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Abstract
In this article, we analyze the growth pattern of COVID-19 pandemic in India from March 4 to July 11 using regression 
analysis (exponential and polynomial), auto-regressive integrated moving averages (ARIMA) model as well as exponential 
smoothing and Holt–Winters models. We found that the growth of COVID-19 cases follows a power regime of (t2, t, ...) after 
the exponential growth. We found the optimal change points from where the COVID-19 cases shifted their course of growth 
from exponential to quadratic and then from quadratic to linear. After that, we saw a sudden spike in the course of the spread 
of COVID-19 and the growth moved from linear to quadratic and then to quartic, which is alarming. We have also found 
the best fitted regression models using the various criteria, such as significant p-values, coefficients of determination and 
ANOVA, etc. Further, we search the best-fitting ARIMA model for the data using the AIC (Akaike Information Criterion) 
and provide the forecast of COVID-19 cases for future days. We also use usual exponential smoothing and Holt–Winters 
models for forecasting purpose. We further found that the ARIMA (5, 2, 5) model is the best-fitting model for COVID-19 
cases in India.

Keywords COVID-19 · Regression analysis · Exponential growth · Polynomial growth · ANOVA · ARIMA · Exponential 
smoothing and holt–winters models · Prediction · Forecast

Introduction

The COVID-19 pandemic has created a lot of havoc in the 
world. It is caused by a virus called SARS-CoV-2, which 
comes from the family of coronaviruses and is believed to 
be originated from the unhygienic wet seafood market in 
Wuhan, China but it has now infected around 215 countries 
of the world. With more than 13.2 million people affected 
around the world and more than 575,000 deaths (As of July 
14, 2020), it has forced people to stay in their homes and has 
caused huge devastation in the world economy (Singh and 
Singh 2020; Ministry of Health and Family Welfare 2020; 
Gupta et al. 2019).

In India, the first case of COVID-19 was reported on 30th 
January, which was linked to the Wuhan city of China (as the 
patient has travel history to the city). On 4th March, India 
saw a sudden hike in the number of cases and since then, the 
numbers are increasing day by day. As of 14th July, India 

has more than 908,000 cases with more than 23,000 deaths 
and is world’s 3rd most infected country (https ://www.world 
omete rs.info/coron aviru s/).

Since the outbreak of the pandemic, scientists across the 
world have been indulged in the studies regarding the spread 
of the virus. Lin et al. (2020) suggested the use of the SEIR 
(Susceptible– Exposed–Infectious–Removed) model for the 
spread in China and studied the importance of government-
implemented restrictions on containing the infection. As 
the disease grew further, Ivorra et al. (2019) suggested a 
θ-SEIHRD model that took into account various special fea-
tures of the disease. It also included asymptomatic cases into 
account (around 51%) to forecast the total cases in China 
(around 168,500). Giordano et al. (2003) also suggested an 
extended SIR model called SIDHARTHE model for cases 
in Italy which was more customized for COVID-19 to effec-
tively model the course of the pandemic to help plan a better 
control strategy.

Petropoulos and Makridakis (2020) suggested the use of 
exponential smoothing method to model the trend of the 
virus, globally. Kumar et al. (2020) gave a review on the 
various aspects of modern technology used to fight against 
COVID-19 crisis.
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Apart from the epidemiological models, various data-
oriented models were also suggested to model the cases and 
predict future cases for various disease outbreaks from time to 
time. Various time-series models were also suggested to model 
the cases and predict future cases. ARIMA and Seasonal 
ARIMA models are widely used by researchers to model and 
predict the cases of various outbreaks. In 2005, Earnest et al. 
(2005) conducted a research to model and predict the cases of 
SARS in Singapore and predict the hospital supplies needed 
using this model. Gaudart et al. (2009) modelled malaria inci-
dence in the Savannah area of Mali using ARIMA. Zhang 
et al. (2013) compared Seasonal ARIMA model with three 
other time-series models to compare Typhoid fever incidence 
in China. Polwiang (2020) also used this model to determine 
the time-series pattern of Dengue fever in Bangkok.

For COVID-19 as well, various researchers tried to model 
the cases through ARIMA. Ceylan (2020) suggested the use 
of Auto-Regressive Integrated Moving Average (ARIMA) 
model to develop and predict the epidemiological trend of 
COVID-19 for better allocation of resources and proper 
containment of the virus in Italy, Spain and France. Chin-
talapudi (2020) suggested its use for predicting the number 
of cases and deaths post 60-days lockdown in Italy. Fanelli 
and Francesco (2020) analyzed the dynamics of COVID-19 
in China, Italy and France using iterative time-lag maps. It 
further used SIRD model to model and predict the cases and 
deaths in these countries. Zhang et al. (2020) developed a 
segmented Poisson model to analyze the daily new cases of 
six countries to find a peak point in the cases.

Since the spread of the virus started to grow in India, 
various measures were taken by the Indian Government 
to contain it. A nationwide lockdown was announced on 
March 25 to April 14, which was later extended to May 
3. The whole country was divided into containment zones 
(where large number of cases were observed from a rela-
tively smaller region), red zones (districts where risk of 
transmission was high and had higher doubling rates), green 
zones (districts with no confirmed case from last 21 days) 
and orange zones (which did not fall into the above three 
zones). After the further extension of the lockdown till May 
17, various economic activities were allowed to start (with 
high surveillance) in areas of less transmission. Further, the 
lockdown was extended to May 31 and some more economic 
activities have been allowed as per the transmission rates, 
which are the rates at which infectious cases cause new cases 
in the population, i.e. the rate of spread of the disease. This 
was further extended to June 8, with very less rules and 
especially the states were given the responsibility of setting 
the lockdown rules. The air and rail transport became open 
for general public. Post June 8, we see that the restrictions 
are nominal with even shopping malls and religious places 
open for general public. Now, the responsibility of impos-
ing restrictions lies with the respective State Governments.

