standing future dynamics of the disease is important for pub-
lic health planning and readiness.

Several multidisciplinary studies on the epidemic spread 
have been done and achieved fruitful research results, 
which are of great guiding significance for the prevention 
and control of the epidemic (Franch-Pardo et al. 2020). A 
comprehensive review by Franch-Pardo et al. (2020) high-
lighted the importance of health geography in examining 
health policy interventions, control, and mapping/tracking 
through projection of spatial diffusion and temporal trends. 
To achieve this, geographic information systems (GIS) are 
currently recognized as a set of strategic and analytic tools 
for analyzing the spread and management strategy to allo-
cate resources for diseases in both developed and developing 
countries (Wondim et al. 2017). Geography disciplines offer 
synthetic approach to the interplay between the biophysical 
and human variables (Turner 2002), and hence, the spatial 
and temporal changes of the COVID-19 epidemic spread 
are therefore a scientific problem to study (Xie et al. 2020).

The COVID-19 pandemic have a spatial dimension 
that lead to understanding the transmission phenomenon 
as geographical and potentially mappable, and hence the 
need to include the ability to cross variables of different 
kinds to interpret the COVID-19 phenomenon, its spatial 
analysis and spatiotemporal dimensions, its geographical 
impact on decision-making and everyday life, and predic-
tive modeling of the evolution of the disease (Franch-Pardo 
et al. 2020). For these reasons, the use of geospatial and 
statistical tools has become particularly relevant with the 
declaration of COVID-19 as a global pandemic. Mapping 
COVID-19 cases will help to understand more about spatial 
distribution of the disease in their area as well as its temporal 

occurrence and making forecast of its future burden. Map-
ping will also be used to locate the areas where outbreaks 
originate and effectively target high-risk areas for early pre-
vention control. Despite the existence of various challenges 
of data sources, many countries or regions have published 
the epidemic spatial models in real time by making use of 
available data whilst estimating others based on available 
information (Xie et al. 2020). Sarfo and Karuppannan (2020) 
assert that geospatial technique is a tool for best practices in 
fighting COVID-19. In their study, they employed geospatial 
technologies in Ghana to model trends and mobility patterns. 
The results forecasted future spread through to the middle 
parts and then the northern parts. Another study by Eku-
mah et al. (2020) used a mixture of multivariate statistical 
and geospatial analyses to investigate the risk of COVID-19 
infection in relation to the association of household family 
structure is associated with in-house access to basic needs 
in Sub-Saharan Africa (SAA). They used geo-maps to show 
how high spatial heterogeneity in terms of in-house access 
to basic needs in SSA. Since the beginning of the pandemic, 
there is little work done on geospatial research for COVID-
19 in Africa despite evidence of its application in most parts 
of the world. This study therefore uses geospatial technolo-
gies to model current and future situations of COVID-19 in 
Namibia.

Materials and Methods

Namibia

This study was carried out in Namibia (Fig. 1). Namibia 
is part of the Southern African countries and has a land 
area of 825.419 km2. Namibia is surrounded by Angola and 
Zambezi to the North, Zimbabwe in the Northeast, South 
Africa to the south, and Botswana to the east and the Atlan-
tic Ocean in the western direction with a heterogeneous 
population of about 2.4 million.

There are 14 administrative regions in Namibia, with the 
capital town being Windhoek. Khomas and Ohangwena are 
the most populous regions. Transport systems, i.e., Harbors, 
airports, roads, and railways, including the center of each 
regions of Namibia are shown in the Fig. 1.

Preparation of Input Database

COVID‑19 Risk Assessments and Mapping

To generate a risk mapping which might help in COVID-
19 fight of Namibia, data on COVID-19 confirmed cases, 
population density, and spatial interaction index were col-
lected to prepare different thematic maps. The population 
density and Namibian road network data were obtained from 
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the Namibia Statistics Agency (NSA), National Spatial Data 
Infrastructure website (http://geofi nd.nsa.org.na/about ). Data 
on COVID-19 confirmed cases were obtained from Namibia 
Health Ministry COVID-19 dashboard (https ://namib 
ia.unfpa .org/en/event s/healt h-minis try-launc hes-covid -19-
dashb oard). On the other hand, the spatial interaction index 
was generated from a road network data using ARCGIS Pro.

