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Abstract
There has been intense debate about lockdown policies in the context of Covid-19 for limiting damage both to health 
and to the economy. We present an AI-driven approach for generating optimal lockdown policies that control the 
spread of the disease while balancing both health and economic costs. Furthermore, the proposed reinforcement learn-
ing approach automatically learns those policies, as a function of disease and population parameters. The approach 
accounts for imperfect lockdowns, can be used to explore a range of policies using tunable parameters, and can be 
easily extended to fine-grained lockdown strictness. The control approach can be used with any compatible disease 
and network simulation models.
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Description of Modelling Approach

In this article1, we briefly describe an AI-driven approach 
for generating lockdown policies that are optimised based 
on disease characteristics and network parameters. This 
approach is aimed for use by policy-makers who are 
knowledgeable in epidemiology, but not necessarily well-
versed in dynamic systems and control. The approach is 
designed to be modular and flexible. That is, the underly-
ing reinforcement learning algorithm can work with any 
compatible disease and network models. Furthermore, the 
critical characteristics of the models are parameters that 
can be tuned. The models described in this paper are based 

on a commonly used epidemiological model from litera-
ture Perez and Dragicevic (2009), as shown in Fig. 1. The 
parameter values can be tuned for modelling infectious 
diseases including Covid-19. We use values for Covid-19 
computed by Jung et al. (2020). 

We also account for network propagation character-
istics through tunable parameters such as strictness of 
lockdowns within network nodes and travel between 
nodes, including the possibility of leaky quarantine. The 
probability of disease transmission between people is a 
macro-level parameter, but it accounts for micro-level 
effects such as social distancing, mask usage, and weather 
effects. The network definition is based on node locations 
and population of each node, with connectivity between 
each pair of nodes defined by a gravity model Allama-
nis et al. (2012). The results presented in this paper are 
based on a randomly generated network with 100 nodes 
and 10,000 people randomly distributed amongst those 
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nodes.2 The disease progression is shown in Fig. 2 for a 
fixed strategy of locking down any node when its symp-
tomatic population exceeds 5% of total, and reopening 
when it falls below this level. This is a typical method 
followed in several regions worldwide. While the peak 
is small, the epidemic lasts for nearly the full year (with 
high economic cost).

Reinforcement learning approach 
for computing lockdown policy

Reinforcement learning (RL) works by running a large 
number of simulations of the spread of the disease while 
attempting to find the optimal policy for lockdowns Sut-
ton and Barto (2012). The chief requirement is to quantify 
the cost of each outcome of the simulation. In this study, 
we impose a cost of 1.0 on each day of lockdown, 1.0 on 
each person infected, and 2.5 on each death3. A reward is 
defined as the negative of these costs (higher the reward, 
lower the cost). The actions asked of the algorithm are 
binary4: at the beginning of every week and for every 
node, the algorithm must decide whether to keep the node 
open or lock it down. We use Deep Q Learning Mnih et al. 
(2015) to train the algorithm. The RL algorithm improves 
and then saturates in 75 simulations as shown in Fig. 3, 
for this specific instance. The evolution of infection rates 
in Fig. 4 (computed through 10 independent runs) shows 
that the policy has a higher peak than the 5% policy in 

Fig. 2, but significantly fewer lockdowns and a shorter 
epidemic duration. Note also that there are no kinks due 
to new infections after release.

The key points of novelty in this approach are: (i) we 
focus neither on epidemiological models nor on predic-
tion of the spread of the disease, but rather on control-
ling the spread of disease while balancing long-term 
economic and health costs, (ii) our control approach can 
work with any disease parameters (not just Covid-19), 
and with any compatible network data and propagation 
model (not just for specific geographies), (iii) rather 
than taking decisions based on simple thresholds such 
as fraction of people with symptoms, the learnt policies 
combine several context variables such as rates of new 
infections to take optimal decisions, (iv) the end-users 
need to only change input parameters to create policies 
with their desired characteristics, and (v) the algorithm is 
not a black box, and sensitivity of the policy to features 
can be studied. Fig. 5 demonstrates the last claim by con-
sidering the sensitivity of decisions to sets of two input 
features at a time. The first plot shows that the policy 
recommends lockdowns when the infection rate in the 
overall population or within a node exceeds 0.2. However, 
lockdowns can be recommended at much smaller values 
if both infection rates reach 0.1. A similar trend is shown 
in the plot on the right, which shows that lockdowns are 
recommended at much lower infection rates if a node has 
a large population.

Discussion

The reinforcement learning algorithm is ready for use in 
conjunction with real-world data sets, epidemiological mod-
els and network propagation models. Any of these three 
aspects can be changed as per user requirements. The algo-
rithm is computationally lightweight, and, running it only 
requires Python. We have demonstrated its capability of 
handling nation-scale data Khadilkar et al. (2020). We are 
open to collaborating with epidemiologists who could ben-
efit from a computational approach to address the spread of 
communicable diseases.
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Fig. 1  Disease progression model adapted for Covid-19. S is suscep-
tible, E is exposed (virus in the body but not yet affecting the immune 
system), IS is infected (showing symptoms), IA is asymptomatic 
carrier, D is dead, and R is recovered. Note the numbers represent 
capture probabilities and not rates of change. All parameters can be 
tuned. We do not consider a transition from Recovered to susceptible 
states, but this can be added if found to be possible

3 These numbers can be tuned, and in realistic scenarios, can be 
made specific to nodes.
4 The extended version of the manuscript Khadilkar et  al. (2020) 
demonstrates control with more actions.

2 The methodology is independent of the population size, and, has 
been shown to work for real-world networks in an extended version of 
the manuscript Khadilkar et al. (2020).
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Fig. 2  [Left] Network model, [right] Epidemic progression for the policy of locking down any node when its symptomatic population exceeds 
5% of total

Fig. 3  Evolution of reward 
(objective function) during 
training, based on (i) duration of 
lockdowns, (ii) number of peo-
ple infected, and (iii) number of 
people dead

Fig. 4  Epidemic progression 
using a policy trained by rein-
forcement learning
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Fig. 5  Policy outcomes as a function of two features at a time
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