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Abstract Designing procedure of economical and safe

side weirs that are used in various hydraulic structures such

as intakes and deviation systems, essentially needs the

ability to predict the side weirs’ discharge capacity accu-

rately. In this paper, the discharge coefficient of a modified

labyrinth side weir was modeled by employing the support

vector regression (SVR) method. To find the optimum SVR

scenario, eight different kernel functions and six different

input combinations were investigated. The accuracy of the

SVR models were compared with two nonlinear regression

equations from other published studies. The results showed

that the SVR model with Polynomial Kernel Function and

w=L;Fr1= sin h0;w=Y1 and w sin h0=Y1 as input parameters

performs better than other models in predicting the dis-

charge coefficient. Where w, L, h0, and Y1 are the height of

crest, weir length, oblique side-weir included angle, and

upstream flow depth, respectively. Also, the results showed

that the SVR model with mean square error (RMSE) of

0.050 performs much better than the two other nonlinear

regression published equations with RMSE of 0.121 and

0.4270, respectively.

Keywords Discharge coefficient � Kernel function �
Labyrinth side weir � Nonlinear regression � Support vector

regression

Introduction

Side weirs are widely used in hydraulic structures such as

irrigation and drainage systems, deviation and flood control

structures, channel overflow structures, etc. Accurate pre-

diction of the discharge coefficient is one of the most

important phases of the side weir designing process.

Attempts to find a mathematical method for side weirs

discharge coefficient prediction were initiated by De

Marchi (1934). The author assumed that the specific energy

of the flow remains constant before and after the side weir,

so the author calculated the per unit length of the flow

discharge over the side weirs according to the following

equation:

� dQ

dx
¼ 2

3
Cd

ffiffiffiffiffi

2g
p

y� wð Þ1=5; ð1Þ

where dQ=dx is the variation of the upstream discharge

relative to its longitudinal position, Cd is the discharge

coefficient, g is the gravity acceleration, y is the flow depth,

and w is the side weir height. Various studies have been

done to find the discharge coefficient of rectangular side

weirs (Ackers 1957; Ghodsian 2003; Muslu 2001; Muslu

et al. 2003; Nadesamoorthy and Thomson 1972; Ranga

Raju et al. 1979; Singh et al. 1994; Swamee et al. 1994;

Yu-Tech 1972; Yuksel 2004).

Increasing the discharge capacity of side weirs needs to

increase the length of them. Increasing the side weirs’

length leads to increasing the width of the tributary chan-

nels. However, there are two problems in widening the

tributary channels. First, in most of cases it is not an eco-

nomical alternative. Second, in some practical situations

such as the projects that are done in mountainous regions,

there is environmental limitation against widening the

channels. Many studies shown that changing the shape of
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the side weirs could increase the efficiency of them sig-

nificantly (Cosar and Agaccioglu 2004; Emiroglu et al.

2010b; Ghodsian 2004; Kumar and Pathak 1987; Rama-

murthy et al. 1986). So that, reshaping the side weirs is

considered as one of the simplest ways to increase the

performance of them.

The discharge coefficient of labyrinth side weirs was

studied by Emiroglu et al. (2010a). The authors concluded

that these types of side weirs are 1.5 to 4.5 times more

efficient compare with the simple rectangular side weirs

and developed the following equation to calculate the

discharge coefficient of labyrinth side weirs located on

straight channels.

Cd ¼ 18:6 � 23:535
L

b

� �0:012

þ6:769
L

l

� �0:112
"

�0:502
w

Y1

� �4:024

þ0:094 sin h� 0:393Fr2:155
1

#�1:431

;

ð2Þ

where b (m) is the channel width, L (m) the weir length,

w (m) the height of crest, Y1 (m) the upstream flow depth, h
(deg) the labyrinth side weir included angle and Fr1 the

upstream Froude number.

Borghei and Parvaneh (2011) proposed a new shape of a

labyrinth side weir that was over 2.33 times more efficient

than that of a rectangular side weir. For predicting its

discharge coefficient, the authors proposed the Eq. (3) by

using non-dimensional parameters, as follows:

Cd ¼ �0:18
Fr1

sin h0

� �0:71

�0:15 Fr1ð Þ0:44þ w

Y1

� �0:7
" #

� �2:37 þ 2:58
w sin h0

Y1

� ��0:36
" #

; ð3Þ

where h0 is the modified oblique side-weir included angle.