After having prepared all the necessary thematic map 
layers, each thematic layer based on their relative influ-
ence on the spread of COVID-19 was ranked and weighted 
using AHP pair-wise comparison matrix. Finally, all these 
prepared thematic layers were integrated using a weighted 
overlay tool in ArcGIS window to generate the COVID-19 
risk assessment and map of the study area.

Fig. 1  Contextual map of Namibia

http://geofind.nsa.org.na/about
https://namibia.unfpa.org/en/events/health-ministry-launches-covid-19-dashboard).
https://namibia.unfpa.org/en/events/health-ministry-launches-covid-19-dashboard).
https://namibia.unfpa.org/en/events/health-ministry-launches-covid-19-dashboard).


380 Transactions of the Indian National Academy of Engineering (2021) 6:377–394

123

COVID‑19 Response Modeling

COVID-19 response modeling was analyzed using ArcGIS 
Pro COVID-19 modeling toolbox, the COVID-19 Hos-
pital Impact Model for Epidemics (CHIME) V1.1.5 tool. 
This tool leverages SIR (Susceptible, Infected, Recovered) 
modeling to assist hospitals, cities, and regions with capac-
ity planning around COVID-19 by providing estimates of 
daily new admissions and current inpatient hospitalizations 
(census), ICU admissions, and patients requiring ventila-
tion (COVID-19 response CHIME Model v1.1.5 manual, 
2020). The CHIME tool predicts SIR a minimum of 30 days 
and a maximum of 365 days; however, short-period pro-
jections are recommended (COVID-19 response CHIME 
Model v1.1.5 manual, 2020). In this study, 60 and 90 day 
projection with and without social distancing was made to 
analyze the COVID-19 response which might be used by all 
responsible organizations for a better control of the disease 
and resource management.

The tool uses parameters that describe the healthcare 
system or region being analyzed as well as the spread and 
contact input information for the disease. Spread and con-
tact input information can be specified either as fields in 
the Input Feature Class or as constant values (COVID-19 
response CHIME Model v1.1.5 manual, 2020). All data to 
run the model were obtained from the Namibia ministry of 
health website (https ://mfl.mhss.gov.na/locat ion-manag er/
locat ions) and tangible information on media briefing by 
the ministry of health.

More on CHIME Model

Discrete‑Time SIR MODeling of Infections/Recovery

The model consists of individuals who are susceptible (S), 
infected (I), or recovered (R).The epidemic proceeds via a 
growth and decline process. This is the core model of infec-
tious disease spread and has been in use in epidemiology for 
many years. The dynamics are given by the following three 
equations (Weisstein 2019):

Parameters

The modelʼs parameters, β and γ, determine the severity of 
the epidemic. β can be interpreted as the effective contact 

(1)St + 1 = St − �StIt

(2)It + 1 = It + �StIt − �It

(3)Rt + 1 = Rt + �It.

rate: β = τ × c which is the transmissibility τ multiplied by 
the average number of people exposed c. The transmissi-
bility is the basic virulence of the pathogen. The number 
of people exposed, c, is the parameter that can be changed 
through social distancing. γ is the inverse of the mean recov-
ery time, in days. i.e., if γ = 1/14, then the average infection 
will clear in 14 days.

An important descriptive parameter is the basic reproduc-
tion number, or R0. This represents the average number of 
people who will be infected by any given infected person. 
When R0 is greater than 1, it means that a disease will grow. 
A higher R0 implies more rapid transmission and a more 
rapid growth of the epidemic. It is defined as R0 = β/γ. R0 
is larger when the pathogen is more infectious people are 
infectious for longer periods of time the number susceptible 
people is higher. A doubling time of 6 days and a recovery 
time of 14.0 days imply an R0 of 2.71 (Weisstein 2019).

