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Abstract A novel reliability analysis concept for large

Structural/Mechanical systems represented by finite ele-

ments using multiple deterministic analyses is presented in

this paper. The intent is to extract reliability information by

conducing only tens instead of millions of deterministic

analyses as an alternative to the classical Monte Carlo

Simulation. It is particularly applicable when a determin-

istic analysis requires a considerable amount of computa-

tional time to satisfy the underlying physics. It is developed

by integrating the second-order reliability method and an

improved response surface method by removing its defi-

ciencies. The efficiency of the integrated scheme is further

improved by using advanced statistical and factorial

schemes producing compounding beneficial effect. The

concept is elaborated using two different illustrative

examples. To validate the procedure, the underlying reli-

abilities are estimated by using the basic Monte Carlo

simulation technique to develop the reference or bench-

mark value. Then, the accuracy and efficiency of the

method are compared and verified.

Keywords Reliability evaluation � Large structural

systems � Finite element method � FORM/SORM � Implicit

limit state function � Response surface method � Advanced
statistical and factorial schemes

Nomenclature

A1, A2 Cross sectional areas of left and right walls,

respectively

AI-RS All-inclusive response surface method

b0,
bi, bii, and bij

Unknown coefficients of a polynomial to

be determined

b Span of coupled beam

CCD, SD Central composite design and saturated

design, respectively

db Depth of the coupled beam

EP The Young’s or elastic modulus of pile

material

E The wall elastic modulus of pile material

F Lateral concentrated force applies at the

pile head

FORM First order reliability method

FEs Finite elements

ĝðXÞ Response surface

gðXÞ Limit state function

h Story height

hi A chosen factor that defines the

experimental/sample region

H The building total height

I The pile moment of inertia

I1, I2 The moment of inertia of left and right

walls, respectively

k The number of random variables

Kh Soil subgrade reaction

kR The reduced number of random variables

L Distance between the centerlines of left

and right walls

LSFs Limit state functions
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m Total number of most sensitive random

variables

MCS Monte Carlo Simulation

N Number of sample points

p The numbers of coefficients necessary to

define a polynomial

PF The probability of failure

r The pile radius

RS Response surfaces

RSM Response surface method

SFEM Stochastic finite element method

SORM Second order reliability method

t The pile thickness

t1, t2 The thickness of left and right wall,

respectively

tb Coupled beam thickness

ux The lateral drift

v Poisson‘s ratio

w uniformly distributed Wind loading

w1, w2 Width of left and right walls

Xall The allowable drift

xC1
xC2

First and second center point

xD1
The coordinates of the checking point

Xi (i =

1, 2,…, k)

The ith random variable, k the number of

random variables

XC
i

The coordinates of the centre point, i

z The depth

a(Xi) sensitivity indexes of the variable Xi

b b-index = Reliability index

e Pre-selected convergence criterion

rxi The standard deviation of a random

variable Xi

Introduction

The state-of-the-art in the reliability or probability of

failure (PF) evaluation procedures for Civil/Mechanical

structural systems is very advanced. However, PF-evalu-

ation of actual structural systems considering their realistic

behavior at the time of failure could be challenging, par-

ticularly for low probability events. For this class of

problems, each deterministic evaluation can be very time

consuming. For most of them, the limit state functions

(LSFs) also known as performance functions, are expected

to be unknown. To study their realistic behavior, the

deterministic community generally represents them by

finite elements (FEs). Although the required structural

behavior can be obtained by the FE analysis using assumed

set of values for variables present in the formulation, the

LSFs required for the reliability analysis will not be gen-

erally available; they are implicit in nature. To extract the

reliability information considering uncertainty in the load

and resistance-related variables, representing structural

systems using FEs to capture realistic behavior, one can use

the basic Monte Carlo simulation (MCS). Suppose, the PF

of a system is of the order 10-4, Haldar and Mahadevan

(2000a) suggested that at least 105 simulations will be

required to extract reasonably accurate reliability infor-

mation. For the sake of discussion, suppose one deter-

ministic analysis of such system may take around 0.1 h of

computer time, a relatively short time for this discussion.