Recently, the artificial intelligence methods are widely

employed in different hydraulic engineering fields because

of the flexibility of them in simulating the complex prob-

lems such as open channel velocity simulation (Gholami

et al. 2015; Sun et al. 2014), local scour modelling (Na-

jafzadeh et al. 2016, 2017), water quality modelling

(Heddam 2016), sediment transportation (Lagos-Avid and

Bonilla 2017; Safari et al. 2016), etc.

SVR is one of the most popular fields of artificial

intelligence methods that is used in various different fields

of water resource engineering such as modeling the dis-

charge coefficient as one of the most important processes in

designing the side weirs (Bonakdari et al. 2015; Hossein

Zaji et al. 2015; Shamshirband et al. 2016; Zaji and Bon-

akdari 2014; Zaji et al. 2015), scour depth prediction (Goel

2011; Hong et al. 2012; Neerukatti et al. 2013; Pal et al.

2011; Sharafi et al. 2016), rainfall-runoff modelling (Lin

et al. 2013; Nikam and Gupta 2014; Seo et al. 2014; Wang

et al. 2013), sediment transportation (Jain 2012; Kakaei

Lafdani et al. 2013; Kisi 2012), Lake water level prediction

(Cimen and Kisi 2009; Khan and Coulibaly 2006), and

evapotranspiration estimation (Chen 2012; Kisi 2013).

The purpose of this study is to investigate the perfor-

mance of the SVR method in predicting the discharge

coefficient of modified labyrinth side weirs and to compare

it with the performance of two different nonlinear regres-

sion models obtained from previously published studies.

The SVR scenarios were developed and compared with

eight different kernels and six different non-dimensional

input combinations. Finding the appropriate kernel func-

tions should be done for each problem that solved with the

SVR, something never done before for discharge coeffi-

cient prediction problems.

Materials and Methods

In the first part of this section, the experimental dataset that

was used for verifying the numerical model is introduced,

in the second part, the constructing of the SVR model is

described and explained.

Experimental Dataset

The experimental dataset of Borghei and Parvaneh (2011)

was used in this study. The main channel was of 11 and

0.4 m in length and width, respectively (Fig. 1). As shown

in Fig. 1, in the modified labyrinth side weir, the conven-

tional triangular side weir with included angle of h is

divided into two right triangles with an included angle of

h0 = h/2. Two hundred tests were performed in different

geometrical situations to calculate the discharge coefficient

(Cd) of the modified labyrinth side weir. The experimental

range of the weir length (L), side weir height (w), modified

oblique side weir included angle (h0), upstream Froude

number (Fr1) and total discharge (Q1) are shown in

Table 1. The accuracy of the discharge and water head

measurements was ±0.0001 (m3/s) and ±1 (mm),

respectively.

Support Vector Regression (SVR)

Support vector machine (SVM) that uses in two branches

of classification and regression was introduced by Vapnik

(2000). In the regression branch of SVM, named SVR, the

main goal is to find a functional dependency between

inputs, X ¼ x~1; x~2; . . .; x~nf g that x~i 2 Rm and the targets

T ¼ ft1; t2; . . .; tng that ti 2 R. In this study, the inputs are

taken from the non-dimensional parameters of the
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geometrical and hydraulic conditions of the side weir and

the target is the values of the discharge coefficient (Cd).

The accuracy of the SVR model is directly related to a

good choice of the positive constants of two parameters

namely C and e. The e constant is used in the loss function

(Le) that is used in order to penalize the model in the case

of big errors occur (Eq. 4).

Leðti; yiÞ ¼
0 ti � yij j � e
f i ti � yij j[ e

�

: ð4Þ

According to this equation, the loss function is equal to 0, if

the difference between the targets (ti) and the outputs (yi) is

smaller than e. Otherwise it is equal to a non-negative slack

variable (fþi ,f�i ). C is a positive constant that is used as

trade-off parameter utilized in the regularized risk function

(Cimen 2008; Smola 1996) as follow:

Rreg yi½ � ¼ C
X

n

i¼1

ðf�i þ fþi Þ þ
1

2
wTw

such that
�ti þ yi þ eþ fþi � 0

ti � yi þ eþ f�i � 0

f�i and fþi � 0

8

<

:

;