After the beginning of the outbreak, actions to reduce 
social contact will lower the parameter c. If this happens at 
time t, then the effective reproduction rate is Rt, which will 
be lower than R0 (Weisstein 2019).

The Analytical Hierarchy Process (AHP)

Multi-criteria decision analysis using the analytical hierar-
chical process (AHP) is the most common and well-known 
GIS-based method for delineating risk zones. This method 
helps to integrate all thematic maps. A total of three different 
thematic layers were considered for this study. These three 
thematic layers are supposed to control the factor of COVID19 
spread in the area. The association of these influencing factors 
is weighted according to their reaction for COVID19 spread 
and expert opinion. A parameter with a high weight illustrates 
a layer with high impact and a parameter with a low weight 
illustrates a small impact. The weights of each parameter were 
assigned according to Saaty’s scale (1–9) of relative impor-
tance value shown in Table 1 (Satty 1995).

Table 1  Saaty’s pair-wise comparison scale

Verbal judgment AHP 
numeric 
value (scale)

Extremely important 9
Very strongly-to-extremely important 8
Very strongly important 7
Strongly-to-very strongly important 6
Strongly important 5
Moderately-to-strongly important 4
Moderately important 3
Equally-to-moderately important 2
Equally important 1

https://mfl.mhss.gov.na/location-manager/locations
https://mfl.mhss.gov.na/location-manager/locations
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As per the classification, weights are assigned to the the-
matic layers based on their importance. Accordingly, all the 
thematic layers have been compared with each other in a pair-
wise comparison matrix:

where A is a pair-wise comparison matrix of alternatives Ai, 
i = 1, 2, 3, … n with respect to criteria K.

The sub-classes of thematic layers were re-classified using 
natural break classification method in the GIS platform for 
assigning weight. The sub-classes of each thematic layer rank 
were allocated on a scale of 0–9, according to their relative 
influence on the groundwater development.

For calculating the consistency ratio (CR) (Eq. 4), the fol-
lowing steps are adopted: (1) Principal Eigenvalue (ʎ) was 
computed by Eigenvector technique and (2) Consistency Index 
(CI) was calculated from the equation given below:

where n is the number of factors used in the analysis.
Consistency ratio is defined as CR =

CI

RCI
 , where RCI = ran-

dom consistency index value, whose values were obtained 
from the Saaty’s standard (Table 2).

Saaty has opined that CR of 0.10 or less is acceptable to 
continue the analysis. If the consistency value is greater than 
0.10, then there is a need to revise the judgment to locate 
causes of inconsistency and correct it accordingly. If the CR 
value is 0, it means that there is a perfect level of consist-
ency in the pair-wise comparison. The threshold value is not 
exceeding above 0.1, which means that the judgments matrix 
is reasonably consistent.

Spatial Interactions index

Because of their practical prediction performance, trend anal-
ysis using spatial interaction index have been preferred for 
a few decades (Fotheringham and Webber 1980; Champion 
et al. 1998; Smith et al. 2001). Economy, job opportunity, or 

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

K A1 A2 ⋯ An

A1 1 a12 ⋯ a1n

A2 1∕a12 1 ⋯ a2n

⋮ ⋮ ⋮ ⋮

An 1∕a1n 1∕a2n ⋯ 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(4)CI =
�max − n

n − 1
,

industrial structures of a region influence the regional popula-
tion and its movement (Rogers 2008).

Fundamentally, properties of a region attract population, 
and its influence is in inverse proportion to the distance. The 
condition of the regional industry decides the tendency of 
inter-regional migration, and its amount is determined by the 
population. It is based on an assumption that people are willing 
to move to well-structured regions for jobs, market, visit, etc. 
Those features experience spatial interactions and the terms in 
the introduced model are modified to reflect them.

