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Abstract
Lockdown in cities across the globe has imposed severe travel restrictions to limit the spread of Coronavirus disease. The 
travel behavior and operations will not be the same as before due to requirements such as physical (social) distancing. This 
study analyzes the resulting shortage in supply of public transport (buses) that will likely widen the existing gap between 
demand and supply. In this work, system optimization models are developed to efficiently reallocate the bus fleet to routes 
for different levels of physical distancing gaps and travel demand. The proposed models are applied to a real-life network 
of 34 bus routes of Delhi, considering three types of scenarios: current, practical, and ideal. In the practical scenarios, the 
additional, idling bus fleets can be allocated to the routes efficiently while maintaining physical distancing. The results 
show that the Business-as-Usual (BAU) scenario involving the current allocation approach will make it impossible to use 
public buses even if the bare minimum physical distancing has to be maintained. Further, the models proposed in the study 
significantly improve the key performance indicators for all scenarios.
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Introduction

Context

The outbreak of novel Coronavirus (formally, SARS-
nCoV-2 or nCov-19) has brought almost every other city to 
a standstill. This is a respiratory virus that primarily spreads 
through close contact with an infected person and/or fomites 
(e.g., handrails, doorknob, cloths, etc.). To minimize the 
contact with each other or any common surface, extreme 
measures such as lockdown of cities (with very limited 
mobility for essential services), prohibiting mass gather-
ing (e.g., in schools, colleges, institutes, religious places, 
etc.) are recommended (Müller et al. 2020; Fang et al. 2020) 
and observed all across the globe. Similar to this but for 
a far less severe situation, it has been shown that holiday 

traveling may lead to a potential second peak of an influ-
enza pandemic (Shi et al. 2010). The public transport system 
is considered at high risk due to higher passenger density, 
mainly in peak hours, higher chances of getting the infection 
from common surfaces, and difficulty in the screening of the 
individuals. Therefore, public transport systems have ground 
to a halt. Specifically, in India, the first case was reported 
on Jan 20, 2020 (WHO 2020a), the number of cases rapidly 
crossed the 21,000 mark on Apr 23, 2020 (WHO 2020b), 
and a nation-wide lockdown was initiated on Mar 25, 2020.

As the situation improves, the lockdown will be relaxed, 
public movement will begin, and services will gradually 
resume. However, it is a long road before the situation nor-
malizes. Due to the fear of getting infected, it is likely that 
many people will continue to work from home, use private 
vehicles (e.g., car, motorbike) or an active mode of transport 
(e.g., walk, bicycle) for shorter distances. However, public 
transport is one of the most important modes of mobility 
that is sustainable and serves people at a large scale. Specifi-
cally, low-income travelers walk/cycle or use public trans-
port extensively (Rangwala et al. 2014; Tiwari et al. 2016), 
i.e., it is unlikely for them to travel for long-distance trips 
in the absence of public transport. At the same time, in the 
prevailing circumstances, public transport users are at high 
risk, which will stymie its operation. Thus, in order to avoid 
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the risk of getting infected, it is highly likely and desirable 
that for some time, maintaining physical (social) distancing 
becomes a requirement for all public vehicles and seating, 
standing spaces are clearly marked. To achieve the required 
physical distancing in the already short-in-supply transit 
fleet (Agrawal et al. 2020), this study attempts to evaluate 
the requirement of an operational fleet of public transport 
immediately after the relaxation in the lockdown and better 
prepare for the situation. A better preparation of the public 
transport operators will also avoid the overcrowding at the 
platforms. In this study, ‘post-COVID-19’ refers to the situ-
ation when the lockdown is relaxed fully or partially, and 
public transport is opened for the public.

Novelty of the Work

This work first attempts to identify and address the gap 
between the demand and supply of public transport for 
different levels of physical distancing and levels of travel 
demand. Further, an optimization approach is proposed to 
bridge the gap between the derived travel demand and avail-
able fleet size by effective utilization of additional buses 
along with the existing ones and make public transport oper-
ational for a given scenario. In order to avoid the overestima-
tion of additional buses required to serve the travel demand, 
reduction in travel demand is estimated using the geometry 
of the line, possibility of travel using alternate route/transit 
mode, and production centers.