ð5Þ

where w is the weight vector. There are many kernel

functions possible to be used in the SVR model such as

Linear, Polynomial, Gaussian, etc. Despite the fact that the

Gaussian kernel function is the one most applied in the

SVR method (Caputo et al. 2002), there is no definite rule

Fig. 1 Schematic plan and cross section of modified labyrinth side weir of Borghei and Parvaneh (2011)

Table 1 Range of tested

variables (Borghei and

Parvaneh 2011)

h0 (h/2) L (m) w (mm) w/Y1 Q1 (m3/s) Fr1 Run numbers

30 0.3 50,75,100,150 0.46–0.83 0.019–0.030 0.19–0.96 40

0.4 50,75,100,150

45 0.3 50,75,100,150 0.46–0.83 0.019–0.030 0.19–0.96 55

0.4 50,75,100,150

0.6 50,100,150

60 0.3 50,75,100,150 0.46–0.83 0.019–0.030 0.19–0.96 50

0.4 50,100,150

0.6 50,100,150

70 0.3 50,75,100,150 0.46–0.83 0.019–0.030 0.19–0.96 55

0.4 50,75,100,150

0.6 50,100,150

Table 2 Used kernel function equations

Kernel name Kernel equation Kernel constant

Linear kðx; x0Þ ¼ xTx0 –

Polynomial kðx; x0Þ ¼ ðxTx0 þ 1Þd d

Gaussian kðx; x0Þ ¼ exp � x�x0k k2

2r2

� �

r

Exponential kðx; x0Þ ¼ exp � x�x0k k
2r2

� �

r

Laplacian kðx; x0Þ ¼ exp � x�x0k k
r

� �

r

Sigmoid kðx; x0Þ ¼ tanhðxTx0 þ dÞ d

Rational quadratic kðx; x0Þ ¼ 1 � x�x0k k2

x�x0k k2þd

d

Multiquadratic
kðx; x0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� x0k k2þd2

q

d
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which kernel function should be chosen for a specified

problem. In this study, eight different kernel functions were

tried to find the most appropriate one for predicting the

discharge coefficient of the modified labyrinth side weir

(Table 2). In addition, from Table 2 one can discern that

other kernel functions, except for linear kernel function,

have one constant that must be determined. So that, the

constants of C, e and kernel functions’ constants were

determined by trial and error method. To do this, some

loops were added to the main program of the SVR, which

changed the values of these constants and analyzed the

accuracy of the model in each situation in finding the more

Table 3 The RMSE, MAE, and

%d statistics of SVR models in

various kernel functions

Kernel function Training Test

RMSE MAE %d RMSE MAE %d

Linear 0.144 0.113 16.698 0.159 0.130 19.306

Polynomial 0.051 0.042 6.331 0.047 0.036 5.343

Gaussian 0.062 0.054 8.034 0.064 0.052 7.576

Exponential 0.065 0.057 8.445 0.073 0.061 8.932

Laplacian 0.065 0.057 8.441 0.073 0.061 8.922

Sigmoid 0.150 0.124 17.719 0.167 0.143 20.281

Rational quadratic 0.063 0.055 8.199 0.066 0.054 7.930

Multi quadratic 0.299 0.250 39.907 0.289 0.234 39.151

Fig. 2 The scatter plots of SVR models with various kernel functions in test data
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appropriate conditions. About one hundred runs were

completed for each kernel function and eight hundred runs

carried out in total.

Model Performance Evaluation

To assess the performance of the SVR model, root mean

square error (RMSE), mean absolute error (MAE), average

absolute deviation (%d) and coefficient of determination

(R2) were used of. The benefit of using the RMSE, MAE

and %d together was that two of them (RMSE and MAE),

had the same unit and scale as the variables of the model

and one of them (%d) is non-dimension and just perfect for

comparing the error with the real value of the variables of

the model (Pulido-Calvo and Portela 2007). R2 shows the

degree of how well the experimental results were simulated

by the SVR model. RMSE, MAE, %d and R2 are shown in

the Eqs. (6–9).