The conventional gravity model is composed of the popu-
lations of interacting regions, distance, and a constant that 
decides the strength of the interaction (Smith et al. 2001). The 
typical form is expressed as:

where Iij is the interaction from origin i to destination j; mi 
and mj are, respectively, the population functions of regions 
i and j; dij is the distance between regions i and j; and Gij is 
a constant determined through statistics of movement from 
region i to j.

In this study, the spatial interaction layer was created from 
road connectivity. To create the spatial interaction layer from 
the road network, the road network was created using ARC-
GIS. The spatial interaction index in ARCGIS platform was 
created using the following procedure.

1. The feature to point tool was used to create point’s 
administrative boundary polygons of Namibia (Fig. 2).

2. Network spatial weights tool setting the Input Feature 
Class for Namibia administrative points was generated 
and providing a network data set. The driving distances 
for each point to every other point were computed. 
Inverse for the conceptualization of spatial relation-
ships parameter and do not Row Standardize option was 
selected (Fig. 2).

3. The convert spatial weights matrix to table tool to export 
the inverse distances to a simple table was used (Fig. 2).

4. Summary statistics to sum the inverse distance weights 
associated with each administrative boundary was 
runned (Fig. 2).

5. Join Field to add the summed weights back to the admin-
istrative boundaries and alter field to give the joined 
field an appropriate name such as spatial interactive 
index was used (Fig. 2).

(5)Iij = Gij

mimj

d
2
ij

,

Table 2  Saaty’s ratio index for 
different values of N 

N 1 2 3 4 5 6 7 8 9 10

RCI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49
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The produced spatial interaction index (Fig. 2) was incor-
porated in to AHP analysis together with other factors to 
predict the risk zones. The risk zones in this study can be 
interpreted only as areas with high transmission of COVID-
19 and the number of affected population is high in compari-
sons to the other regions of the country.

Results and Discussion

In the following sections, the results of the analysis are 
presented for each of the three factors controlling COVID-
19 and thereby the risk assessment and mapping. Results 
on modeling and projections of COVID-19 using CHIME 
V1.1.5 tool for 60 and 90 days with no social distancing and 
30% social distancing are also presented.

Population Density

There are 14 administrative regions in Namibia, with the 
capital town being Windhoek. Khomas and Ohangwena 
are the most populous regions, while Karas and Omaheke 
are least densely populated of the 14 regions of Namibia 
(Table 3).

The population density thematic map was created after 
forecasting the 2016 population census of Namibia using 
population growth rate of 1.19%. The population density 
data are re-classified in to six groups in the ArcGIS Pro 
platform for overlay analysis (Fig. 3).

Total COVID‑19 Cases in Namibia

Geographically, the spread of the pandemic in Namibia has 
spatial connotations. From the Table 3, Khomas Region 

Fig. 2  Steps followed to create the spatial interaction index layer of Namibia
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greatly affected and recorded higher figures next to the hot-
spot Erongo region. Erongo and Khomas regions have accu-
mulated 88.07% and 8.03% of the total COVID-19 cases in 
Namibia. The third highest hit region makes up just 1.38% 
of the confirmed cases. Comparing population distribution 
and COVID-19 cases (Table 3; Fig. 3), current information’s 
shows that there is no a direct link in infection trends and 
the regional level of Namibia’s population distribution; this 
might be because of the lockdown measures. Data on con-
firmed cases were then prepared and re-classified in ArcGIS 
platform for overlay analysis (Fig. 3).

