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Abstract In this study, the performance of Seasonal

Autoregressive Integrated Moving Average (SARIMA)

models and hybrid Artificial Neural Network-Genetic

Algorithm (ANN-GA) method in forecasting the monthly

inflow to a dam is examined and compared. The number of

parameters required for SARIMA models is determined

using Autocorrelation Function (ACF) and Partial Auto-

correlation Function (PACF) diagrams. In terms of these

diagrams, 14 input combinations are considered for the

ANN-GA models. An examination of the model’s perfor-

mance in prediction utilizing ANN-GA indicates that

applying discharges with 1, 2, 6, and 12-month lag time

leads to the best prediction. The model results are com-

pared using mean absolute relative error (MARE) and

correlation coefficient (R) indexes. These index values for

the SARIMA model are 0.388 and 0.76 and for the ANN-

GA model they are 0.815 and 0.8, respectively. Moreover,

to evaluate the ability of the models to make short-term and

long-term predictions, relative error (Ei) and average of the

cumulative relative error (Fi) are computed for the fore-

casted discharges. The results indicate that the SARIMA

model is more capable in forecasting monthly inflow,

especially for low values, than the ANN-GA model. The

SARIMA model is also much more accurate than the

ANN-GA model in short-term and long-term forecasting.

Keywords SARIMA � ANN � Genetic algorithm �Monthly

inflow � Prediction

Introduction

There are several stochastic models such as stochastic and

computational intelligence models for hydrological mod-

elling and prediction purposes used by different researchers

(Irvine and Eberhardt 1992; Mohan and Vedula 1995;

Ahmad et al. 2001; Yurekli and Kurunc 2005; Yurekli et al.

2005; Abebe and Foerch 2008; Nirmala and Sundaram

2010, Zhang et al. 2011; Ali 2013). Damle and Yalcin

(2007) attempted to predict floods in the Mississippi River,

USA, by utilizing time series. Their results showed that

time series are capable of generating daily discharge data

and the resulting predictions are accurate. Mombeni et al.

(2013) used SARIMA model for seasonal and non-sta-

tionary time series to estimate residential water consump-

tion. Their results allow practitioners and planners to

explore realistic decision making scenarios for designing

effective water demand management. Valipour (2015)

studied the performance of SARIMA and ARIMA models

in forecasting long-term runoff in the United States. The

results indicated that the SARIMA model outperformed

ARIMA with a relative error of less than 5% for all states.

Wang et al. (2015) combined the ARIMA model with

ensemble empirical mode decomposition (EEMD) to

forecast annual runoff time series. It was found that the

new model can significantly improve ARIMA time series

approach prediction.

On the other hands, Artificial Neural Network (ANN)

application in hydrology has also been developed in recent

years (Jain et al. 1999; Coulibaly et al. 2000; Xu and Li

2002; Anctil et al. 2004). Kilinç and Cigizoglu (2005)
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predicted the monthly inflow, storage and evaporation in

the Canak Valley area using by the ANN. They used both

radial and sigmoid function types in ANN. Their study

results signified that the sigmoid function is more accurate

than the radial function. Kisi and Cigizoglu (2007) exam-

ined different ANN techniques, including Feed-forward

Backpropagation (FFBP), Radial Basis Function-based

Neural Networks (RBF) and Generalized Regression

Neural Networks (GRNN) along with AR modeling in

predicting daily discharge flow. The results showed that the

RBF technique performs better than the other models.

Stochastic models are usually categorized by linear

models and also consider the random component of data

whereas ANN models are capable to model the linear and

nonlinear parameters in hydrological modelling. Therefore,

several researchers have examined stochastic linear models

and a variety of methods based on artificial intelligence in

predicting hydrological time series (Kisi 2004; Moham-

madi et al. 2005; Landeras et al. 2009; Khatibi et al. 2014).