For 105 simulations, it will take about 104 h or 1.14 years

of continuous running of a computer. Obviously, it will be

impractical to use MCS but clearly indicates the underlying

basic challenge. This prompted the authors and their

research team members to explore alternative approaches,

essentially to find an alternative to the basic MCS.

For reliability estimation with implicit LSFs, several

alternatives can be attempted (Haldar and Mahadevan

2000b). They can be grouped into three categories, in the

assessment of the research team, based on their essential

philosophy. They are (1) MCS, (2) sensitivity-based

stochastic finite element method (SFEM), and (3) response

surface-based method (RSM). Obviously, several sophis-

ticated methods are available to improve the efficiency in

the classical MCS including space-filling variance reduc-

tion schemes(Haldar and Mahadevan 2000a), importance

sampling (Au and Beck 1999, 2001a), directional sampling

(Melchers 1994), subset simulation (Au and Beck 2001b),

etc. Success of these schemes is generally considered to be

problem dependent, often will require several trial

approaches before selecting one, and will require a con-

siderable amount of expertise not expected from an engi-

neer for routine applications. The SFEM, proposed by the

team in early eighties (Haldar and Mahadevan 2000b), is

also found to be not attractive for this class of problems.

The other alternative is RSM (Box et al. 1978) and

attracted a lot of attention in the profession recently. The

primary purpose of applying RSM in the reliability analysis

is to approximate the original complex and implicit limit

state function using a simple and explicit polynomial

(Bucher and Bourgund 1990; Khuri and Cornell 1996; Yao

and Wen 1996). A considerable amount of work is reported

in the literature. The works can be grouped into several

categories including High Dimensional Model Represen-

tation (HDMR) (Rao and Chowdhury 2009; Wei and

Rahman 2007), Explicit Design Space Decomposition-

Support Vector Machines (EDSD-SVM) (Basudhar and

Missoum 2008; Basudhar et al. 2008), artificial neural

networks (Hurtado and Alvarez 2000), various variance

reduction techniques (Haldar and Mahadevan 2000b),

several surrogate approaches including Kriging (Bichon

et al. 2008), polynomial chaos (Blatman and Sudret 2010;

Dubourg and Sudret 2014), etc. They are summarized in
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(Sudret 2012). Most of these concepts are mathematically

very sophisticated and their application potential is appli-

cation specific. After evaluating most of these approaches,

the research team concluded that for routine structural

reliability evaluation, they will require additional efforts

and expertise not expected from practicing reliability

community. The basic challenge is that the explicit

expressions for the required limit state functions satisfying

required or specified performance requirements required to

implement FORM/SORM-based approaches may not be

available using these approaches. The same observation

was made in (Dubourg and Sudret 2014).

The above discussions clearly point out that in spite of

significant development in the reliability evaluation pro-

cedures for implicit limit state functions; there are rooms

for improvement. Obviously, the classical MCS, with all its

elegant schemes and improved computational power,

remains an acceptable option. However, its use for the

reliability evaluation of time-wise computationally

demanding structures is still an open question. The research

team proposed several alternative reliability evaluation

concepts in this paper, specifically replacing the classical

MCS but keeping its basic simplicity. The primary objec-

tive of the proposed concept is to extract reliability infor-

mation for structures requiring extensive computational

time by conducting only tens of deterministic analyses

satisfying specific performance criteria and retaining the

basic simplicity so that it can be used by both deterministic

and probabilistic communities.

The Proposed Novel Concept

To retain the basic simplicity and ease of implementation by

the practicing engineering community without considerable

expertise in the reliability estimation procedures or knowl-

edge of using parallel computing to implement the basic

MCS concept, the authors decided to exploit several desir-

able features of the first- and second-order reliability meth-

ods FORM/SORM in developing the proposed concept.