The proposed optimization approach is a set of Mixed 
Integer Linear Programming (MILP) optimization models. 
In this work, three MILP models that respectively maximize 
the total passenger hours, travel demand, and the number 
of routes opened are developed by efficiently reallocating 
the existing as well as additional buses to the routes. These 
models are inspired by and an extension of the work done by 
Suman and Bolia (2019). Apart from optimal allocation of 
buses, the study identifies the additional bus fleet required 
to meet the travel demand (Suman and Bolia 2019) while 
maintaining the chosen (policy-mandated) level of physical 
distancing. The models proposed in this work can be a key 
aid to policymakers in serving the maximum possible mobil-
ity needs of the people in the post-Covid19 world.

Methodology

Assumptions

Given the uncertainty associated with the novel Coronavirus, 
the following assumptions are taken in the present study: (1) 
the lockdown will be relaxed in different stages; therefore, 
in the first stage, the inter-state and tourist buses will have 
the least priority to operate; (2) the govt. has the authority to 

use the idling inter-state and tourist buses for public trans-
port services; (3) if in operation, all measures will be taken 
to ensure the screening, safety of passengers as well as the 
driver and conductor.

Reducing the Travel Demand

It is likely that the lockdown will be relaxed in a staged 
manner, and work from home will be recommended for a 
longer period of time. Further, travelers have a fear of get-
ting infected, which is likely to encourage them to avoid 
public transport and use private vehicles. Therefore, once 
the authorities start the operation of public transport, it is 
expected that the travel demand is likely to be lesser than 
normal circumstances (prior to COVID-19).

Ideally, to determine the reduction in travel demand, 
detailed modeling and various data inputs are required. 
Based on the availability of the data (see “Case Study: 
Delhi, India”), the following approach, depending primar-
ily on the alternative route/mode of public transport, geom-
etry of transit line, and the number of trip attraction centers, 
is devised. For the former, the number of transfer stations 
with other buses/metro lines, the number of metro lines that 
have three or more consecutive stations in parallel to the 
bus line (route) are counted using the map services. These 
numbers indicate the likelihood of serving the trip using 
other transit lines. The geometry of line represents segrega-
tion of the trip purposes, i.e., trips served by a tangential 
(or cross-town) transit line are lesser peaked than radial and 
diametric lines and served primarily for educational, social, 
leisure trips, etc. On the contrary, the radial and diametric 
lines mostly serve the daily commuters (Vuchic 2004), who 
have higher priority over other types of trips. Higher number 
of trip attractions (e.g., shopping malls/street/hubs, tourist 
destinations, Museums, stadiums, etc.) as well as higher 
number of multi-modal interchanges (e.g., ISBT, Railway 
stations, etc.) point towards a greater reduction in travel 
demand due to non-operation of these attractions/services. 
The values corresponding to each attribute are identified for 
each transit route using map services, a weight1 is assigned 
to and normalization done for each attribute. The sum of 
weighted, normalized attributes for each route is termed as 
the ‘remaining demand multiplier’ for that route, and is mul-
tiplied with the transit demand between each OD pair of the 
route to get the reduced demand.2 Given the uncertainty in 

1 The weights are assumed as 0.25 for major attractions, 0.20 for 
multi-modal interchanges, 0.20 for the geometry of line, 0.15 for the 
number of metro lines with three consecutive metro stations, and 0.10 
each for the number of transfer stations with other bus/metro lines.
2 Note that each bus line has two routes in both directions. For a few 
bus lines, the routes in the two directions vary slightly. However, the 
same multipliers are used in either direction.
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the travel demand post-COVID-19, a sensitivity analysis is 
performed for ± 10,± 20% of the remaining demand multi-
pliers. Figure 1 shows the variation of remaining demand 
multipliers for all bus routes in terms of a box plot. Clearly, 
for a few routes, the demand is likely to be just above 20%, 
whereas on the higher side, for route 479, the demand is 
likely to remain between 62 and 94% of the original demand.