Fereydooni et al. (2012) employed the multilayer percep-

tron using a backpropagation model to predict rainfall,

temperature and evaporation data, and compared the results

with the ARIMA method. They concluded that ANN per-

forms better than ARIMA. Valipour et al. (2013) used

ARMA, ARIMA and ANN models to forecast Dez reser-

voir monthly inflow. According to the results, the ARIMA

model has less error compared with the ARMA model and

the ANN model has less error than ARIMA. Golabi et al.

(2013) predicted seasonal rainfall using artificial neural

network (ANN) and ARIMA models. It was concluded that

the ANN model is much more accurate for their datasets.

Pektaş and Cigizoglu (2013) modelled the monthly runoff

coefficients of 7 southern large basins by using univariate

autoregressive integrated moving average (ARIMA), mul-

tivariate ARIMA (ARIMAX) and ANN models. The

authors indicated that multivariate models are superior to

univariate models in predicting monthly runoff

coefficients.

According to these studies, the large and comprehensive

stochastic and computational intelligence models were

used to forecast some hydrological parameters that the

models performance was compared by together. The key

question is ‘the results would be constant in critical con-

dition?’ In the other words, if the ANN models have the

better performance rather than SARIMA models to forecast

the river flows, would they be better in forecasting river

flows in droughts and floods conditions or not? The second

question is ‘how many important to choose the type of

algorithm in the computational intelligence models in

compare of stochastic models to find the best model per-

formance?’ In the current study, the performance of the

Seasonal Autoregressive Integrated Moving Average

(SARIMA) models and hybrid Artificial Neural Network-

Genetic Algorithm (ANN-GA) method in predicting the

input monthly discharge flow to the Jamishan Reservoir

located in the west of Iran is compared and evaluated.

Therefore, 14 and 80 different input combinations with

different time lags are determined and used in the ANN-

GA and SARIMA models, respectively.

Materials and Method

Study Area and Data

Data from Pirsalman Hydrometric Station (46�400N,
34�140E) are used in this research for modeling and fore-

casting the monthly discharge of the Jamishan River, which

is located in the west of Iran. The data include 30 water

years worth of data from October 1981 to September 2011.

The initial 21 years are used as the calibration period and

the 9 remaining years are used as the validation period.

The Jamishan Reservoir dam is currently under con-

struction on the Jamishan River located in southwest

Songor Province. This reservoir dam will have a normal

volume of 62.8 million cubic meters and is aimed at pro-

viding the essential agricultural water for this area, con-

trolling floods and preventing damages caused by flooding.

Data Pre-Processing

In hydrologic time series modelling, time series duration

should include droughts and wet periods. Thus, the number

of data duration must be adequate for modelling. In this

regard, the Hurst coefficient (Hurst et al. 1965) is applied in

this study. This coefficient represents the adequacy of time

duration. If this ratio is greater than 0.5, the time series will

adequate for modelling. This coefficient is as follow:

H ¼
Logð Smax�Smin

Sx
Þ

Log( N
2
)

; ð1Þ

where H is the Hurst coefficient, N is the number of data,

Sx is the standard deviation of the data, Smax is the maxi-

mum cumulative mean difference and Smin is the minimum

cumulative mean difference. In this study, this ratio is

obtained by 0.711.

In the ARIMA model, data should follow normal dis-

tribution (Salas et al. 1988) The Box-Cox transformation

(Box and Cox 1964) is used to stabilize data and for

standard deviation normalization. Jarque–Bera testing

(Jarque and Bera 1980) serves to investigate discharge flow

data normalization. Figure 1 shows the ACF and PACF

diagrams for the normalized inflow in the calibration per-

iod for delays 1–48. In this figure, LL and UL are the upper

and lower limit in the 95% confidence level, respectively.
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As seen in the figure, the values of both diagrams in the

first two lags is high. As a result, maximum two, autore-

gressive and moving average parameters are needed for the

SARIMA model (Cryer and Chen 2008).

These diagrams also used to determine the seasonal

differencing order (D), non-seasonal differencing order (d),

and data periodicity (x) to make the time series stationary.