On the other hand, Indian scientists and researchers are 
also working on addressing the issues arising from the pan-
demic, including production of PPE kits and test kits as well 
as studying the behaviour of spread of the disease and other 
aspects of management. Various mathematical and statistical 
methods have been used for predicting the possible spread 
of COVID-19. The classical epidemiological models (SIR, 
SEIR, SIQR etc.) suggested the increasing trend of the virus 
and predicted the peaks of the pandemic. Early researches 
showed the pandemic to reach its peak by mid-May. They 
also showed that the basic reproduction number (R0) and 
the doubling rates are lower in India, with comparison to 
European nations and the USA. A tree-based model was pro-
posed by Arti and Bhatnagar (2020) and Bhatnagar (2020) to 
study and predict the trends. They suggest that lockdown and 
social distancing in India have played a significant role to 
control the infection rates. But now, as the lockdown restric-
tions are minimal, the cases in India are growing at an alarm-
ing high rate. Chatterjee et al. (2020) suggest growth of the 
pandemic through power law and its saturation at the later 
stages. Due to the complexities in the epidemic models of 
COVID-19, various researchers have been focusing on the 
data to forecast the future cases. Chatterjee et al. (2020), 
Verma et al. (2020) and Ziff and Ziff (2020) suggest that 
after exponential growth, the total count follows a power 
regime of t3, t2, t and 

√
t before flattening out, where ‘t’ 

refers to time. It can, therefore, be realized that there is an 
urgent need to model and forecast the growth of COVID-19 
in India as the virus is in the growing stage here.

In India, the most affected states are Maharashtra with 
over 260,000 cases (as of 14 July 2020), Tamil Nadu (around 
142,000 cases), Delhi (around 113,000 cases) and Gujarat 
(around 42,000 cases). The greatest number of cases per 
million has been seen in the national capital of Delhi (5740 
cases per million) (Refer https ://nhm.gov.in/New_Updat 
es_2018/Repor t_Popul ation _Proje ction _2019.pdf for pop-
ulation estimates). Many states and union territories like, 
Kerala, Karnataka, Andaman and Nicobar Islands, Daman 
and Diu, etc. which had recovered from majority of the cases 
have experienced a second wave of infections. This might be 
attributed to decreased travel restrictions and minimal lock-
down measures. In their research, Singh and Jadaun (2020) 
studied the significance of lockdown in India and suggested 
that the new COVID-19 cases would stop by the end of 
August in India with around 350,000 total cases. While some 
states may see an early stopping of new cases, such as Telan-
gana (mid-June), Uttar Pradesh and West Bengal (July end) 
etc., the badly affected states of Maharashtra, Tamil Nadu 
and Gujarat will achieve this by August end.

Since a proven vaccine and medication is yet to be devel-
oped by the researchers then in such a scenario, modelling 
the present situation and forecasting the future outcome 
becomes crucially important to utilize our resources in the 

https://nhm.gov.in/New_Updates_2018/Report_Population_Projection_2019.pdf
https://nhm.gov.in/New_Updates_2018/Report_Population_Projection_2019.pdf
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most optimal way. Therefore, the article aims to study the 
growth curve of COVID-19 cases in India and forecast its 
future course. Since the disease is still in its growing age 
and very dynamic in nature, no model can guarantee for 
perfect validity for future. We, therefore, need to develop 
the understanding of the present situation of the pandemic.

In this article, we first study the growth curve using 
regression methods (exponential, linear and polynomial 
etc.) and propose an optimal model for fitting the cases till 
July 10. Further, we propose the use of time-series models 
for forecasting the future observations on COVID-19 cases. 
Here, we reach the best-fitted ARIMA model for forecasting 
the COVID-19 cases. We also compare these results with 
Exponential Smoothing (Holt–Winters) model. This study 
will help us to understand the course of spread of SARS-
CoV-2 in India better and help the government and the peo-
ple to optimally use the resources available to them.

Statistical Methodologies

In this section, we briefly present the statistical techniques 
used for analyzing the COVID-19 cases in India. Here, we 
used usual regression (exponential, polynomial), times-
series (ARIMA) and exponential smoothing models.

Exponential–Polynomial Regression

Regression is a statistical technique that attempts to estimate 
the strength and nature of relationship between a dependent 
variable and a series of independent variables. Regression 
analyses may be linear and non-linear. A regression is called 
linear when it is linear in parameters, e.g. y = �0 + �1t+ ∈ 
and y = �0 + �1t + �2t

2 + �3t
3+ ∈ , ∈∼ N

(
0, �2

)
, where y is 

response variable, t denotes the indepenet variable, �0 is the 
intercept and other βs are known as slopes.

A non-linear regression is a regression when it is non-
linear in its parameters, e.g. y = �1e

�2x + �. In the beginning 
of the spread of a disease, we see that the new cases are 
directly proportional to the existing infected cases and may 
be represented by dy(t)

dt
= ky(t) , where k is the proportionality 

constant. Solving this differential equation, we get that, at 
the beginning of a pandemic,

Thus, at the beginning of a disease, the growth curve of 
the cases grows exponentially.

As the disease spreads in a region, governments start 
to take action and people start becoming conscious about 
the disease. Thus, after some time, the disease starts to fol-
low a polynomial growth rather than continuing to grow 
exponentially.

y(t) = Aekt.

In order to fit an exponential regression to our data, we 
linearize the equation by taking the natural logarithm of the 
equation and convert it to a linear regression in first order.

We estimate the parameters of a linear regression of order 
p as follows:

Let the model of linear regression of order p be: 
yi = �0 +

∑p

j=
x
j

i
+ ∈ with ∈∼ N

(
0, �2

)
 and i = 1,2, ..,N . Let 

E =
∑N

i=1

�
yi − �0 −

∑p

j=
�jx

j

i

�2

 represent the residual sum 
of square (RSS).

We get the best estimates of these coefficients by solving 
the following normal equations: �E

��0
= 0 , �E

��1
= 0,…, �E

��p
= 0, 

which minimizes RSS. This technique is referred to as the 
ordinary least squares (OLS). We will use this technique of 
the OLS to estimate the coefficients of our proposed model. 
(Refer Montgomery et al. (2012).

Since we know that the growth curve of the disease 
changes after some time point, exponential to polynomial, 
we propose to use the following joint regression model with 
change point �,

where we take f1(t) = �1e
�2t , f2(t) = �0 + �1t + �2t

2 +⋯ + �pt
p+ ∈, 

∈∼ N(0, �2) and p is the order of the polynomial regression 
model and t stands for the time (an independent variable).