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

i¼1

CdiðEXPÞ � CdiðSVRÞ
� 	2

;

v

u

u

t ð6Þ

MAE ¼ 1

N

X

N

i¼1

CdiðSVRÞ � CdiðEXPÞ










; ð7Þ

R2 ¼
Pn

i¼1 CdiðEXPÞ � CdðEXPÞ
� 	

CdiðSVRÞ � CdðSVRÞ
� 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 CdiðEXPÞ � CdðEXPÞ

� 	2 Pn
i¼1 CdiðSVRÞ � CdðSVRÞ

� 	2
q

2

6

4

3

7

5

2

;

ð8Þ

%d ¼
PN

i¼1 CdiðSVRÞ � CdiðEXPÞ












PN
i¼1 CdiðSVRÞ

� 100: ð9Þ

The RMSE, MAE, and %d
statistics of SVR models in

various input combinations

Number Input combinations Training Test

RMSE MAE %d RMSE MAE %d

1 w
L
; Fr1

sin h0
; w

Y1
; w sin h0

Y1

0.051 0.042 6.331 0.047 0.036 5.343

2 Fr1;
Fr1

sin h0
; w

Y1
; w sin h0

Y1

0.054 0.046 6.837 0.053 0.042 6.156

3 w
L
; Y1

w
; Fr1 sin h0, 0.115 0.095 14.584 0.123 0.104 15.856

4 w
Y1
Fr1;

L
w

sin h0 0.118 0.100 14.737 0.118 0.097 13.853

5 w
Y1
Fr1 sin h0 0.116 0.094 14.085 0.120 0.099 14.704

6 L
w
Fr1 sin h0 0.156 0.128 17.618 0.167 0.139 18.594

Fig. 3 The scatterplots of SVR models with various input combinations in test data
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Results

Determine the Best Kernel Function

The SVR method was employed in various conditions to

evaluate the discharge coefficient of the modified labyrinth

side weir. Sixty percent of the whole dataset was selected

randomly for the training process and the rest forty percent

of the dataset was used for testing the models. The SVR

models were compared by using eight different kernel

functions to find the best kernel for estimating the dis-

charge coefficient of the labyrinth side weirs problem.

These models were modified by using the non-dimension

input parameters of w=L;Fr1= sin h0;w=Y1 and w sin h0=Y1.

Table 3 shows the results of the performance statistics of

the different SVRs. From this table, it is clear that the

Polynomial kernel function, with RMSE of 0.051 and 0.047

in train and test processes, respectively, performs much

better than the other ones. One can see that also the

Gaussian, Rational quadratic, Exponential and Laplacian

kernel functions perform very close to the Polynomial

kernel function and display good accuracy. This Table 3

also shows that the Exponential and Laplacian kernel

functions perform very similarly to each other and a change

in the sigma change sensitivity does not change the per-

formance of the models. By comparing the Gaussian and

Exponential kernel functions, it can be discerned that

reduce the x� x0k k change sensitivity led to reducing the

accuracy of the SVR model.

Figure 2 shows the comparison of the SVR models with

various kernel functions for the testing data. In this figure,

the linear fit-line of y ¼ C1xþ C2 is shown by a filled line

and the exact line by a dashed line. It shows that the closer

C1 and C2 get to one and zero, respectively, the results are

spread more uniformly at two sides of the exact line, and

the model is not trapped in over- or under-estimation.

Over- and under-estimation occurred, when the numerical

model predicted the Cd coefficient as more or less than the

observed reality, respectively. As one can see from this

figure, the Polynomial kernel function leads to an SVR

model with C1 and C2 of 0.992 and 0.006, respectively with

almost no over- and under-estimation. Following the

Polynomial kernel function, the Gaussian kernel function

has the best uniformity of prediction. One can see from this

figure that all the SVR models have a tendency to over-

estimation at a Cd value lower and under-estimation at a

one higher than 0.7.

By looking at the SVR model with the linear kernel

function, despite the fact that this model estimates the Cd

with low accuracy, it is worth noting that it has a high R2

value (because of the proximity of its output data to the

mean of the output data).

Determination of the best input combination

To determine the best input combination for predicting the

discharge coefficient of a modified labyrinth side weir, six

different input combinations were examined. All the SVRs

were modeled by using a polynomial kernel function,

selected as the best kernel function according to evalua-

tions done above. Each input combination contained some

non-dimensional parameters, obtained by combining the

crest height (w), weir length (L), upstream flow depth (Y1),

upstream Froude number (Fr1) and the included angle ðh0Þ
of the modified oblique side weir. Table 4 shows the per-

formance statistics of the different SVR models with var-

ious input combinations. According to this table, the first

input combination (used for kernel selection) with RMSE

of 0.051 and 0.047 in the train and test processes, respec-

tively, shows the best performance in comparison with the

other input combinations, although the second combination

is also very close to the best one. The numbers 3–6 of the

input combinations were constructed with fewer input

parameters to find out if the SVR model performed better

in such conditions; the results show that with decrease the

number of input parameters, the errors increase, and the

SVR method performs much better in cases with more

input parameters. By comparing the first and second input

combinations, it can be concluded that w/L is more effec-

tive than Fr1. Besides, comparing the results of the fifth

and sixth input combinations, one can conclude that Y1 is

more effective than L in predicting the discharge coeffi-

cient of the modified labyrinth side weir.