It can be understood that the ACF and PACF diagrams are

not damped. The PACF model also changes its sign (while

it is high) immediately after the first lag time, which

indicates that the time series is non-stationary. The ACF

diagram has intervals of 12, signifying that the time series

data have seasonal fluctuations (periodical component)

with intervals of 12. Thus, one seasonal differencing is

required. On the other hand, the ACF diagram is around the

symmetrical vertical axis with a mean of nearly 0. This

indicates the lack of a ‘‘trend component’’ in the time

series. As a result, seasonal differencing is not necessary.

Thus, we have x = 12, d = 0 and D = 1.

Modeling Process with Stochastic Approaches

SARIMA model (p,d,q) (P,D,Q)x has seasonal and non-

seasonal autoregressive and moving average components

that are expressed as follows:

ð1� U1B
x � U2B

2x � � � � � UPB
PÞð1� /1B

x � /2

� B2x � � � � � /pB
pÞð1� BxÞDð1� BÞdxt

¼ ð1�H1B
x �H2B

2x � � � � �HQB
QÞ

� ð1� h1B
x � h2B

2x � � � � � hqB
qÞet; ð2Þ

where xt is the observed data in time t, et is the random

variable, x is the periodicity, B is the difference operator B

(xt) = xt-1 (1-Bx)D is the Dth seasonal difference mea-

sure x, (1-B)d is the dth non-seasonal difference, p is the

non-seasonal autoregressive order, q is the order of the

non-seasonal moving average, P is the seasonal autore-

gressive order, Q is the order of seasonal moving average,

u is the non-seasonal autoregressive parameter, h is the

parameter of non-seasonal moving average, U is the

seasonal autoregressive parameter and H is the seasonal

moving average.

After fitting the models, those that have parameters with

a significant difference from zero and that also have

independent residuals that will be accepted. In this study,

the t-student test is used to examine the significance of the

model parameters. This test statistic is expressed as:

s ¼ Pr/Se ð3Þ

where s, Pr and Se are the test statistic, estimated value of

each parameter (including U, H, / and h) and estimated

standard error for each parameter, respectively. By con-

sidering 5% as the significance level, the intended param-

eter is significant when the value of the corresponding

probability of s statistic level is smaller than this value in

the t-student distribution (Ps\ 0.05). This means that the

parameter effectively participates in modelling.

The Box-Pierce test (Box and Pierce 1970; McLeod

1978) is used to examine the independency of the residuals

and this test statistic is as follows:

Q� ¼ n(nþ 2)
XL

l¼1

r2l (e)/(n� 1) ð4Þ

where Q*, rl(e), n and L are the test statistic, the residual’s

autocorrelation coefficient with lag l, the number of non-

missing months after differencing (n = N-d-Dx) and the

maximum time lag, respectively. In addition, the number of

model parameters is defined as k = p ? q ? P ? Q. In

case the level of the corresponding probability of Q* in the

Chi-square distribution with a degree of freedom

DF = L-K-1 is larger than the intended level of signifi-

cance, which is 5% (PQ*[ 0.05), the residuals series will

be independent.

The periodical component is one of the most effective

factors that cause dependency in time series. Since monthly

discharge data have this component, the model residuals

may have the periodical component and they will conse-

quently not be independent. The cumulative periodogram is

also used to ensure that the periodical component is

Fig. 1 ACF and PACF graphs

for the normalized data in the

calibration period

INAE Lett (2017) 2:13–23 15

123



completely removed from the residuals. The cumulative

periodogram for residuals is expressed as:

MSD(hj) ¼ 2
Xn

t¼1

etcos(2phjtÞ
 !2

þ
Xn

t¼1

etsin(2phjt)

 !2
2
4

3
5

=n2, hj ¼ j/n ð5Þ

Pi ¼
Xi

j¼1

MSD(hjÞ=r2e ; i ¼ 1; 2; � � � ; n=2; ð6Þ

where Pi, hj, MSD, et, and r2e are the cumulative peri-

odogram of residuals, the frequency, the mean squared

deviation, the values of residuals in time t and the variance

of et, respectively. If the residual time series is indepen-

dent, the Pi graph, in terms of hi, will be close to the line

that connects the (0, 0) and (0.5, 0) points. The Kol-

mogorov–Smirnov confidence limits are away from the

mentioned lines by ± Ka/Hn’. n0 ¼ (n� 2)/2, n0 ¼ (n�
1)/2 for even and odd numbers, respectively. The value of

Ka is also equal to 1.36 at the 95% confidence level.