Mobility Patterns and Spatial Interaction Index

Population movement triggers transmissions of COVID-19. 
In this study, Namibian mobility index on the four stages of 
lockdown was analyzed using Google mobility data (https 
://www.googl e.com/covid 19/mobil ity/). Google calculate 
these insights based on data from users who have opted-in to 
Location history for their Google Account, so the data repre-
sent a sample of Google users. Google Calculate changes for 
Groceries & pharmacy, Retail & recreation, Transit stations, 
and Parks categories using the baseline as the median value, 
for the corresponding day of the week, during the 5-week 
period Jan 3–Feb 6, 2020. Google mobility index revealed 
that the average social distancing in the country was 45, 21, 

15, and 10% for stage 1, stage 2, stage 3, and stage 4 lock-
downs, respectively (Fig. 4). The stage 4 lockdown period is 
proposed to be extended up to 17 September 2020, but stage 
4 mobility change map (Fig. 4) was processed using Google 
mobility index data till 8 May 2020.

For the COVID-19 risk analysis, the spatial interaction 
layer of Namibia (Fig. 4) was produced from road connec-
tivity data using ARCGIS Pro. The calculated interaction 
index then re-classified into six groups for overlay analysis.

GIS Overlay Analysis for COVID‑19 Risk Assessment 
and Mapping

All the three thematic maps or layers (Fig. 3) were prepared 
in the re-classified raster format and were given the nor-
malized weight (Fig. 5) in accordance with transmissions 
of COVID-19. Similarly, each thematic layer’s classes were 
given the normalized rank or weight. Then, overlay analysis 
was carried out using the weight vectors (Fig. 5) using AHP.

Risk mapping is a dimensionless quantity computed 
considering the weights for each layer and sub-classes in 
each thematic layer. After the overlay process has been com-
pleted, the COVID-19 risk zone map for Namibia was clas-
sified as highest risk, higher risk, high risk, low risk, lower 
risk, and lowest risk (Fig. 6). Risk zone designated as high-
est is mostly found in the Erongo Region which stretches 
from the Central Plateau across to the Central Namibian 
coast in the west, and with the Ugab River being the north-
ern border, the higher COVID-19 risk zone is distributed 
along Khomas region which include the capital Windhoek.

High- and low-risk regions are Karas and Otjozoned-
jupa, respectively. Results also indicate that the lower risk 
COVID-19 regions are Hardap, Kunene, Oshana, Omu-
sati, Oshikoto, Ohangwana, and Kavango East, and low-
est COVID-19 risk areas are Kavango West and Omaheke 
(Fig. 6).

Future Trend of COVID‑19 in Namibia (CHIME V1.15 
model)

The tempo and trend of COVID-19 were modeled using 
ArcGIS Pro COVID-19 modeling toolbox; the COVID-19 
Hospital Impact Model for Epidemics (CHIME) V1.1.5 
tool. The modeling was based on mobility dynamics, cur-
rent COVID-19 cases, population dynamics and the rate of 
SARS-CoV2 infection, Number of Currently Hospitalized 
COVID-19 Patients, Social Distancing % (Reduction in 
Social Contact), Hospitalization % (Total Infections), ICU 

Table 3  Population dynamics in Windhoek

No Region Population Total cases % Cases % Population

1 Erongo 85,965 2237 88.07 3.70
2 Hardap 182,621 9 0.35 7.85
3 Karas 85,862 35 1.38 3.69
4 Kavango 

east
148,644 2 0.08 6.39

5 Kavango 
west

89,420 0 0.00 3.84

6 Khomas 416,279 204 8.03 17.90
7 Kunene 97,982 1 0.04 4.21
8 Ohangwena 255,817 10 0.39 11.00
9 Omaheke 74,719 1 0.04 3.21
10 Omusati 250,185 2 0.08 10.76
11 Oshana 189,464 11 0.43 8.15
12 Oshikoto 195,399 2 0.08 8.40
13 Otjozond-

jupa
154,527 20 0.79 6.64

14 Zambezi 98,968 6 0.24 4.26
Total 2,325,852 2540 100 3.70

https://www.google.com/covid19/mobility/
https://www.google.com/covid19/mobility/
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% (Total Infections), and Ventilated % (Total Infections), 
Average Days in ICU, Average Days on Ventilator, Total 
Bed Capacity, Total Ventilator Capacity, and Total ICU Bed 
Capacity in Namibia. All data were obtained from different 
sources and well prepared in ArcGIS pro window in the form 
of attribute table and imported as spatial data to COVID-19 
Hospital Impact Model for Epidemics (CHIME) V1.1.5 tool.