Bus Fleet and Capacities

Under normal circumstances, the required bus fleet in Delhi 
is not enough to serve the demand; however, a better route 
allocation can reduce the demand-supply gap (Suman and 
Bolia 2019). Clearly, the gap between demand and supply 
will widen significantly to enable physical distancing. As 
mentioned in “Novelty of the Work”, this work proposes a 
methodology to determine the number of additional buses 
required to serve the reduced demand constrained by differ-
ent levels of physical distancing in the buses. The require-
ment of the additional buses can be fulfilled using the 10,000 
buses which have permits under contract carriage, all India 
tourist, inter-state and stage carrier categories.3 During 
lockdown, all of these buses are idling and unlikely to go 
in operation together as soon as the lockdown is relaxed. 
For instance, tourism may remain closed for a few more 
weeks/months. For the present study, four different catego-
ries of buses are assumed to be available, of which two are 
already in use for public transport. Three different values of 
distances among the passengers are assumed, and the bus 

capacity is calculated for each (see Table 1). The total capac-
ity of a bus is sum of the standing and seating capacities. 
For simplicity, in all buses, it is assumed that seats are of 
dimension 0.45m × 0.45m , the center to center distance for 
each seating row is about 0.6 m. Based on this, the stand-
ing capacity is calculated from the length of the bus, i.e., a 
person can stand in every other row (e.g., for a 10 m long 
bus and 1 m social distancing gap, five persons can stand). 
Similarly, the seating capacity is half of seating capacity in 
alternative row derived from the social distancing gap (e.g., 
for seating capacity of 26 and 1 m social distancing gap, six 
persons can be seated).4 

Mathematical Model

Since the present study focuses on providing better public 
transit service through a mathematical program to reallocate 
the given number of buses to the routes, the planning hori-
zon and total vehicle hours, and therefore the total operating 
cost will not change significantly across its various solu-
tions. Accordingly, the operating cost is not considered in 
the objective functions to avoid any complexity in the mod-
els. The list of notations used in the models are presented in 
Table 2 and the objective functions of the three developed 
models are shown by Eqs. 1–3.

Equation 1 maximizes the total passenger hours for a 
given fleet (see Eq. 4) while maintaining the assigned physi-
cal distancing (see Table 1). Maximizing this objective func-
tion is likely to give higher priority to serve longer trips 
and reduce the shorter trips. This is desirable because active 
transport (e.g., walk or bicycle) is recommended for shorter 
trips due to its better ability to maintain distancing and mini-
mize contact. The objective function in Eq. 3 maximizes the 
number of routes on which the mandated physical distancing 
can be maintained using the available fleet. However, this 
will tend to increase the service to the routes with a lesser 
demand and serve shorter trips. The Eq. 2 maximizes the 

0.00

0.25

0.50

0.75

1.00

18
5

21
4

23
4

41
9

43
3

44
8

46
0

46
9

47
3

47
9

50
7

52
2

53
3

80
3

81
3

93
8

11
4+

99
0

Bus lines

R
em

ai
ni

ng
 D

em
an

d 
M

ul
tip

lie
rs

Fig. 1  Remaining demand multipliers for bus lines

Table 1  Bus category and capacities based on social distancing

Bus category Bus 
length 
(m)

Seating 
capacity

Social-distancing gap

≈ 0.5 m ≈ 1 m ≈ 2 m

Tourist 10 26 23 11 5
Low-floor 12 34 29 14 7
Semi-low floor 12 40 32 16 8
Inter-state 12 52 38 19 9

3 As per the data by Transport Department, Govt. of NCT of Delhi 
(2020), more than 10,000 bus permits are valid between 2015 and 
2020, and therefore, the same number is assumed to be valid at any 
given time.