Hybrid Artificial Neural Network-Genetic

Algorithm (ANN-GA) Method

The multi-layer perceptron (MLP) neural network is one of

the most common artificial intelligence methods. An MLP

is formed from three types of layers: an input layer, one or

more hidden layers and an output layer, all of which consist

of neurons. The neurons in each layer evaluate the

weighted summation of the previous layer’s neurons and

transfer the result to the next layer. The numbers of input

and output layer neurons are equal to the numbers of input

and output variables of the problem, respectively. How-

ever, there is no specific rule to determine the number of

hidden layer neurons and is thus a perplexing problem in

MLP simulations. In this study, the novel, hybrid ANN-GA

method is employed. The ANN-GA procedure is shown in

Fig. 2, which presents the steps in evaluating the optimum

ANN-GA model. To begin with, the input variables are

presented to the model. Secondly, the random populations

of different MLP models with various numbers of hidden

layer neurons are constructed. These MLPs perform as

chromosomes for the modified GA employed. In the pre-

sent models, MLPs with two hidden layers are used. Next,

each MLP generated in the previous step is run and its cost

is evaluated. The calculated costs are then sorted and the

ANN-GA termination criteria are checked. If the criteria

are fulfilled, the best chromosome is saved as the optimum

ANN-GA model. Otherwise, the procedure continues.

Next, by using GA operators such as crossover, mutation

and the elite process, the next generation is constructed.

Lastly, the termination criteria are checked; if fulfilled, the

process stops, otherwise the previous step is run again.

To train theMLPmodels, the Levenberg–Marquardt (LM)

Algorithm (Levenberg 1944) is used. Thus, the MLP models

are trained in a random manner. As a result, a high-perfor-

mance chromosome may be turned off by the GA due to bad

luck in the LM training algorithm. In order to solve this defect,

a modification is done on the GA. As seen in the flowchart of

the modified GA, the elite population runs several times and

the best cost of the repeated runs is saved. With this modifi-

cation, the probability of elite chromosome elimination (due

to training defects) is reduced significantly.

According to the ACF graph in Fig. 1, the autocorrela-

tion values take large values in lags 1, 2, 3, 6, 12, and 24,

such that they intersect at UL and LL. This indicates that

discharges with the above-mentioned lags dramatically

affect each other. Therefore, combinations of these dis-

charges are used to select the proper input for the hybrid

Artificial Neural Network-Genetic Algorithm (ANN-GA)

method. The 14 input combinations considered for the

ANN-GA model are presented in Table 1.

Evaluation Criteria of the Best Models

The Mean Squared Error (MS) and Corrected Akaike’s

Information Criterion (AICc) are used to select the best

SARIMA model (the model with the minimum error and

minimum number of parameters):

AICc ¼ n:Lnðr2e)þ 2kn/(n� k� 1) ð7Þ

MS ¼
Xn

i¼1

(Qni � Q̂ni)
2=ðn� k� 1); ð8Þ

where Qni is the normalized value of the observed dis-

charge, Qni is the normalized fitted discharge value, k is the

number of model parameters and n is the number of non-

missing months after differencing in the data sample for the

calibration period. Moreover, to ensure the best SARIMA

model is selected to subsequently select the best ANN-GA

model and compare these two models, Mean Absolute

Relative Error (MARE), correlation coefficient (R), Root

mean squared errors (RMSE) and Nash-Sucliffie criteria

are separately calculated for the calibration and validation

periods between the observed and fitted, or forecasted data.