During the analysis, we found that a suitable choice of 
f2(t) is a quadratic or a cubic model. Once the order of the 
polynomial is kept fixed, an optimum value of the change 
point can be obtained by minimizing the residuals/errors. 
We can obtain the OLS estimates of the parameters of the 
model (1) as given below:

The least square estimates (LSEs) of the parameters, 
Θ =

{
�1, �2,�, �0, �1, �2, �3,…… , �p

}
 can be obtained by 

minimizing the residual sum of squares (RSS) as given by:

where ŷexp
i

 and ŷpoly
i

 are the estimates value of yi from the 
exponential and polynomial regression models, respectively, 
and N is the size of the dataset.

The LSEs of Θ =
{
�1, �2,�, �0, �1, �2, �3,…… , �p

}
 can 

be obtained as the simultaneous solution of the following 
n o r m a l  e q u a t i o n s , 
�RSS(Θ)

��1
= 0,

�RSS(Θ)

��2
= 0,

�RSS(Θ)

��
= 0,

�RSS(Θ)

��0
= 0,

�RSS(Θ)

��1
= 0  , 

�RSS(Θ)

��2
= 0 , �RSS(Θ)

��3
= 0,…… ,

�RSS(Θ)

��p
= 0. Solution to these 

equations is difficult since the parameter � is decenter time 
point.

We suggest to use the following algorithm while � is kept 
fixed.

(1)y =

{
f1(t); t ≤ 𝜇,

f2(t); t > 𝜇,

(2)RSS(Θ) =

�∑
i=1

(
yi − ŷ

exp

i

)2
+

N∑
i=�+1

(
yi − ŷ

poly

i

)2

,
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Algorithm 1

In order to find the optimal value of µ, i.e. the turning point 
between the exponential and polynomial growth, we will 
use the technique of minimizing the residual sum squares in 
“Analysis of COVID-19 Cases in India”.

We will use MAPE (Mean Absolute Percentage Error) to 
evaluate the performance of the mode.

where yt is the observed value at time point t  and ŷt is an 
estimate of yt.

In order to make the results easy to interpret, we will also 
use Accuracy (%).

ARIMA Model

The Auto-Regressive Integrated Moving Averages method 
gauges the strength of one dependent variable relative to 
other changing variables. It is one of the most used time-
series models in diverse fields of data analysis as it takes into 
account the changing of trends, periodic changes as well as 
random disturbances in the time-series data. It is used for 
both better understanding of the data as well as forecasting, 
see Brockwell et al. (1996).

Autoregressive model (AR) is effectively merged with the 
Moving Averages model (MA) to formulate a useful time-
series model, ARIMA model. The Autoregression (AR) ele-
ment of the model shows a changing variable that regresses 
on its own prior values and the Moving Average (MA) ele-
ment incorporates the dependency between an observation 
and a residual error from a moving average model applied to 
prior observations. However, this model can only be applied 
to stationary data. Since many real-life datasets consist of an 
element of non-stationarity, to model such datasets, ARIMA 
model was developed. This model is open for non-stationary 
data as the Integrated (I) factor of the model represents the 

MAPE =
100%

N

N∑
t=1

|||||
yt − ŷt

yt

|||||
,

Accuracy (%) = 100 −MAPE (%).

differencing of raw observations to allow the time-series to 
become stationary.

Here, we may refer the reader to follow Box et al. (2008, 
2015) for more details on ARIMA model, estimation and 
its application.

The general forms of AR(p) and MA(q) models can be, 
respectively, represented as the following equations:

 where ∅ s and θs are auto-regressive and moving averages 
parameters, respectively, Yt represents value of time-series 
at time point t , �t represents the random disturbance at time 
point t and is assumed to be independently and identically 
distributed (i.i.d.) with mean 0 and variance �2.

The ARMA(p, q) model can be represented as:

 where α is an intercept.
The differenced stationary time-series can be modelled 

as an ARMA model to use ARIMA model on the time-
series data (Ceylan 2020; He and Tao 2018; Manikandan 
et al. 2016). The ARIMA model is generally denoted as 
ARIMA(p, d, q) where, p is the order of auto-regression, 
d is the degree of difference and q is the order of moving 
average.

The degree of difference, i.e. d is a transformation (oper-
ator) that is used to make the time-series stationary as it 
removes the increasing trends. A higher value of d indicates 
positive autocorrelations out to a high number of lags.

The first step to model the time-series by ARIMA is to 
determine the time-series data for stationarity. The Aug-
mented Dickey–Fuller (ADF) test may be applied to deter-
mine if the time series after differencing is stationary or not. 

(3)
Yt = ∅1Yt−1 + ∅2Yt−2 + ∅3Yt−3 +………… . + ∅pYt−p + �t,

(4)
Yt = �1�t−1 + �2�t−2 + �3�t−3 +………… . + �q�t−q + �t,

(5)

Yt = � + ∅1Yt−1 + ∅2Yt−2 + ∅3Yt−3

+………… . + ∅pYt−p + �1�t−1 + �2�t−2

+ �3�t−3 +………… . + �q�t−q + �t,
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The ADF test is applied to test the null hypothesis for the 
presence of a unit root (which indicates non-stationarity of 
the series).

In order to deduce the ARIMA(p, d, q) model, we can pro-
ceed as follows:

We have the ARMA(p�, q) represented as follows (as per 
Eq. 5)

It can be equivalently written as:

where L is the lag operator, such that- La
(
Yt
)
= Yt−a.

Now, assume that the polynomial (1 −
∑p

�

i=1
∅iL

i) has a 
unit root (i.e. a factor of (1 − L) ) of multiplicity d. Then, 
Eq. (6) can be re-written as:

Or, 

This can be generalized as:

This defines an ARIMA(p, d, q) process with drift �

1−
∑

�i

.
The second step is to plot the graphs of the Autocorrela-

tion function (ACF) and the Partial Autocorrelation Func-
tion (PACF) to determine the most-likely values of p and q.