In Fig. 3, the scatterplots of various SVR models were

compared in different input combinations. According to

this figure, the SVR model with first input combination

performs better than the other models and is not trapped in

over- or under-estimation. As seen from this figure, the

performance of the SVR model with the second input

combination looks almost like the one with the first input

combination. However, the second input combination over-

estimate values for lower Cd and under-estimate for higher

Cd. The figures of SVR models with input combination of

3–6 shows that with reducing the input parameters, the

over-estimation and under-estimation have increased.

Table 5 The RMSE, MAE, and %d statistics of SVR model with two

other models

Model name Whole dataset

RMSE MAE %d

SVR 0.050 0.039 5.932

Borghei and Parvaneh (2011) 0.121 0.096 14.240

Emiroglu et al. (2010a) 0.427 0.322 45.556

30 INAE Lett (2017) 2:25–33
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The results of the investigation of the characteristics of

the SVR models show that the optimum SVR model with

the polynomial kernel function, using

w=L;Fr1=sinh0;w=Y1 and wsinh0=Y1 as input parameters,

leads the most accurate model in predicting the discharge

coefficient of a modified labyrinth side weir. In this part of

the paper the results of Borghei and Parvaneh (2011) and

Emiroglu et al. (2010a) were compared with the SVR

model. As mentioned before, in order to develop the SVR

model, sixty percent of the whole dataset is considered as

the training dataset and the rest forty percent is considered

as the testing dataset. However, in this part, the results of

the SVR’s training and testing datasets are aggregated

together to have the ability of comparing the entire dataset

with the previous equations. Table 5 shows the compar-

isons of the performance statistics of the SVR, Borghei

and Parvaneh (2011) and Emiroglu et al. (2010a) for the

whole datasets. From this table, one can see that the SVR

model by RMSE of 0.050 performs much better than the

other models. The Borghei and Parvaneh (2011) equation

has reasonable accuracy by RMSE of 0.121, but the

accuracy of the Emiroglu et al. (2010a) equation in mod-

eling the discharge coefficient of a modified labyrinth side

weir is very low.

In Fig. 4 the residuals of the SVR, Borghei and Par-

vaneh (2011) and Emiroglu et al. (2010a) are shown by a

filled line, filled squares and un-filled squares, respectively.

According to this figure, the SVR residuals for the majority

of the data are between -0.1 and 0.1, while those of

Borghei and Parvaneh (2011) are between -0.3 and 0.3

and of the Emiroglu et al. (2010a) between -1 and 0.7. The

low performance of Emiroglu et al. (2010a) in modeling

the discharge coefficient of a modified labyrinth side weirs

shows that a separate study must be performed for each

type of side weir, so the equation of triangular side weirs

could not be used for modified labyrinth side weirs.

Conclusion

Ability to predict the discharge capacity of side weirs

accurately is one of the most important elements in

designing economical and safe side weir structures. In this

study, the SVR method was used in designing a model to

estimate the discharge coefficient of modified labyrinth

side weirs. To find the optimum SVR model, eight different

kernel functions were examined to find the best one. The

results show that, despite the Gaussian kernel function

Fig. 4 The residuals of SVR and two other models for the whole dataset

INAE Lett (2017) 2:25–33 31
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being advocated in various papers (Azamathulla and Wu

2011; Cimen and Kisi 2009; Kisi and Cimen 2012), the

polynomial kernel function performs best in predicting the

discharge coefficient of modified labyrinth side weirs in

comparison with the other kernel functions investigated. To

find the best combination, six different input combinations

were examined. Comparing the results showed that the

w=L;Fr1=sinh0;w=Y1 and wsinh0=Y1 input combination has

the highest accuracy. The results of comparing the opti-

mum SVR model with the two published equations of

Borghei and Parvaneh (2011) and Emiroglu et al. (2010a)

show that the SVR model performance was superior to the

empirical relations in predicting the discharge coefficient

of modified labyrinth side weirs.
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