MARE ¼
Xn

i¼1

Qi � Q̂i

Qi

����

����/n ð9Þ

R¼
Xn

i¼1

(Qi� �Qi)(Q̂i� �̂
Qi)/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

(Qi� �Qi)
2
Xn

i¼1

(Q̂i� �̂
Qi)

2

s

ð10Þ
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
t¼1 ðQðtÞ � Q̂ðtÞÞ2

n

s

ð11Þ

Nash-Sucliffe ¼ 1�
Pn

t¼1 ðQðtÞ � Q̂ðtÞÞ2Pn
t¼1 (Q(t)� �Q(t))2

; ð12Þ

where Qi is the observed discharge in the ith month, Q̂i is

the computed discharge in the ith month, �Qi is the mean of

the observed discharges,
�̂
Qi is the mean of the computed

discharges, n is the number of non-missing months after

differencing for calibration or the validation period, and i is

the month number. The mean values of the observations

obtained are 1.85 and 1.54 m3/s in the calibration and

validation periods, respectively. In addition, determining

the time error and best time of forecasting, and comparing

the performance of the best SARIMA and ANN-GA

models, the absolute relative error in month i (Ei), average

of cumulative relative errors in month i (Fi), and coefficient

of relative error variation (CV) are calculated as follows:

Ei ¼ Qi � Q̂i

�� ��=Qi ð13Þ

Fi ¼
Xi

j¼1

Ej/i ð14Þ

Cv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ðEi � EÞ
n

/E

s
ð15Þ

where �E is the relative error average.

Results and Discussion

Selecting the Best Models

Different SARIMA and ANN-GA models were applied to

the monthly inflow data collected from the Jamishan

Reservoir dam. The results obtained by utilizing different

statistical indexes for both calibration and validation

Fig. 2 ANN-GA flowchart
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periods were presented in Table 2. As seen in this table, to

select the best model using SARIMA, 5 superior models

were fitted from amongst 80 different models that were

evaluated with the AICc and MS indexes. These indexes

not only consider the difference between the observed and

fitted values but also take into account the effects of

number of parameters. The SARIMA(1,0,2)(0,1,1)12 model

is clearly more accurate than other models. To select the

best model presented using ANN-GA, the MARE and

R indexes are used for the validation and calibration peri-

ods. The maximum value of R calculated is 0.86 in the

calibration period for the ANN-GA-14 model. This model

has the maximum discharge as input with 1, 2, 6, 12 and

24-month lag times. However, it does not present good

results in the validation periods and is amongst the weakest

models. The ANN-GA-3 model with the best MARE in

calibration and that uses 1 and 12-month lag times in dis-

charge forecasting, is fairly accurate in the validation

period. It presents quite similar results in both periods,

which is an indication of this model’s flexibility in fore-

casting monthly discharge. However, since the final

objective of modeling is forecasting and the model’s

forecasting error is of utmost importance, the ANN-GA-9

model with the best result in the validation period

(MARE = 0.715, R = 0.802) as Q = f(Qt-1, Qt-2, Qt-6,

Qt-12) is selected as the best model presented using ANN-

GA.

The t-student test serves as a significance test in

examining the significance of parameters. The Box-Pierce

test is used as an independence test to examine the inde-

pendency of the selected SARIMA model’s residuals. The

results are presented in Table 3.

The significance test results indicate that the Ps values

are smaller than the intended significance level of 5% for

each parameter. The estimated value of each parameter is

therefore within this level of significance. In fact, there is a

substantial difference between all parameters and 0.

Therefore, the parameters effectively participate in mod-

elling and forecasting. Regarding the independence test,

since the value of the corresponding probability of Q* in

the Chi-square distribution with degree of freedom (DF)

per lag L, meaning the PQ* value, is larger than the

intended significance level of 5% in different lags, the

residuals of the selected SARIMA model are independent

based on the results of this independence test and they are

not dependent on time. The large difference between the

PQ* values and 5 indicates that the residuals are indepen-

dent with a high degree of confidence.

A cumulative periodogram was employed to make sure

that the periodical component was completely removed

from the model residuals. Figure 3 shows the cumulative

periodogram for the residuals of the best SARIMA model.