The final step is to obtain the optimal values of p , d and 
q using the AIC (Akaike Information Criterion), for more 
details see https ://en.wikip edia.org/wiki/Akaik e_infor matio 
n_crite rion. These information criteria may be used for 
selecting the best-fitted models. Lower the values of crite-
ria, higher will be its relative quality. The AIC is given by:

 where K  is  the number of model parameters, 
L is the maximized value of log − likelihood function.

Yt − ∅1Yt−1 − ∅2Yt−2 − ∅3Yt−3 −………… .

+ ∅p
�Yt−p� = �1�t−1 + �2�t−2 + �3�t−3

+………… . + �q�t−q + �t

(6)
⎛
⎜⎜⎝
1 −

p
��

i=1

∅iL
i

⎞
⎟⎟⎠
Yt =

�
1 +

q�
i=1

�iL
i

�
�t,

⎛⎜⎜⎝
1 −

p
�
−d�

i=1

�iL
i

⎞⎟⎟⎠
(1 − L)dYt =

�
1 +

q�
i=1

�iL
i

�
�t.

(7)

(
1 −

p∑
i=1

�iL
i

)
(1 − L)dYt =

(
1 +

q∑
i=1

�iL
i

)
�t, p

�

= p − d.

(8)

(
1 −

p∑
i=1

�iL
i

)
(1 − L)dYt = � +

(
1 +

q∑
i=1

�iL
i

)
�t,

AIC = −2(L) + 2K,

Exponential Smoothing

Exponential smoothing is one of the simple techniques 
to model time-series data where the past observations are 
assigned weights that are exponentially decreasing over 
time. We propose the following models, for modelling of 
COVID-19 cases [see Holt (1957) and Winters (1960)].

For single exponential smoothing, let the raw observa-
tions be denoted by {yt} and {st} denote the best estimate of 
trend at time t. Then, s0 = y0 , st = �yt + (1 − �)

(
st−1

)
, where 

� ∈ (0,1) denotes the data smoothing factor.
For double exponential (Holt–Winters) smoothing, let 

the raw observations be denoted by {yt} , smoothened val-
ues {st} , and {bt} denotes the best estimate of trend at time 
t . Then,

where � ∈ (0,1) denotes the data smoothing factor and 
� ∈ (0,1) denotes the trend smoothing factor. For the forecast 
at t = (N + m) days, ( FN+m ) is calculated by

Analysis of COVID‑19 Cases in India

For this study, we have used the data available at GitHub, 
provided by Centre for Systems Science and Engineering 
(CSSE) at John Hopkins University (see https ://githu b.com/
CSSEG ISand Data/COVID -19/blob/maste r/csse_covid _19_
data/csse_covid _19_time_serie s/time_serie s_covid 19_confi 
rmed_globa l.csv). For this study, we use R software. (see R 
Core Team 2020).

Exponential–Polynomial Regressions

We have used the data from March 4 to July 11 for continu-
ity of the data.

We know that at the beginning of the spread of the disease 
in India, the growth was exponential and after some time, 
it was shifted to polynomial. We first obtain optimum turn-
ing point of the growth, i.e. when did the growth rate of the 
disease shifted to polynomial regime from the exponential. 
We consider both quadratic and cubic regression model for 

s1 = y1,

b1 = y2 − y1,

st = �xt + (1 − �)
(
st−1 − bt−1

)
,

bt = �(st − st−1) + (1 − �)bt−1,

FN+m = st + mbt.

https://en.wikipedia.org/wiki/Akaike_information_criterion
https://en.wikipedia.org/wiki/Akaike_information_criterion
https://github.com/CSSEGISandData/COVID-19/blob/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
https://github.com/CSSEGISandData/COVID-19/blob/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
https://github.com/CSSEGISandData/COVID-19/blob/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
https://github.com/CSSEGISandData/COVID-19/blob/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
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second part of the data. We will also discuss the types of 
polynomial growth (with their equations) in India.

In order to find the turning point of the growth curve, 
we follow the Algorithm 1, given in the previous section. 
Using that, we evaluate the RSS for all the days (from March 
4) and find the date on which it is minimum. The change 
points of growth curve for cubic and quadratic regressions 
are presented in Fig. 1 depending upon the size of the data 
set. From Fig. 1, we can confirm that the growth rate of 
COVID-19 cases was exponential till April 5 and then after 
it follows the polynomial growth regime while we use the 
COVID-19 cases till July 11 (Table 1).

We call the region of exponential growth in India as 
Region I. The coefficients of the model are presented in 
Table 2.

We see that after the exponential regime (till April 5), the 
growth curve follows a polynomial growth till May 2. After 
this, we again see a change in the behavior of the growth 
curve. In Tables 3, 4, 5 and 6, we try to model these growth 
curves through regression analysis.

Having evaluated the coefficients for various models (i.e. 
linear, quadratic and cubic) as well as the important statistics 
(i.e. R2 values, p values of the models as well as individual 
coefficients and F-statistic), we will select the best-fitting 
models. In order to select the best-fitting models for Region 
II (April 6 to May 2); III (May 3 to May 15), IV (May 16 
to May 31) and V (June 1 to July 11), we have the follow-
ing steps. We select that model which has high R2 values, 
significant p value, high F-statistic and where the p values 
of all the variables are significant.