Different scenarios are analyzed and projected for the 
next 60 and 90 days from the starting date 08 May 2020 

with in lock down periods in Namibia. After lockdown 
ends on 17/ September 2020, the observed data of 18 Sep-
tember 2020 were used for the next 3-month projections 
after lockdown ends in Namibia. The metrics explained the 
maximum difference between projected needs and avail-
able resources, including the maximum difference as a 
total and as a percent, the day, and date in which the high-
est difference occurred, and the amount of days in which 
total projected needs exceeded available resources. The 

Fig. 3  Population density, confirmed cases, and spatial interaction index for COVID-19 overlay analysis to produce risk mapping
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model was processed in four different scenarios to analyze 
the spread and effect of COVID-19; (1) projection with no 
social distancing for next 60 and 90 days and (2) projection 
with 30% social distancing for next 60 and 90 days. The 
effectiveness of social distancing interventions to delay 
or flatten the Epidemic Curve of Coronavirus Disease in 
Namibia is modeled. Social distancing reduced by 30%.

60‑Day Projection: With no Social Distancing 
and 30% Social Distancing

The CHIME model result on transmission of COVID-19 
with no social distancing interventions shows a peak curve 
on new daily admission, daily hospital census, and new hos-
pitalizations for each region of Namibia (Fig. 7). The peak 
new daily admission will be occurred after 45 days from 
the starting date (08/05/2020) of modeling (Fig. 6a). The 
model result shows about 1524 new peak COVID-19 admis-
sions (Fig. 7a). Out of the new peak admissions, about 400 

admissions required ICU and about 200 admissions needed 
ventilation (Fig. 7a).

The total daily hospital census projections including 
patients before the modeling period (Fig. 7d) indicate about 
10,000 total cases after 50 days of modeling; 3200 ICU 
admissions and 2100 ventilated admissions.

Khomas region shows high peak about 365 new hospi-
talizations on 2 September, if no social distance intervention 
applied (Fig. 7a, c); this is because of the high population 
density in the region. All other regions have also their peaks 
on the month of September. The second populous region, 
Ohangwena, has about 234 newly admission on September 
17. The model result reveled that if no social distancing 
interventions applied, the most populous regions will have 
the highest COVID-19 cases and high number of COVID-19 
cases recorded (Figs. 6c, 7a).

Comparing Figs. 7 and 8, reducing peoples contact rates 
by 30% flatten the curve. The new daily admissions and the 
total daily hospital census projection reduced by 50%.

Fig. 4  Regional-level mobility changes during the four stages of lock down in Namibia.  Source: Authors Produced based on data derived from 
Google mobility index 2020
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The findings of the model are to be viewed with caution. 
Hospitalization increases in our model are likely to occur 
later if measures are lifted or social distance is decreased 
from 30% without further action, such as widespread testing, 
self-isolation of infected individuals, and contact tracing. 
As with any model, the impact of the interventions may be 
overestimated by our assumptions. However, quantifying the 
short-term effects of an intervention is vital to help decision-
makers estimate the immediate number of resources needed 
and plan for future interventions.

90‑Day Projection: With no Social Distancing 
and 30% Social Distancing

Similar to the 60-day model projections above, the 90-day 
projection also shows high-peak COVID-19 admissions 
and COVID-19 cases in Namibia with no social distanc-
ing interventions scenario (Fig. 9). The model result depicts 
that newly hospitalization census of each region of Namibia 
is associated with the number of population (Fig. 9a, c). 
Khomas region will have the highest peak, about 2500 
new admissions during early September. Most of the other 

regions of Namibia will have their peak during late Septem-
ber (Fig. 9c).