Since RSM-based procedures have significant advantages

overMCS and SFEM, the teamproposed to integrate FORM/

SORM with RSM so that implicit LSFs can be expressed

explicitly, albeit approximately. The proposed concept

appears to be very simple, straight forward, and promising.

However, its novelty is in the detail and needs to be devel-

oped very cautiously, as discussed below.

As will be discussed in Sect. ‘‘Selection of sampling

points’’, the experimental sampling points are generally

selected for RSM using sigma-point concept without using

any information on underlying distribution of random

variables even when it is available or in some cases, they

are all assumed to be normally distributed. It is known to

the profession that distribution information is important for

the reliability evaluation. The selection of center points

will require information of the failure region. For large

structural systems, the selection of center points will be

speculative in nature at best and if a response surface (RS)

is not generated in the failure region, RSM-based approa-

ches will not be robust enough for routine applications.

Also, based on the methods used to generate a RS, it may

require a large number of sampling points or deterministic

evaluations of the mechanical system. Obviously, consid-

ering efficiency, RSM-based approaches suffer the same

deficiency as the basic MCS.

In generating the appropriate limit state functions, the

information on distribution of random variables present in

the formulation must be incorporated. This simple but basic

requirement will invalidate the use of basic RSM in the

proposed concept. A careful review of the basic RSM

concept will reveal that it has three basic but major defi-

ciencies that restrict its use for the Civil/Mechanical

structural reliability evaluation. They are: (1) it cannot

incorporate distribution information of random variables

even when it is available, (2) if the response surface (RS) is

not generated in the failure region, it may not be directly

applicable or robust, and (3) for realistic structural systems,

it may not give the optimal sampling points. The authors

proposed to address them in the following ways.

To bring distributional information of random variables

and to efficiently locate the failure region for large com-

plicated systems, the authors propose to integrate RSM and

SORM. The iterative scheme of SORM will capture the

underlying distribution information of random variables

and will locate the coordinates of the most probable failure

point in the failure region. For real structures, the identi-

fication of the failure region is expected to be challenging,

however, it can be captured by representing them with

finite elements as is commonly practiced by the deter-

ministic community. The integration will eliminate the first

two deficiencies. The third deficiency can be removed by

using several advanced factorial sampling schemes pro-

ducing compounding beneficial effect as will be discussed

more in detail in Sect. ‘‘New Sampling Schemes’’. To

successfully integrate SORM and RSM, the authors pro-

pose the following strategies.

Proposed Reliability Analysis Method
for Structural Reliability Evaluation

Step 1-Generate the Required RS by Integrating

RSM With SORM

One of the important topics that deserve initial attention is

the characteristics of the response surface (RS) that can be
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used in any SORM-based approach. Three items need to be

considered for generating the appropriate RS are: (1) the

degree of polynomial to be used to generate it, (2) the

location of center points around which sampling points will

be selected, and (3) experimental schemes that can be used

in selecting sampling points. These items also indicate

some of the additional fundamental weaknesses of RSM.

They are discussed more formally in the following

sections.

To differentiate between the basic RS scheme used in

the past and the improved RS scheme proposed by the

authors by removing its deficiencies for structural relia-

bility evaluation, the new scheme will be denoted as All

Inclusive RS or AI-RS. AI-RS will bring the distribution

information of the random variables in the formulation. It

will also assure success in generating the required RS in the

failure region.