We see for Region II, from Table 3, that the linear model 
is having a relatively lower F-statistic and R2 values in com-
parison to the Quadratic and Cubic models. So, we eliminate 
the possibility of linear fitting. Further, we see that the p 
values, F-statistics and the R2 values are quite significant in 
both Quadratic as well as the Cubic models. But, if we look 
at the individual p values of the coefficients, we see that the 
individual p values are not significant for the Cubic model. 
On the other hand, the individual p values are significant for 

Fig. 1  Trend of RSS and optimum µ for exponential-quadratic regres-
sion model

Table 1  Turning point of growth curve for cubic and quadratic 
regression beyond change point using the COVID-19 cases from 4th 
March to a given day

Day Change point

Cubic Quadratic

25th April 5th April 5th April
30th April 5th April 5th April
2rd May 5th April 5th April
3rd May 7th April 5th April
5th May 10th April 11th April
10th May 10th April 18th April

Table 2  Regression table for region I (Exponential Regression)

Parameter Coefficients S.E t PV

�1 16.543 1.969 8.40 1.7e − 09
�2 0.163 0.00389 41.97 2e − 16

Table 3  Regression models fitting for Region II (5th April–2nd May)

Model Parameter OLS Estimates S.E t PV R2 (F-statistic, PV)

Linear �0 − 43,427.02 1889.22 − 22.99  < 2e − 16 0.9773 (1119, < 2e − 16)
�1 1326.49 39.66 3.45  < 2e − 16

Quadratic �0 17,410.66 1501.022 11.60 2.52e − 11 0.9997 (3.901e + 04, < 2.26e − 16)
�1 − 1335.45 65.087 − 20.52  < 2e − 16
�2 28.32 0.6905 41.01  < 2e − 16

Cubic �0 6196.57 10,073.87 0.615 0.545 0.9997 (2.63e + 04, < 2e − 16)
�1 − 594.89 661.096 − 0.9 0.378
�2 12.29 14.2489 0.863 0.397
�3 0.113 0.1009 1.126 0.272
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Table 4  Regression models fitting table for Region III (3rd May–15th May)

Model Parameter OLS Estimates S.E t PV R2 (F-statistic, PV)

Linear �0 − 2,998,284.88 3244.99 − 91.62  < 2e − 16 0.9990 (1.264e + 04, < 2e − 16)
�1 3584.12 32.11 111.63  < 2e − 16

Quadratic �0 − 23,424.15 56,089.18 − 0.418 0.68505 0.9997 (1.329e + 04, < 2.26e − 16)
�1 − 1866.15 1111.75 − 1.679 0.12416
�2 26.98 5.50 4.903 0.00062

Cubic �0 -8.967e + 05 1.837e + 06 − 0.488 0.637 0.9997 (1.187e + 04, < 2e − 16)
�1 2.411e + 04 5.464e + 04 0.441 0.669
�2 − 2.305e + 02 5.413e + 02 − 0.426 0.680
�3 8.497e − 01 1.786e + 00 0.476 0.646

Table 5  Regression models fitting table for Region IV (16th May–31st May)

Model Parameter OLS estimates S.E t PV R2 (F-statistic, PV)

Linear �0 − 403,709.8 9765.5 − 41.34 4.92e − 16 0.9951 (3069, < 2.2e – 16)
�1 6627.8 119.6 55.40  < 2e − 16

Quadratic �0 296,345.02 50,252.76 5.897 5.26e − 05 0.9997 (2.285e + 04, < 2.26e − 16)
�1 − 10,606.59 1235.97 − 8.582 1.03e − 06
�2 105.73 7.58 13.948 3.37e − 09

Cubic �0 − 7.339 + 05 1.025e + 06 − 0.716 0.488 0.9997 (1.525e + 04, < 2e − 16)
�1 2.746e + 04 3.783e + 04 0.726 0.482
�2 − 3.623e + 02 4.649e + 02 − 0.779 0.451
�3 1.914e + 00 1.901e + 00 1.007 0.334

Table 6  Regression models fitting Table for Region V (1st June – 11th July)

Model Parameter OLS estimates S.E t PV R2 (F-statistic, PV)

Linear �0 − 1,282,158.3 46,562.7 − 27.54  < 2e − 16 0.9725 (1417, < 2.2e − 16)
�1 15,845.4 420.9 37.65  < 22e − 16

Quadratic �0 1.669e + 06 5.836e + 04 28.60  < 22e − 16 0.9996 (4.89e + 04, < 2.26e − 16)
�1 − 3.844e + 04 1.070e + 03 − 35.94  < 22e − 16
�2 2.468e + 02 74.856e + 00 50.81  < 22e − 16

Cubic �0 1.786 + 06 2.465e + 05 − 7.245 1.342e − 08 0.9999 (2.019e + 05, < 2e − 16)
�1 5.711e + 04 6.799e + 03 8.400 4.242e − 10
�2 − 6.280e + 02 6.215e + 01 − 10.104 3.462e − 12
�3 2.651e + 00 1.8822e − 01 14.082  < 22e − 16

Quartic �0 − 1.168e + 07 2.067e + 06 − 5.649 2.082e − 06 1.000 (2.419e + 05, < 2e − 16
�1 4.223e + 05 7.617e + 04 5.545 2.822e − 06
�2 − 5.658e + 03 1.048e + 03 − 5.401 4.392e − 06
�3 3.329e + 01 6.375e + 00 5.221 7.632e − 06
�4 − 6.963e − 02 1.4492e − 02 − 4.807 2.712e − 05

Quintic �0 − 5.784e + 07 2.094e + 07 − 2.762 0.00908 1.000 (2.145e + 05, < 2.2e − 16)
�1 2.554e + 06 9.651e + 05 2.646 0.01213
�2 − 4.486e + 04 1.773e + 04 − 2.530 0.01606
�3 3.923e + 02 1.623e + 02 2.418 0.02095
�4 − 1.709e + 00 7.4022e − 01 − 2.308 0.02702
�5 2.980e − 03 1.3462e − 03 2.214 0.03341
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the Quadratic model. Thus, we can conclude that the Quad-
ratic model is the best-fitting model for Region II (April 6 
to May 2).

For Region III, from Table 4, that all the three models 
have high F-statistic values, high p values and high R2 val-
ues. But we notice that the coefficient individual p values are 
not significant in both Quadratic and Cubic models. Thus, 
we conclude that the Linear model is the best-fitting model 
for Region III (May 3 to May 15).

For Region IV, from Table 5, we see that the R2 values 
for all the models are very high. All the models also have 
significant p values. The F-statistic of both Quadratic and 
Cubic models are also high. But, the coefficient individual 
p values are not significant in the Cubic model. Thus, we 
conclude that the Quadratic model is the best-fitting model 
for Region IV (May 16 to May 31).

For Region V, from Table 6, we see that the R2 values 
of all the models are very high (quadratic, cubic, quartic 
and quintic models have exceptionally high). All the models 
also have significant p-values. The F-statistic of Quadratic, 
Cubic, Quartic and Quintic models is high. F-statistic value 
of Quartic model is the highest. The coefficient individual 
p values of Quartic model are also significant. Thus, we 
conclude that the Quartic model is the best-fitting model for 
Region V (June 1 to July 11).