The new daily admissions and total daily hospitalized 
have their peaks after 50 days of projection. Model shows 
about 1512 new daily hospitalization of which 386 are ICU 
admissions and about 213 ventilated admissions.

The effect of 30% social distancing intervention on 
90-day COVID-19 response is shown in Fig. 9. Reducing 
peoples contact rates by 30% flattens the curve (Fig. 10) 
in comparison to not applying social distancing measures 
(Fig. 9).

90‑Day Projection Using Data of 18 September 
2020: With no Social Distancing

Since March 2020, 13,134 people have been placed in 
to mandatory quarantine facilities around the Namibia 
(Table 4). In Namibia the fourth stage of lockdown ends on 

Fig. 5  Percentage influence of factors for overlay analysis and 
COVID-19 risk mapping

Fig. 6  Regional-based COVID-19 risk zones of Namibia, and IDW 
interpolation based on the 08 May 2020 confirmed cases. The risk 
zones in this study can be interpreted only as areas with high trans-
mission of COVID-19 and high number of affected population is in 
comparisons to the other regions of the country
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Fig. 7  a Hospitalized census, b new daily admission projection, c change in hospitalized census over date per region, and d daily hospital census 
projection in Namibia for next 60 days with no social distancing starting from 08 May 2020
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Fig. 8  a Hospitalized census, b change in Hospitalized census over date per region, c new daily admission projection, and d daily hospital cen-
sus projection in Namibia for next 60 days with no 30% social distancing
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Fig. 9  a Hospitalized census, b new daily admission projection, c change in hospitalized census over date per region, and d daily hospital census 
projection in Namibia for next 90 days with no social distancing
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Fig. 10  a Hospitalized census, b new daily admission projection, c change in Hospitalized census over date per region, and d daily hospital cen-
sus projection in Namibia for next 90 days with 30% social distancing
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17 September 2020. 90-Day projection was made using the 
observed data of 18 September 2020 (Fig. 11).

The 90-day projection reveled Khomas region will have 
the highest peak, about 4300 new admissions during end of 
September (Fig. 10b). The projection shows different peak 
values for each regions due to difference in the no of popula-
tion and mobility index (Fig. 11b).

New daily hospitalized census projection result shows 
about 7843 new daily hospitalization of which 2301 are 
ICU admissions and about 2061 Ventilated admissions 
(Fig. 11d). More than 1810 new daily admission was also 
observed (Fig. 11c).

Result findings of this research correlate with an increas-
ing number of publications assessing the impacts of COVID-
19 interventions. Several researchers have studied how social 
distancing measures could have influenced the epidemic 
(Prem et al. 2020; Wu et al. 2020; Kraemer et al. 2020). 
Others have investigated the effect of similar measures else-
where and concluded that social distancing interventions 
alone will not be able to control the pandemic (Flaxman 
et al. 2020; Tuite et al. 2020).

Table 4  Observed number of people in mandatory quarantine facili-
ties, 18 September 2020

Region Newly 
quarantined 
24 h

Cumulative 
Number

Number 
discharged

Number in 
quarantine

Erongo 10 3205 3126 79
Hardap 10 601 585 16
Karas 0 1680 1463 217
Kavango 4 439 422 17
Khomas 0 2259 2174 85
Kunene 0 439 410 29
Ohangwena 5 493 456 37
Omaheke 29 901 793 108
Omusati 4 294 275 19
Oshana 0 303 294 9
Oshikoto 0 884 703 181
Otjozondjupa 9 838 802 36
Zambezi 2 708 753 45
Total 73 13,134 12,256 878
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Conclusions