Selection of Mathematical Form of RSM

The degree of polynomial used to generate the AI-RS has

significant effect on the efficiency of the proposed algo-

rithm, as will be discussed in more detail later. A linear RS

may not be appropriate for complicated real structural

systems. Higher order polynomial may result in ill-condi-

tion of system of equations and exhibit irregular behavior

outside of the domain of samples (Gavin and Yau 2008;

Sudret 2012). For complicated real structural systems,

second-order polynomial, without and with cross terms, are

considered to be appropriate. They can be represented as:

ĝðXÞ ¼ b0 þ
Xk

i¼1

biXi þ
Xk

i¼1

biiX
2
i ð1Þ

ĝðXÞ ¼ b0 þ
Xk

i¼1

biXi þ
Xk

i¼1

biiX
2
i þ

Xk�1

i¼1

Xk

j[ 1

bijXiXj

ð2Þ

where Xi (i = 1, 2,…, k) is the ith random variable, and b0,

bi, bii, and bij are unknown coefficients to be determined;

they need to be estimated using the response information at

the sampling points by conducting several deterministic

finite element (FE) analyses and k is the number of random

variables in the formulation. The total numbers of coeffi-

cient necessary to define Eq. (1) is p ¼ 2k þ 1 and gener-

ally it is known as the basic terms. Equation (2) has two

components: the basic terms of Eq. 1 and the cross terms.

The total numbers of cross terms are kðk � 1Þ=2. The

coefficients can be fully defined either by solving a set of

linear equations or from regression analysis. The consid-

eration of cross terms is expected to improve the accuracy

in the quadratic equation but it can also significantly reduce

the efficiency. The authors believe that the intelligent

selections of cross terms can increase efficiency without

compromising the accuracy. It is an important objective of

this paper and will be explored in more detail in the sub-

sequent sections.

Scheme to Locate Center Point

The response surfaces are generated using sampling points

around the center point. Thus, the selection of the center

point is very important in the accuracy and efficiency of

any reliability evaluation method. Following the SORM

scheme, the initial center point will be selected at the mean

values li of the random variable Xi. The response surface

ĝðXÞ can be generated explicitly in terms of the random

variables Xi’s by conducting deterministic FE analyses at

all the experimental sampling points. Once an explicit

expression of the limit state function gðXÞ is obtained, the
coordinates of the checking point xD1

(iterative process to

identify the coordinates of the most probable failure point)

will be available using SORM. The responses can be

evaluated again at the checking point xD1
, i.e., g(xD1

Þ), and
a new center point xC2

can be selected using a linear

interpolation(Bucher and Bourgund 1990; Rajashekhar and

Ellingwood 1993) as:

xC2
¼ xC1

þ ðxD1
� xC1

ÞgðxC1
Þ=½gðxC1

Þ � gðxD1
Þ�

if gðxD1
Þ � gðxC1

Þ ð3Þ

xC2
¼ xD1

þ ðxC1
� xD1

ÞgðxD1
Þ½gðxD1

Þ � gðxC1
Þ�

if gðxD1
Þ\gðxC1

Þ ð4Þ

The new center point xC2
then can be used to develop an

explicit performance function for the next iteration. This

iterative scheme is repeated until a pre-selected conver-

gence criterion of ðxCiþ1
� xCi

Þ=xCi
� e is satisfied. The

convergence criterion e is considered to be |0.05| in this

study.

Selection of Sampling Points

The next step in generating an AI-RS is the selection of

sampling points, commonly known as the experimental

sampling schemes, around the center point. The concept

behind the basic RS sampling scheme can be expressed in

the coded variable space as:

Xi ¼ XC
i � hirxi i ¼ 1; 2; . . .; k ð5Þ

where XC
i and rxi are the coordinates of the center point

and the standard deviation of a random variable Xi,

respectively, hi is an arbitrary factor that defines the

experimental region, and k is defined earlier. It is to be

noted that Eq. 5 does not incorporate any information on

the distribution of the random variable. In the context of

SORM, AI-RS will be generated in the normal variable
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space. The coordinates of the center point and the standard

deviation will be adjusted by considering equivalent nor-

mal mean and standard deviation for all non-normal vari-

ables present in the formation (Haldar and Mahadevan

2000a).