Note For Region V, due to spike in the cases, we also 
checked the fitting of exponential curve in this region 
(Table 7).

Let the exponential model be- y(t) = �e�t

We obtained the following parameter values:
The RSE for this model is 4178 and MAPE (%) is 0.85%. 

Both of these values are quite larger than those of Quartic 
model (Refer Table 9 for RSE and MAPE values of Quartic 
model in Region V). Thus, we conclude that Quartic model 
is the best-fitting model for Region V (1st June to 11th June).

All the ANOVA tables (Refer to Table 8) for Region II, 
III, IV and V suggest significant p-values for its coefficients 
and suggest that the models fit well the respective regions.

Thus, according to our study, the growth of the virus was 
exponentially increasing from March 4 to April 5. Then 

Table 7  Parameters for exponential regression in Region V

Parameter OLS Estimate S.E t p value

α 8.718e + 03 1.385e + 02 62.95  < 2e − 16
β 3.530e-02 1.333e-04 264.69  < 2e − 16

Table 8  ANOVA table for Region II (Quadratic Regression), III (Linear Regression), IV (Quadratic Regression) and V (Quantic Regression)

Region Model Variable Degrees of 
freedom

Sum of squares Mean sum of squares F-statistic p value

II Quadratic t 1 2,882,180,732 2,882,180,732 76,347  < 2.2 × 10–16

t2 1 63,489,615 63,489,615 1681  < 2.2 × 10–16

Residuals 24 906,026 37,751
III Linear t 1 2,337,950,722 2,337,950,722 12,462  < 2.2 × 10–16

Residuals 11 2,063,722 187,611
IV Quadratic t 1 1.4935e + 10 1.4935e + 10 45,505.60  < 2.2 × 10–16

t2 1 6.3857e + 07 6.3857e + 07 194.56 3.373e-09
Residuals 13 4.2667e + 06 3.2821e + 05

V Quartic t 1 1.4412e + 12 1.4412e + 12 941,897.436  < 2.2 × 10–16

t2 1 3.9077e + 10 3.9077e + 10 25,539.326  < 2.2 × 10–16

t3 1 4.8467e + 08 4.8467e + 08 316.761  < 2.2 × 10–16

t4 1 3.5353e + 07 3.5353e + 07 23.105  < 2.2 × 10–16

Residuals 36 5.5083e + 07 1.5301e + 06

Table 9  Course of COVID-19 growth in India (March 4 to July 11)

Region Dates Best-fitted model MAPE (%) RSE

I March 4th to April 5th y(t) = 16.54 × e0.163t 8.60 81.66
II April 6th to May 2nd y(t) = 17410.67 − 1335.45t + 28.32t2 0.83 194.3
III May 3rd to May 15th y(t) = −29825 + 3584t 0.49 433.1
IV May 16th to May 31st y(t) = 296345.02 − 10606.59t + 105.73t2 0.31 572.6
V June 1st to July 11th y(t) = −1.168 × 10

7 + 4.223 × 10
5t − 5.658 × 10

3t2 + 33.29t3 − 0.06963t4 0.21 1237
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after, the virus grew by following a quadratic rate from April 
6 to May 2. After May 3, we experienced a linear growth. 
But after May 15 to May 31, we experienced a sudden rise 
in the rate of growth of the virus and have seen quadratic 
growth again. Further, for the period of June 1 to July 11, 
we see experienced a quartic (4-degree polynomial) growth, 
which is very alarming (see Table 9 for best-fitted regression 
models). Figure 2 shows the best-fitted regression models 

to the daily cumulative cases of COVID-19 in India from 
March 4 to July 11 (Table 10).

Time‑series Models Fitting

We use the daily time-series data of number of cumulative 
confirmed cases from March 4 to July 10.

First, we check the stationarity of the transformed time-
series using ADF Tests. Dickey–Fuller statistic is 6.3915 
with p value 0.99 which indicates that the growth of COVID-
19 cases is not stationary. The ARIMA models may be use-
ful over the ARMA models. The ACF and PACF plots are 
shown in Fig. 3.

We then obtain the optimal ARIMA parameters ( p , d , q ) 
using the AIC. We take various possible combinations of 
( p , d , q ) and compute the AIC. Then, select the best-fitted 
ARIMA model that has the lowest AIC among all consid-
ered models. According to the AIC, the ARIMA (5, 2, 5) 
is the best-fitted model for the COVID-19 cases, India (see 
Table 11). Estimates of ARIMA (5, 2, 5) parameters and 
MAPE are shown in Table 11.

Interpretation of the Parameters

We have selected the model parameters using the Akaike 
Information Criterion. We obtained the parameters as: 
p = 5, d = 2 and q = 5. As p = 5 , it means that the order 
(number of time lags) of Autoregression part of the model 

Table 10  AIC for ARIMA 
models for COVID-19 cases, 
India (4th March to 10th July)

Model AIC

p d q

1 1 0 2064.921
2 1 0 2065.752
3 1 0 2067.442
2 1 2 2063.402
3 1 5 2055.702
2 0 1 2070.555
1 2 1 2043.075
2 2 1 2044.97
1 2 2 2045
2 2 2 2022.933
3 2 2 2048.967
3 2 3 2021.517
5 2 5 2001.998
2 2 5 2012.213
5 2 4 2008.532
3 2 5 2013.83

Fig. 2  Fitted regression models 
to the daily cumulative cases of 
COVID-19 in India till July 11
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is 5. In general, we can say that the cumulative cases of 
COVID-19 in a day are dependent on the cases of previ-
ous 5 days. As q = 5 , the present value is dependent on the 
moving average (residuals) of previous 5 days. As d = 2, the 
series y∗

t
= yt − 2yt−1 + yt−2 is stationary. A higher value of 

d indicates positive autocorrelations out to a high number 
of lags. Thus, we can have the equation for our model, using 
Eq. 8 as:

 where all the symbols have their meanings as per “ARIMA 
Model”.