4 A schematic of seating arrangement in the bus and, Dos and Don’ts 
in the public transit vehicles and at the transit stop are shown in the 
technical report by CRRI (2020).
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total demand, which can be served by the given fleet while 
satisfying the distancing constraints. The Eqs. 1–3 are called 
as ‘optimizing Passenger Hours (PH)’, ‘optimizing Travel 
Demand (TD)’ and ‘optimizing Number of Routes (NR)’ 
respectively (see Fig. 3), and the decision makers can choose 
whichever better suits their policy priorities.

Models:

Subject to: 

(1)Maximize
{𝜒k}

[

∑

k∈K

𝜒k

(

∑

i∈Sk

∑

j>i

Dk
ij
⋅ 𝜏k

ij

)]

(2)Maximize
{𝜒k}

[
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(

∑
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∑
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)]

(3)Maximize
{�k}

[

∑
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]

(4)
∑

k∈K

f k
m
≤ Nm ∀m ∈ M

(5)

𝜗k
a

(
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i≤a

𝛽k
i
−
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i≤a

𝛼k
i

)

≤

∑

m∈M

f k
m
⋅ Ťk ⋅ bm, ∀a ∈ Ak, ∀k ∈ K

(6)�k ≤ min
a∈Ak

{�k
a
} ∀k ∈ K

Each of these objective functions are subjected to vari-
ous constraints represented by Eqs. 4–8. The first constraint 
(Eq. 4) is fleet size constraint and the number of buses 
assigned to each route is non-negative integer (see Eq. 8). 
Further, Eq. 5 ensures the required physical distancing since 
it represents the bus capacity constraint where bm is a func-
tion of the gap required for the mandated distancing and bus 
category (see Table 1), and Ťk is a parameter to determine 
the number of trips from the number of buses.5 Equation 6 
links the binary decision variable �k and the auxiliary binary 
decision variable �k

a
 . Equation 7 ensures that these two deci-

sion variables are binary.
The models presented through Eqs. 1–8 are mixed inte-

ger non-linear programming (MINLP) in nature. The non-
linearity arises due to Eq. 6 since all other constraints and 
the three objective functions (Eqs. 1–3) are linear. Therefore, 
the problem can be transformed from MINLP to MILP by 
modifying Eq. 6 to make the models computationally trac-
table. The linearized version of Eq. 6 is presented in Eq. 9.

(7)�k
a
, �k ∈ {0, 1} ∀a ∈ Ak ∀k ∈ K

(8)f k
m
≥ 0, integer ∀m ∈ M ∀k ∈ K

(9)�k ⋅ n(Sk) ≤ 1 +
∑

a∈Ak

�k
a

∀k ∈ K

Table 2  List of notations Category Symbol Description

Sets K Set of routes in the network
S Set of bus stops in the network
sk Set of bus stops in route k, i.e., sk ⊆ S and n(sk) is the number of stops on route k
Ak Set of arcs connecting the consecutive bus stops of route k
M Set representing the type of buses, where each type of bus m ∈ M

Variables f k
m

Integer number of type m buses assigned to route k
�k Binary decision variable, equals 1 if minimum social distancing over route k can 

be maintained, and 0 otherwise
�k
a

Auxiliary binary variable, equals 1 if minimum social distancing over arc a of 
route k can be maintained, and 0 otherwise.

Parameters Dk
ij

Travel demand between stops i and j over route k

�k
i

Cumulative number of commuters alighted from stop 1 to i on route k

�k
i

Cumulative number of commuters boarded from stop 1 to i on route k

�k
ij

Travel time between stops i and j over route k
Nm Number of type m buses available in the given planning horizon
bm Effective capacity of type m buses
Ťk Ratio of time of decision horizon to cycle time of the route

5 Number of trips = f k
m
× Ťk where Ťk =

decision horizon

cycle time
 . The decision 

horizon in the present study is 3-h corresponding to morning peak 
hour (07:00–10:00).
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The resulting models are solved in CPLEX solver 12.9.0 
on an  Intel® CoreTM i7 4600 CPU, 16 GB RAM, 2.70-GHz 
system. The CPLEX solver yielded the results within 5 
minutes for 155 of the total 165 experiments6 that are per-
formed in this work. For the remaining ten scenarios as well, 
CPLEX yielded the results within 5 min after relaxing the 
Eq. 5 by 0.3%, thus confirming that the developed models 
are indeed computationally tractable for real life scenarios. 
“Case Study: Delhi, India” has more details about the sce-
narios and sub-scenarios.