The vertical axis represents the frequency in this graph and

the horizontal axis shows the cumulative periodogram for

the residuals. UL and LL are the Kolmogorov–Smirnov

confidence limits at the 95% level of confidence. Since the

graph of Pi in terms of hi, is close to the line that connects

the (0, 0) and (0.5, 0) points and it is within the range

between UL and LL, it can be concluded that the periodical

component has been perfectly removed from the residuals.

This is another reason for the independency of residuals in

the SARIMA model selected.

Model’s Ability to Forecast Inflow

Figure 4 represents the monthly discharge time series

forecasted by the ANN-GA-9 and SARIMA(1,0,2)(0,1,1)12
models against the observed discharge values. The models

identified the monthly discharge changes with regards to

time to an acceptable degree. By increasing the observed

discharge values, the two model’s furcated values

increased and vice versa. This shows that both models

identified the monthly mean discharge changes for these

datasets very well. These are, however, less accurate as the

discharge value increases due to the intense seasonal

changes in peak discharge. For instance, the monthly dis-

charge was 0.17 m3/s in September 1994 and 13.34 m3/s in

December 1994. These dramatic changes decreased the

peak-discharge forecasting accuracy.

Figure 5 shows the performance of the ANN-GA-9 and

SARIMA(1,0,2)(0,1,1)12 models in modeling and fore-

casting the monthly inflow to the dam in the calibration and

validation periods. As shown in this figure, the results for

low-flow discharge in both validation and calibration

periods are closer to the best fit line than the peak dis-

charge, which indicates that these models perform better

for low-value discharge than peak discharge. The SARIMA

Table 1 Different ANN-GA models with different input

combinations

Models Input combinations

ANN-GA-1 Qt-1

ANN-GA-2 Qt-1, Qt-2

ANN-GA-3 Qt-1, Qt-12

ANN-GA-4 Qt-1, Qt-6

ANN-GA-5 Qt-1, Qt-6, Qt-12

ANN-GA-6 Qt-1, Qt-2, Qt-12

ANN-GA-7 Qt-1, Qt-2, Qt-6

ANN-GA-8 Qt-1, Qt-2, Qt-3

ANN-GA-9 Qt-1, Qt-2, Qt-6, Qt-12

ANN-GA-10 Qt-1, Qt-2, Qt-3, Qt-12

ANN-GA-11 Qt-1, Qt-2, Qt-3, Qt-6

ANN-GA-12 Qt-1, Qt-2, Qt-3, Qt-6, Qt-12

ANN-GA-13 Qt-1, Qt-2, Qt-3, Qt-12, Qt-24

ANN-GA-14 Qt-1, Qt-2, Q3, Q6, Q12, Qt-24
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model outperforms ANN-GA in this respect. The results

obtained by SARIMA are underestimated and overesti-

mated for all discharges (low and peak discharges);

although, the underestimated, fitted and forecasted dis-

charges have a relative error greater than that of the

overestimated ones. The results obtained with ANN-GA

are inconsistent with SARIMA as the discharge increases

and especially at peak discharges. ANN-GA underesti-

mates most of the discharges as discharge increases. ANN-

GA estimates the monthly inflow to the dam with a smaller

relative error compared with the validation state where the

peak discharge has a smaller value than the calibration

state. Regarding the incorrect estimation and large differ-

ence from the actual values, ANN-GA will not perform

properly for major floods.