Estimates of the Holt–Winters exponential smoothing 
and exponential smoothing models are given in Table 12. 
According to the MAPE and accuracy measures, the ARIMA 
(5, 2, 5) is a better model than the Holt–Winters exponential 
smoothing and usual exponential smoothing models. From 
this, we can conclude that the ARIMA model is the best 

(
1 −

5∑
i=1

�iL
i

)
(1 − L)2Yt = � +

(
1 +

5∑
i=1

�iL
i

)
�t,

fit for the cases of COVID-19, followed by Holt–Winters 
model. The forecasting values along with 95% confidence 
intervals are shown in Table 13 and Fig. 4. We have used 
actual data from 11th June to validate the model.

Even though most of the actual cases are covered in the 
95% confidence intervals of the ARIMA and Holt–Winters 
forecasts, they are seen to be nearer to the Upper Limits of 
the Confidence Intervals and are deviated from the estimates. 
It might be possible that in the future days, the forecasts 
might underestimate the actual cases. This might be attrib-
uted to the changing pattern of the growth of the pandemic 
in our country as seen in the regression analysis. Thus, we 
suggest a segment-wise time-series models to forecast the 
future cases in a more accurate manner.

We present the segment-wise ARIMA and Holt–Winters 
models for 1st June to 10th July.

We have seen that our time-series data are non-station-
ary and, thus, we select the most optimal values of (p, d, q) , 
which has the least AIC. According to AIC, (5, 2, 3) is the 
best-fitting model for the time-series data from June 1 to July 
10, with AIC = 634.18. Estimates of ARIMA (5, 2, 3) model 
with the corresponding MAPE and Accuracy are given in 
Table 14 (Fig. 5).

Fig. 3  ACF and PACF for 
COVID-19 cases in India (4th 
March to 10th July)

Table 11  Estimates of ARIMA (5,2,5) parameters and MAPE (4th 
March to 10th July)

Coefficients Estimate S.E MAPE Accuracy

AR 1 0.6734 0.0566 2.6511% 97.3849%
AR 2 0.3395 0.0773
AR 3 − 0.1541 0.0879
AR 4 − 0.7314 0.0673
AR 5 0.8639 0.0549
MA 1 − 0.8661 0.0748
MA 2 − 0.4824 0.1081
MA 3 0.3273 0.1116
MA 4 0.9873 0.0844
MA 5 − 0.8447 0.0622

Table 12  Estimates and MAPE of exponential smoothing models

Model Parameter Estimate MAPE Accuracy

Holt–Winters expo-
nential smoothing

α 1 2.8911% 97.1089%
β 1
a 820,916
b 271,145

Exponential 
smoothing

α 0.9999 7.5384% 92.4616%
a 820,914.7000
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From Fig. 6, we deduce that the optimal value of d is 
2, as the time series becomes stationary with differencing 
degree = 2.

Estimates of the Holt–Winters exponential smoothing 
and exponential smoothing models are given in Table 15. 
According to the MAPE and accuracy measures, the ARIMA 
(5, 2, 3) is a better model than the Holt–Winters exponential 
smoothing and usual exponential smoothing models. From 
this, we can conclude that the ARIMA model is the best 
fit for the cases of COVID-19, followed by Holt–Winters 
model. The forecasting values along with 95% confidence 
intervals are shown in Table 16 and Fig. 4. We have used 

Table 13  Forecast using 
ARIMA and holt-winters 
models for 10 days

Day ARIMA Holt–winters Actual

Estimate Lower Upper Estimate Lower Upper

11th July 848,374.1 847,247.1 849,501.0 848,030 846,636.1 849,423.9 849,522
12th July 875,792.9 873,473.0 878,112.8 875,144 872,027.2 878,260.8 878,254
13th July 903,010.8 899,507.1 906,514.5 902,258 897,042.5 907,473.5 906,752
14th July 930,330.7 925,622.6 935,038.7 929,372 921,737.3 937,006.7 936,181
15th July 958,494.9 952,436.5 964,553.2 956,486 946,148.6 966,823.4 968,857
16th July 987,619.1 979,891.2 995,347.0 983,600 970,303.1 996,896.9 1,003,832
17th July 1,017,773.7 1,007,937.9 1,027,609.6 1,010,714 994,221.2 1,027,206.8 1,039,084
18th July 1,048,569.9 1,036,227.8 1,060,912.1 1,037,828 1,017,919.2 1,057,736.8 1,077,781
19th July 1,079,470.6 1,064,335.7 1,094,605.5 1,064,942 1,041,410.4 1,088,473.6 1,118,206
20th July 1,110,527.9 1,092,443.6 1,128,612.2 1,092,056 1,064,705.9 1,119,406.1 1,155,338

Fig. 4  Fitted ARIMA (5, 2, 
3) and exponential smoothing 
models and forecasting from 
ARIMA for Covid-19 cases 
in India (stars show the actual 
observations). Model built on 
data from June 1 to July 10

Table 14  Estimates of ARIMA (5,2,3) parameters and MAPE (1 June 
to 10 July)

Coefficients Estimate S.E MAPE Accuracy

AR 1 1.9985 0.2455 0.1364% 99.8636%
AR 2 − 2.0142 0.4505
AR 3 1.2380 0.4533
AR 4 − 0.6108 0.3606
AR 5 0.3742 0.1895
MA 1 − 2.2358 0.3847
MA 2 2.0805 0.7260
MA 3 − 0.7309 0.3853
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actual data from 11 June to validate the model. We observe 
that the ARIMA model captures the trend well and estimates 
the cumulative cases properly.

From the interpretations of both the fitted ARIMA mod-
els, we can say that as the values of p and d are 5 and 2, 
respectively; the daily cumulative cases are dependent on the 

cases of previous 5 days. Also, to convert the time series of 
daily cases into stationary, we need differencing degree of 2.

Conclusion and Future Scope

From the regression analysis, we conclude that the spread 
of COVID-19 disease grew exponentially from March 3 to 
April 5. Further, from April 6 to May 2, the cases followed a 
quadratic regression. From May 3 to May 15, we see a linear 
growth of the pandemic with average daily cases of 3584. 
After May 15 to May 31, we again saw a spike in the cases 
that lead to a quadratic growth of the pandemic. And, from 
June 1 to July 11, we saw a major spike in the growth of the 
pandemic as it has followed quartic growth.