Case Study: Delhi, India

The proposed methodology is applied to bus service in 
Delhi, India. Electronic ticketing data is procured from the 
Delhi Integrated Multi Modal Transit System Ltd. (DIMTS), 
cleaned and effectively used for 17 transit lines (i.e., 34 tran-
sit routes; see x-axis label of Fig. 2). The ticketing data is 

available for one month, however, for the present work, the 
average daily demand is computed using demand for the 22 
working days excluding weekends. Travel demand between 
each pair of transit stations for the morning peak, evening 
peak and afternoon off-peak hours, and travel time is esti-
mated using this ticketing data (Suman and Bolia 2019). 
However, for the present study, only morning peak hour 
travel demand is used. Figure 2 demonstrates the different 
levels of the load on the critical arc of each transit route. In 
total, as per the current operational approach, 30 low-floor 
and 178 semi low-floor buses are available for these 34 tran-
sit routes.7 The capacities of the buses are shown in Table 1.

A scenario is set up for three different values of physical 
distancing (see “Bus Fleet and Capacities”) and five differ-
ent values of remaining demand multipliers (see “Reduc-
ing the Travel Demand”), i.e., total 15 cases (also called 
sub-scenarios).

Further, five ifferent scenarios are considered and are 
explained in Table 3. In scenarios B and C, the number of 
inter-state and tourist buses are calculated by linearly inter-
polating the total inter-state and tourist bus permits (see 
“Bus Fleet and Capacities”) with respect to the total bus 
routes running in Delhi. In scenarios D and E, an attempt 
is made to identify the number of additional buses required 
in an ideal condition so that all the passengers can be 
served using the different levels of the mandated physical 
distancing.

Results

The fleet size for each transit route varies across the used 
model, scenarios and sub-scenarios (see "Case Study: Delhi, 
India"). The results of scenario A are shown in Fig. 3. The 
rows present the values of the three Key Performance Indica-
tors (KPIs) used, viz., the proportions of passenger hours, 
demand and number of routes where the required physical 
distancing is maintained and their optimal values estimated 
using the objective functions (Eq. 1), objective function 
(Eq. 2) and objective function (Eq. 3) respectively while sat-
isfying the constraints (Eqs. 4–9). The peach color bar shows 
the values of the KPIs for the current allocation, whereas the 
others three bars (green, sky-blue, violet) represent the opti-
mal values of KPIs as determined by the models developed 
in this paper. The least demand corresponds to the first set of 
bars in each plot, whereas the maximum supply (i.e., avail-
able capacity) to the least value of physical distancing (first 

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

0

500

1000

1500

2000

2500

18
5

21
4

23
4

41
9

43
3

44
8

46
0

46
9

47
3

47
9

50
7

52
2

53
3

80
3

81
3

93
8
11

4+
99

0

Bus lines

Lo
ad

 o
n 

cr
iti

ca
l a

rc
 (p

er
so

ns
)

direction
� down

up

Fig. 2  Load on the critical arc of the transit routes

Table 3  Scenarios for the present case study

Scenario Approach Use of bus fleet

Scenario A Current Existing (i.e., Business as usual)
Scenario B Pragmatic Existing + 84 inter-state
Scenario C Pragmatic Existing + 84 inter-state + 64 tourist
Scenario D Ideal Existing + no. of inter-state buses required 

to serve all
Scenario E Ideal Existing + no. of tourist buses required to 

serve all

6 Total experiments = 15 sub scenarios × [3-scenarios (A, B, C) × 
3-objective functions + 2 scenarios (D, E)].

7 The information about the distribution of the low-floor and semi 
low-floor buses on the 34 transit routes is unavailable. Therefore, for 
current allocation, this work assumes that both types of buses are dis-
tributed across the routes in their proportions, i.e., 14.4% (30 of 208) 
low-floor and 85.6% (178 of 208) semi low-floor buses on each route.
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column). As expected, the values of KPIs decrease with an 
increase in travel demand (from left to right) for all cases.