Available sampling schemes for civil engineering

applications can be divided into two categories: saturated

design (SD) and a more accurate approach, known as

central composite design (CCD) (Box and Wilson 1951;

Bucher and Bourgund 1990; Rajashekhar and Ellingwood

1993). The selection of a sampling scheme will dictate the

efficiency and accuracy of any AI-RS-based algorithm.

Both sampling schemes are shown in Fig. 1 in the coded

variable space for k = 3, (In Fig. 1, kR is used instead of

k as will be discussed in Sect. ‘‘Model reduction by sen-

sitivity analysis’’).

SD is less accurate but more efficient since it requires

only as many sampling points as the total number of

unknown coefficients to define the response surface, but it

does not have the desired level of accuracy. Using SD, a

second-order RS can be generated without and with cross

terms and the total number of required sampling points will

be 2k þ 1 and k þ 1ð Þ k þ 2ð Þ=2, respectively. CCD is more

accurate but less efficient. Two major drawbacks of CCD

are: (1) it requires cross terms for the second-order poly-

nomial and (2) regression analysis is used to generate the

RS requiring too many sampling points. The required

number of sampling points for CCD can be shown to be

2k þ 2k þ 1. The basic three sampling schemes, i.e., SD

without and with cross terms and CCD with cross terms,

are shown in Fig. 1 for k = 3. For the ease of discussion,

they will be denoted hereafter as Cases 1, 2, and 3,

respectively. From the figure, it is very clear that for k = 3,

they will require 7, 10, and 15 sampling points or deter-

ministic evaluations for the three cases, respectively to

generate a RS.

Expanding the above discussion for k random variables,

one will observe that each of the three cases consists of one

center point, 2k axial points, plus kðk � 1Þ=2 edge points

for Case 2, and additional 2k factorial points for Case 3.

Thus, the total number of sampling points required to

generate the necessary AI-RS for the three cases will be

2k þ 1, k þ 1ð Þ k þ 2ð Þ=2 and 2k þ 2k þ 1, respectively.

Since the number of sampling points required for each case

is directly related to the efficiency, they are compared in

Table 1.

In Table 1, kR is used instead of k as will be discussed

in Sect. ‘‘Model reduction by sensitivity analysis’’. When

the total number of random variables is relatively small,

say for k = 5, the sampling points will be 11, 21, and 43,

respectively, for the three cases. However, if k is

increased to 50 representing a large realistic structural

system, the corresponding sampling points will be 101,

1326, and 1.1259 9 1015, respectively. This exercise

clearly indicates that for relatively small problems, the

basic SD without and with cross terms can be used;

however, the accuracy of the estimated probability of

failure for Case 1 cannot be assured. Obviously, for large

structural systems, considering efficiency only, CCD will

be impractical to implement. However, Cases 2 and 3

need further investigation considering the efficiency and

accuracy of the estimated risk.

Intermediate 
iteration 

Last 
iteration

SD with edge points
(kR +1)(kR+2)/2 

1

11

2

1
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i
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iiii XXbXbXbb

k k

jbb
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Quarter factorial 22 Rk
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Alternate scheme M3 
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X1 
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A center point 
2kR axial points 
kR(kR-1) edge points
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Fig. 1 Algorithm of schemes 2, 3, M2, M3 and alternate scheme M3 (coded variable space k = 3)
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Conceptually, the required limit state functions can be

generated by using the information on the performance

criteria for a specific design, obtained either from the

design guidelines or specified requirements and the three

sampling scheme. Since the LSFs are available in an

explicit form at this stage, the reliability information can be

extracted using the standard SORM. However, considering

accuracy and efficiency, the proposed concept is not yet

ready for routine applications since it may still require

thousands not tens of deterministic evaluations; it will not

satisfy one of the main objectives of the study. This will

necessitate exploring Step 2, as discussed below.