Verma et al. (2020) showed the four stages of the epi-
demic, S1: exponential, S2: power law, S3: linear and S4: 
flat. We saw that the course of COVID-19 in India followed 
this regime till May 15. But after the linear trend from May 

Fig. 5  ACF and PACF plots for 
COVID-19 cases (1 June to 10 
July)

Fig. 6  Difference plots for COVID-19 cases (1 June to 10 July)

Table 15  Estimates and MAPE of exponential smoothing models

Model Parameter Estimate MAPE Accuracy

Holt–Winters expo-
nential smoothing

α 1 0.2172% 99.7828%
β 1
a 820,916
b 271,145

Exponential 
smoothing

α 0.9999 3.5757% 96.4243%
a 820,914.7000
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3 to May 15, the spread has again reached the quadratic 
growth and from June 1 to July 11, India is witnessing a 
quartic growth. This might be attributed to the relaxation 
of lockdown measures in the country. Though it was much 
likely that the cases would start to reduce post-linear stage 
growth as the total cases may start to follow a square root 
equation, i.e. y(t) ∼

√
t. And this might lead to reduction 

in the daily number of cases (asy�(t) ∼ 1∕
√
t ,) leading to 

flattening of the curve. But, due to reduced restrictions, we 
see a reverse trend, which might be alarming and suggest 
the imposition of strict lockdown to reverse this trend of 
pandemic growth. If we continue to open our economy in 
this way, we might go back to the exponential growth of the 
pandemic and this would lead to huge destruction to human 
lives and cause a greater impact on our economy.

We also observe that some cities have been the hotspots 
of the disease, such as Delhi (more than 131,000 cases), 
Mumbai (more than 94,000 cases), Chennai (more than 
78,000 cases), Thane (more than 63,000 cases), etc. as on 
14 June, 2020. While the other states and cities have seen a 
slower growth of the pandemic, these cities have seen explo-
sive growths. Due to the opening of air and rail transport in 
the country, the virus is likely to spread in the other regions 
as well as people from these cities (especially metro cities) 
are travelling to different states. Thus, it is highly advisable 
that the country should go back to its lockdown phase until 
we see reduction in trend.

In time-series analysis, we conclude that the ARIMA (5, 
2, 5) is the best-fitting model for the cases of COVID-19 
from 4th March to 10th July with an accuracy of 97.38%. 
The basic exponential smoothing is not very accurate for 
our case, but we see that the Holt–Winters model is around 
97.11% accurate. Both ARIMA (5, 2, 5) and Holt–Winters 
models suggest a rise in the number of cases in the coming 
days. We observed that both the ARIMA and Holt–Winters 
models capture the data well and the actual data from 11th 
July validate the forecasts well as they lie in the predicted 
confidence intervals. But, while validating the model, the 

actual values are always near to the Upper Confidence Lim-
its, it might be possible that in further days, our model might 
underestimate the cases. This might be possible because of 
the changing trend of the growth of the pandemic in India.

Thus, we used segmented time-series models and took 
data from 1st June to 10th July to build separate ARIMA and 
Holt–Winters models. We concluded that ARIMA (5, 2, 3) is 
the best-fitting model for COVID-19 cases in the given time 
period with an accuracy of 99.86%. The basic exponential 
smoothing is not very accurate or this case as well but, the 
Holt–Winters model is around 99.78% accurate. We also 
observe that the ARIMA and Holt–Winters models capture 
the data well and the actual data from 11th July validate the 
forecasts and lie near to the estimates.

We may also conclude that the cases of COVID-19 will 
rise in the coming days and the situation may turn alarming 
if proper measures are not followed. Since the economic 
activities have started in the country, people need to be 
more careful while going out. And explosion of the pan-
demic in the whole country can cause a serious damage to 
human lives, healthcare system as well as the economy of 
the country. Thus, there is an urgent need of imposing strict 
lockdown measures to curb the growth of the pandemic. We 
must also learn to lead our lives by following all the precau-
tions even if the lockdown restrictions are relaxed and the 
economic activities are resumed.

Comparison of Indian scenario with that of other coun-
tries might not prove fruitful at this stage because of the 
demographic differences and/or the characteristics of the 
disease. Also, comparison of the Indian context with that 
of the other countries of the world will require to study the 
spread of the pandemic in those countries in depth and might 
be considered as an altogether in the future studies.

This study was limited to data-driven models using the 
total COVID-19 cases. In the future studies, the other co-fac-
tors (associated with the demographics, social, cultural and 
medical infrastructure, etc.) can be taken to considerations.

Table 16  Forecast using 
ARIMA and Holt–Winters 
models for 10 days (Model 
based on data from June 1 to 
July 11)

Day ARIMA Holt-Winters Actual

Estimate Lower Upper Estimate Lower Upper

11th July 849,004.1 847,380.2 850,628.0 848,030 845,992.4 850,067.6 849,522
12th July 877,131.0 873,820.0 880,441.9 875,144 870,587.8 879,700.2 878,254
13th July 904,470.9 899,668.1 909,273.7 902,258 894,634.0 909,882.0 906,752
14th July 931,603.7 925,143.6 938,063.8 929,372 918,211.5 940,532.5 936,181
15th July 959,587.9 951,065.0 968,110.8 956,486 941,374.7 971,597.3 968,857
16th July 989,057.8 977,968.3 1,000,147.4 983,600 964,162.4 1,003,037.6 1,003,832
17th July 1,020,020.5 1,005,736.9 1,034,304.1 1,010,714 986,604.7 1,034,823.3 1,039,084
18th July 1,051,860.3 1,033,742.1 1,069,978.4 1,037,828 1,008,725.1 1,066,930.8 1,077,781
19th July 1,083,688.0 1,061,252.4 1,106,123.6 1,064,942 1,030,543.2 1,099,340.8 1,118,206
20th July 1,114,984.3 1,087,911.9 1,140,256.8 1,092,056 1,052,075.2 1,132,036.8 1,155,338
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