In this study, an attempt was made to develop a spatial 
model for demarcating the COVID-19 risk zones in Namibia 
making use of three thematic layers. These were popula-
tion distribution, current COVID-19 confirmed cases, and 
spatial interaction index. The COVID-19 risk zones’ map-
ping was produced by integrating these thematic layers in 
ArcGIS overlay analysis. The identified COVID-19 risk 
zones in Namibia are highest, higher, high, low, lower, and 

lowest. Risk zone designated as highest is mostly found 
in the Erongo Region, the higher COVID-19 risk zone is 
distributed along Khomas region which include the capital 
Windhoek, and the high- and low-risk regions are Karas 
and Otjozonedjupa, respectively. The lower risk COVID-19 
regions are Hardap, Kunene, Oshana, Omusati, Oshikoto, 
Ohangwana, and Kavango East, and lowest COVID-19 risk 
areas are Kavango West and Omaheke region.

Different scenarios are analyzed and projected for the 
60 and 90 days from the starting date 08 May 2020 within 

Fig. 11  a Hospitalized census, b new daily admission projection, c change in hospitalized census over date per region, and d daily hospital cen-
sus projection in Namibia for next 90 days from 18 September 2020
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lockdown periods in Namibia. After lockdown ends on 
17 September 2020, the observed data of 18 September 
2020 were used for the next 3-month projections. The 
CHIME model result on response of COVID-19 was ana-
lyzed with and without social distancing intervention for 
the next 60 and 90 days starting from 08 May 2020. The 
60- and 90-day modeling result without social distanc-
ing interventions shows a peak curve on new daily admis-
sion, daily hospital census, and new hospitalizations for 
each region of Namibia. The peak new daily admission 
occurred after 45 days from the starting date of modeling 
for 60-day projection. The 60-day projection model result 
shows about 1524 new COVID-19 admissions, about 
400 admissions required ICU, and about 200 admissions 
needed ventilation.

The 60-day model output shows that Khomas region has 
high peak in September over the other regions; this might 
be due to the high population density in the area. All other 
regions have also their peaks on the month of September 
lately. The second populous region, Ohangwena, has about 
234 newly admission on September 17.

The 60- and 90-day model projection with 30% social dis-
tancing interventions shows flattening of the peak number of 
cases and delay to the peak number. In Namibia, the fourth 
stage of lockdown ends on 17 September 2020. After lock-
down ends, 90-day projection was made using the observed 
data of 18 September 2020/.The 90-day projection reveled 
Khomas region will have the highest peak, about 4300 new 
admissions during end of September. The projection shows 
different peak values for each regions due to difference in 
the number of population and mobility index.

New daily hospitalized census projection result shows 
about 7843 new daily hospitalization of which 2301 are ICU 
admissions and about 2061 ventilated admissions. More than 
1810 new daily admission was also observed. The research 
output could help policy-makers to estimate the immediate 
number of resources needed and plan for future interventions 
of COVID-19 in Namibia.

Future Scope of the Research

The worldwide wide spread of COVID-19 peaks the impor-
tance of research, stable research infrastructure, and funding 
for public health emergency, response, and resiliency. Lives 
are lost, economies falter, and life has radically changed after 
the pandemic. Ultimate COVID-19 mitigation and crisis res-
olution are dependent on high-quality research aligned with 
top priority societal goals that yields trustworthy data and 
actionable information. While the highest priority goals are 
treatment and prevention, resource allocation and manage-
ment require future projections based on the current infec-
tion rate.

This study generated a risk zone and projected the new 
daily admission and daily hospitalized census which might 
help in COVID-19 fight of Namibia. The projection was mad 
using two observed data (05 May 2020) and (18 September 
2020) for the next 90 days to accommodate CHIME tool pro-
jection recommendation. CHIME recommend short-period 
projections. The model tool and the input parameters can 
be used for future research and the model can be updated 
with the recent data at any time possible and future studies 
can be extended.

The authors recommended that additional data and recent 
modern technological knowledge which adapts machine 
learning might increase the accuracy of the research and it 
is strongly recommended.
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