Step 2-Development of New Computational

and Statistical Concepts to Improve Efficiency

of Step 1

The basic concept discussed in Step 1 is sound and will be

applicable for smaller systems with relatively few numbers

of random variables. To apply the concept for realistic

large structural systems requiring extensive computational

time, the authors explored several model reduction, com-

putational and statistical concepts, individually and then

combined them to produce the maximum beneficial effect.

They are briefly discussed below.

Model Reduction by Sensitivity Analysis

It is well known that uncertainty in the individual variables

affect the stochastic response behavior at the system level

quite differently. The uncertainty propagation characteristic

of a random variable can be assessed in terms of its sensi-

tivity index (Haldar and Mahadevan 2000a, b). The sensi-

tivity of a variable X, a(X) is the directional cosines of the

unit normal variable at the checking or design point. Infor-

mation on them will be available from SORM analyses. The

efficiency can be improved significantly without sacrificing

accuracy by considering some of the less significant random

variables with smaller sensitivity indexes to be deterministic

at their mean values. Based on their experience (Haldar and

Mahadevan 2000b), the authors believe that the computa-

tional efficiency of the basic concept will be improved sig-

nificantly requiring less numbers of FE analyses. The

parameter k discussed earlier will now be reduced to kR.

There is no doubt that this reduction will increase efficiency,

however, this improvement may not be large enough for

complicated large structural systems. In other words, the

objective of this step is to reduce the list of candidate random

variables to a relatively few so that subsequent experiments

will bemore efficient and require fewer runs or deterministic

evaluations.

New Sampling Schemes

The proposed concept is iterative in nature. The efficiency

of the iterative process can be improved further by cap-

turing advantages of SD and CCD schemes. Less accurate

but more efficient schemes can be used for the intermediate

iterations followed by the most accurate but inefficient

scheme in the final iteration. The authors and their research

team examined many such alternatives (Huh and Haldar

2001). Some of the promising schemes are:

Scheme 1 Use SD with 2nd order polynomial without the

cross terms (Case 1) throughout all the

iterations. This scheme is expected to be the

most efficient but least accurate in estimating

the probability of failure.

Scheme 2 Use SD with 2nd order polynomial without the

cross terms in intermediate iterations (Case 1)

and SD with full 2nd order polynomial (Case

2) in the final iteration.

Scheme 3 Use SD with 2nd order polynomial without the

cross terms in intermediate iterations (Case 1)

and CCD with full 2nd order polynomial in the

final iteration (Case 3).

The total number of sampling points required to gen-

erate the necessary AI-RSs for Schemes 1, 2, and 3 are

Table 1 Comparison of three cases

Case Nos. of random

variables, kR

Nos. of

coefficient, p

Nos. of sampling

points, N

1 5 p = 2kR ? 1 11 N = 2kR ? 1 11

50 101 101

2 5 p = (kR ? 1)(kR ? 2)/2 21 N = (kR ? 1)(kR ? 2)/2 21

50 1326 1326

3 5 p = (kR ? 1)(kR ? 2)/2 21 N = 2kRþ2kRþ1 43

50 1326 1.1259 3 1015

3 Proposed 5 p = (kR ? 1)(kR ? 2)/2 21 N = (kR ? 1)(kR ?2)/2 21

50 1326 1326

Bold value indicates too large number of sample points
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2kR þ 1, kR þ 1ð Þ kR þ 2ð Þ=2 and 2kRþ2kRþ1, respectively,

where kR represents the total number of sensitive random

variables after making less sensitive variables constants at

their mean values. It will be a significant improvement in

the efficiency since kR is expected to be much smaller than

the total number of random variables k present in the for-

mulation. However, the basic implementation potential of

the three schemes still remains the same even with smaller

kR, i.e., in general they may not be used to estimate relia-

bility of large structural systems, as discussed in more

detail next.

For the discussion purpose and to avoid any confusion,

the method discussed so far with the three above schemes

will be collectively denoted as AI-RSM-SORM.