It is apparent from Fig. 3 that the current allocation results 
in abysmal levels of service corresponding to each of the 
three KPIs. In fact, the optimal KPIs for the current allocation 
and every sub-scenario of 2m (as well as several sub-scenar-
ios even for 1m ) physical distancing is exactly 0! Moreover, 
the proposed optimization models efficiently reallocate buses 
for each sub-scenario, and a significant improvement in KPIs 
with respect to current allocation can be observed. Maximiz-
ing the TD (Eq. 2) reallocates the bus fleet on the routes, 
which may serve shorter trips as compared to maximizing PH 
and, therefore, a drop in the passenger hours can be observed 
(see green and sky-blue bars in the top row).

Figure 3 reveals that optimizing NR maximizes the num-
ber of routes with lesser travel demand as compared to maxi-
mizing TD (see sky-blue and violet bars in the bottom row). 
Therefore, optimizing NR will be useful when the require-
ment is to operate the maximum possible number of routes 
in the network.

Further, Fig. 4 shows the average travel times for scenario 
A while optimizing PH and TD. It is observed that as the 
travel demand increases, optimization of PH serves the pas-
senger with longer travel times and vice versa for optimiza-
tion of TD. The difference in the average trip time increases 
with an increase in travel demand and an increase in physical 
distancing. The difference becomes zero only when all the 
demand is met for a given level of social distancing. There-
fore, if all demand cannot be served even after optimal real-
location of buses, maximizing PH should be preferred over 
maximizing TD in times such as the post-lockdown period, 
because for shorter distances, active transport is more likely 
to have better physical distancing. Clearly, this doesn’t mean 

that maximizing PH neglects all shorter trips but allocates 
buses to routes which serves more number of longer trips as 
compared to those where buses are not reallocated.

In scenarios B and C, in addition to the existing fleet of 
DIMTS buses, inter-state and tourist buses are also avail-
able, which clearly improves the values of KPIs for all cases 
shown in Fig. 3, but the trends are similar to scenario A. 
Therefore, the detailed results for scenarios B and C are 
omitted here and the summarized results for all the five sce-
narios are presented in Fig. 5. Due to space limitations, only 
the comparison between current allocation and optimizing 
PH is presented. Clearly, the current allocation approach 
is not able to cater to the travel demand even by including 
the additional available bus fleet. For example, if buses are 
used according to the current allocation, i.e., without using 
the proposed optimization models, none of the scenarios 
caters to even 60% of the derived travel demand for any 
level of distancing. However, optimum reallocation using the 
proposed models leads to a significant improvement in all 
the KPIs. Figure 5 clearly demonstrates that the operational 
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approach implied by the optimization model is far better than 
the approach currently being followed for every scenario.

Figure 6 and Table 4 reveal that if buses in scenarios B 
and C are reallocated using the optimization models, then 
these buses are sufficient to provide a physical distancing of 
0.5 m, even in the maximum possible travel demand sub-
scenario, i.e., for remaining demand multiplier 1.2 ×. Fur-
ther, when the physical distancing required is 2 m, even the 
additional buses of scenario C are insufficient to meet the 
minimum estimated travel demand (i.e., 0.8 ×) if the cur-
rent allocation strategy is used. However, with the proposed 
models, 45% of the public bus travel demand can be met 
while maintaining a distancing of 2 m.

Furthermore, a comparison of scenarios D and E is shown 
in Fig. 6. The optimum number of the required inter-state 
(scenario D) or tourist (scenario E) buses increases with an 
increase in demand as well as with an increase in physical 
social distancing. While, this trend is trivially expected, the 
numbers given by the models are not trivial, they represent 
a useful policy parameter: the number of buses required for 
different levels of distancing.