Evaluation of the Models in Drought and Wet

Conditions

Along with MARE criterion based on the relative errors,

Nash-Sucliffe and RMSE criteria based on absolute errors,

were calculated only for the best models. These criteria

calculated for the best ANN-GA model and then it was

considered with the same settings for the simple ANN

Fig. 3 Cumulative periodogram for the best SARIMA model

residuals

Table 2 Evaluation criteria

results for determining the best

SARIMA and ANN-GA models

Model MS AICc Calibration Validation

MARE R MARE R

SARIMA(1,0,2)(0,1,1)12 0.224 -356.48 0.38 0.826 0.388 0.761

SARIMA(1,0,1)(0,1,1)12 0.227 -354.05 0.381 0.827 0.399 0.759

SARIMA(1,0,0)(0,1,1)12 0.229 -353.02 0.391 0.83 0.398 0.751

SARIMA(1,0,2)(3,1,0)12 0.267 2311.27 0.405 0.803 0.5 0.748

SARIMA(1,0,0)(3,1,0)12 0.272 2309.49 0.423 0.813 0.493 0.738

ANN-GA-1 – – 1.399 0.705 1.134 0.674

ANN-GA-2 – – 1.284 0.768 0.943 0.741

ANN-GA-3 – – 0.801 0.787 0.877 0.765

ANN-GA-4 – – 1.466 0.846 1.093 0.685

ANN-GA-5 – – 0.995 0.849 1.045 0.75

ANN-GA-6 – – 0.946 0.828 0.819 0.774

ANN-GA-7 – – 2.635 0.781 0.973 0.775

ANN-GA-8 – – 1.421 0.829 0.787 0.752

ANN-GA-9 – – 1.183 0.795 0.715 0.802

ANN-GA-10 – – 1.243 0.824 0.914 0.756

ANN-GA-11 – – 1.087 0.827 1.057 0.687

ANN-GA-12 – – 2.658 0.769 1.125 0.764

ANN-GA-13 – – 1.8 0.809 1.168 0.648

ANN-GA-14 – – 1.245 0.861 0.903 0.69

Table 3 Independence test

results for the residuals and

significance test results for the

selected SARIMA model

parameters

Significance test Independence test

Pr u1 h1 h2 H1 L 12 24 36 48

Estimated Pr 0.9 0.195 0.149 0.92 Q* 2.5 19.5 27.3 41.2

s 21.71 2.46 1.98 20.76 DF 7 19 31 43

Ps 0 1.4 4.8 0 PQ� 93 42.4 65.7 55
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model presented in Table 4. The results show that these

criteria are so closely in ANN-GA and ANN models and

also using the genetic algorithm in ANN model cause to

occur insignificantly changes in prediction accuracy.

Therefore, using advanced algorithm in ANN model

always not to be useful in increasing of forecasting model

accuracy. In addition, Table 4 shows that in comparison of

ANN and ANN-GA models, the MARE criterion is sig-

nificantly improved and the other criteria are also

decreased in SARIMA model. Since MARE is obtained

based on relative errors, it’s very sensitive in the small

values and it changes suddenly in the small values. On the

other hand, Nash-Sucliffe and RMSE criteria are obtained

based on the absolute errors are more sensitive in large

values. As a result, SARIMA model is the best model to

forecast the base flows and in drought conditions and also

ANN and ANN-GA models are the best models to predict

the peak flows and in the flood conditions in this study.

Fig. 4 SARIMA and ANN-GA

model results for the validation

period

Fig. 5 Observed and modeled

monthly discharge by the

SARIMA and ANN-GA models

in the calibration and validation

periods
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Time Changes of the Model’s Forecast Error

Equations 10–12 are used to examine the values forecasted

by the models in order to study the forecasting changes

with time. Table 5 shows the values of Emin, Cv and �E

along with Fmin and the month in which this value occurred

for the validation period. The CV and �E values are smaller

for SARIMA, indicating that the error changes are lower

and this model is superior to ANN-GA, since the smaller

the relative errors, the smaller their mean will be. CV being

smaller indicates the fact that the errors are closer to the

mean for the SARIMA model, and as a result, the error

changes in time and the peak error points are lower in this

model. Figure 6 shows the changes in the relative error and

average cumulative relative error in time for SARIMA and

ANN-GA in the forecast, or validation period. It can be

understood from the E index graph that the ANN-GA

model has more and much larger peak error points than

SARIMA. It is clear from the index F graph in this same

figure that this index value is smaller for the SARIMA

model than the ANN-GA model. The maximum F value is

0.44 for the SARIMA model and the minimum value of

this index is equal to 0.43 for the ANN-GA model

(Fmax(SARIMA) ^ Fmin(ANN-GA)). The F index value for the

SARIMA model hardly reached the index value of the

ANN-GA model. This also shows the superiority of

SARIMA over ANN-GA. Two points can be noted from

this graph. First, the minimum error of the SARIMA model

occurs in predicting the following month (1 month later).

The F value of ANN-GA is 10 times the value of the F

index for the SARIMA model in this month, meaning that

SARIMA forecasts the discharge of the following month

10 times more precisely than ANN-GA. The second point

is that the SARIMA model graph of F index changes

become almost horizontal with time and as the forecast

horizon increases, such that it reaches a sort of stagnation

that does not exist with the ANN-GA model. This graph

displays an upward trend for the ANN-GA model, meaning

that the ANN-GA model error increases as the forecast

horizon increases. These two points indicate that the

SARIMA model is capable of making short-term forecasts

with much lesser error and long-term forecasts without an

increase in error—two abilities lacking in the ANN-GA

model. Therefore, the SARIMA model most definitely

performs better than ANN-GA in short-term planning such

as exploitation and consumption management and in long-

term planning such as designing and constructing hydraulic

structures.

Conclusion

In this study the abilities of SARIMA and the hybrid

Artificial Neural Network-Genetic Algorithm (ANN-GA)

method in forecasting the monthly inflow to the Jamishan

Dam in the west of Iran were analyzed and their results

were compared with simple ANN model. Data from

Table 4 Evaluation criteria results for best models

Criteria ANN-GA ANN SARIMA

R2 0.64 0.61 0.58

MARE 0.72 0.75 0.40

Nash-Sucliffe 0.64 0.58 0.56

RMSE 1.16 1.24 1.27

Table 5 Minimum F and E index values along with the mean and

standard deviation of the relative error

Emin �E Cv Fmin Month

SARIMA(1,0,2)(0,1,1)12 0.007 0.398 1.243 0.137 First

ANN-GA-9 0.004 0.715 1.940 0.424 Seventh

Fig. 6 Graphs of E and F index

changes over time for the

discharges forecasted by the

selected models
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Pirsalman hydrometric station were used, including 30

water years. The initial 21 years served as the calibration

period and the 9 final years were used as the validation

period. The best SARIMA model had significance param-

eters and independence residuals. Both models identified

the process of monthly discharge changes very well.

Forecasting the base flow and low flows was done precisely

by the SARIMA model precisely in comparison of ANN

and ANN-GA models and also these models are more

suitable to forecast the peak flows and flood flows in

comparison of SARIMA model. The results show that there

were no significant changes between ANN and ANN-GA

models while the results of ANN-GA were a little bit better

than ANN model. So, SARIMA model is more suitable in

the drought years and low flow forecasting and ANN-GA

model is more suitable in the wet years and flood flows

forecasting. The SARIMA model also had lower error

changes over time during the prediction period, such that it

had lower error peak points in the E index graph than

ANN-GA. Analysing the graph of the F index over time

leads to concluding that the SARIMA model had an error

less than one tenth of the ANN-GA error in forecasting the

following month discharge. On the other hand, the forecast

error did not increase much with increasing forecast hori-

zon, meaning the SARIMA model is able to make much

more precise short-term forecasts than the ANN-GA model

and is also able to make long-term forecasts without a

noticeable error increase. Therefore, the SARIMA model

definitely outperforms the ANN-GA model in short-term

plans such as exploitation and consumption management

and in long-term plans such as designing and constructing

hydraulic structures.

References

Abebe A, Foerch G (2008) Stochastic simulation of the severity of

hydrological drought. Water Environ J 22(1):2–10

Ahmad S, Khan IH, Parida B (2001) Performance of stochastic

approaches for forecasting river water quality. Water Res

35(18):4261–4266

Ali SM (2013) Time series analysis of Baghdad rainfall using

ARIMA method. Iraqi J Sci 54(4):1136–1142
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