Overall, the results clearly reveal that restarting post-
lockdown public transport operations, while maintaining the 

required distancing, is next to impossible with the current 
allocation based on BAU approach. On the other hand, the 
proposed optimization models not only make it feasible to 
safely begin plying buses again, they result in significantly 
better KPIs across all scenarios of demand and additional 
resource deployment.

Conclusions and Recommendations

The present study provides a policy prescription to the pub-
lic transport—specifically bus—operators in the immedi-
ate aftermath of lockdown, a situation where travel demand 
is uncertain, and ample physical distancing is mandatory. 
It is shown that there is a clear gap between the derived 
demand (see Remaining Demand Multiplier, "Reducing the 
Travel Demand") and supply. This gap can be narrowed sig-
nificantly by using the optimization models proposed in this 
work. These models do not necessarily and exclusively rely 
on capital infusion and heavy expenditure, instead on effi-
ciently allocation of whatever number of buses is available 
on the routes. Further, even after optimization, an additional 
bus fleet is required to fully satisfy the entire demand in all 
scenarios. To sum up, the work reveals the following key 
insights for decision makers:

– The travel demand in none of the routes can be served in 
the Business-as-usual (BAU) approach, i.e.,  using the 
current operational strategy (allocation) and no addi-
tional buses, at any level of derived travel demand and 
physical distancing.

– The operational strategy of reallocation using the pro-
posed models significantly improves all KPIs in every 
scenario, including all levels of travel demand and physi-
cal distancing.

– The requirement of additional buses can be satisfied with 
idling inter-state and tourist buses with KPIs that depend 
on the travel demand, and the required distancing level.

– The analysis can determine the minimum number of 
buses, along with the corresponding operational strategy, 
to be added to serve 100% of the travel demand, should 
the decision makers choose that to be the policy mandate.

Though the optimization models are applied to a case study 
of Delhi, India, they can be applied to any other city pro-
vided the requisite data is available.

For effective operations, we conclude with some practi-
cal remarks to supplement our model insights. It would help 
to determine the travel demand in advance by asking the 
travelers to enter their travel information (e.g., origin, des-
tination, departure time, etc.) on the widely used “Arrogya 
Setu” mobile application for a typical day. In order to avoid 
any privacy concerns, the origin destination information can 

Table 4  Requirement of bus fleets for Scenario C in the order (inter-
state, tourist)

Gap (m) Remaining demand multiplier

0.8 × 0.9 × 1 × 1.1 × 1.2 ×

0.5 (22, 0) (44, 0) (67, 0) (84, 12) (84, 50)
1 Need more than (84, 64) additional buses to meet the 

reduced demand, even after optimization
2 Need more than (84, 64) additional buses to meet the 

reduced demand, even after optimization

Gap = 0.5 m Gap = 1.0 m Gap = 2.0 m

0.8x 0.9x x 1.1x 1.2x 0.8x 0.9x x 1.1x 1.2x 0.8x 0.9x x 1.1x 1.2x
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Fig. 6  Requirement of bus fleets for scenarios D and E
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be entered in terms of nearby landmarks (see Vardhan et al. 
2020 for a use-case of the possible feature) and no personal 
information should be asked or tracked. For the unplanned/
instant trips, the real-time arrival as well as occupancy infor-
mation of the transit modes can be made available so that 
unregistered travelers can plan their trip accordingly. The 
registered travelers can purchase their ticket on the app to 
reduce their contact with conductors. The rest of the travel-
ers can be encouraged/mandated to pay using UPI/QR code 
in the buses which will decrease the necessity of conductors 
in the buses. Further, boarding/alighting permissions can 
be limited to the rear gate alone to reduce the risk to the 
driver. Practically, physical distancing can be maintained 
well, if the seating, as well as the standing spaces, are clearly 
marked in the buses. It is recommended to sanitize the vehi-
cles before the first trip and after every trip which is likely 
to increase the terminal time (time spent at either of the ter-
minals for sanitation) of the transit vehicles. For the opera-
tions, the guidelines by the competent authorities shall be 
followed all times.
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