Step 3 Improve Efficiency of Step 2 Further-Use

Advanced Factorial Schemes (AFS)

Before proposing further improvements, some of the basic

features of the three sampling schemes shown in Fig. 1 for

three basic cases need further elaboration. It is clear that

the total number of basic terms required to generate a

second order polynomial, i.e., 2kR ? 1 cannot be changed.

However, by the appropriate selection of the edge and

factorial points by reducing the simulation region, the

efficiency can be significantly improved. The authors

consider several options. Some of the most promising

approaches are discussed below. Scheme 1 is essentially

Case 1. It is the most efficient alternative but may not

satisfy the accuracy requirement for large structural sys-

tems. It is not consider further for subsequent

improvements.

Improvement of Scheme 2-Selection of Edge Points-

Scheme M2

As discussed in Sect. ‘‘Model Reduction by Sensitivity

Analysis’’, the information on sensitivity indexes was used

to reduce the total number of random variables in a for-

mulation from k to kR. The authors propose to use the

information of sensitivity indexes of kR random variables

readily available from SORM to further improve the effi-

ciency of Scheme 2. All kR random variables in the for-

mulation can be arranged in descending order of their

sensitivity indexes a(Xi), i.e., a X1ð Þ [ a X2ð Þ [ a X3ð Þ
. . .. . .[ aðXkRÞ. In implementing Scheme 2, SD with

second order polynomial without cross terms will be used

in all intermediate iterations; however, in the last iteration,

the cross terms will be added only for the most sensitive

random variable. This is expected to significantly improve

efficiency by not considering cross terms for other less

significant random variables. However, it will not address

the accuracy in the reliability estimation. To address

accuracy, other less sensitive random variables can be

added one by one in a sequence and the reliability index

can be calculated until the changes in the reliability index

become negligible. Since it is a modified version of

Scheme 2, it will be denoted hereafter as Scheme M2. To

discuss the improvement in the efficiency, suppose out of

kR random variables, the total number of the most sensitive

random variable is m. For Scheme M2, the response sur-

face can be expressed as:

ĝðXÞ ¼ b0 þ
XkR

i¼1

biXi þ
XkR

i¼1

biiX
2
i þ

XkR�1

i¼1

Xm

j[ 1

bijXiXj

ð6Þ

The total number of sampling points required for

Scheme 2 and Scheme M2 will be ðkR þ 1ÞðkR þ 2Þ=2 and

2kR þ 1þ mð2kR � m� 1Þ=2, respectively. For kR = 5

and m = 2, the total number of sampling points will be 21

and 18, respectively; a modest improvement in the effi-

ciency. However, for kR = 50 and m = 2 representing a

real structural system, the total number of sampling points

will be 1326 and 198, respectively. Obviously, this is a

significant improvement in the efficiency. This will be

discussed in more detail with the help of examples.

Improvement of Scheme 3-Advanced factorial schemes-

Scheme M3

As in Scheme M2, all kR random variables in the formu-

lation will be arranged in descending order of their sensi-

tivity indexes a(Xi), i.e. a X1ð Þ [ a X2ð Þ [ a X3ð Þ
. . . . . .[ aðXkRÞ:.Scheme 3 will be initiated by generating

second-order AI-RSM-SORM-Scheme 3 using SD without

cross terms for the intermediate iterations, however, in the

last iteration, instead of using full factorial plan in CCD

(cross terms are required), several fractional factorial

schemes (quarter and half) can be used to increase the

efficiency (Myers et al. 2009). It is proposed that in the last

iteration, only quarter or half of the factorial points instead

of full for the most sensitive random variables (m as in

Scheme M2) will be used to develop the response surface

in the last iteration. This improved version of Scheme 3

will be denoted hereafter as Scheme M3. It can be shown

that if the quarter of the factorial points is used, only

2kR�2þ2kRþ1 number of sample points will be necessary to

generate the response surface. For half and full of the

factorial points, the total numbers of required sampling

points will be 2kR�1þ2kRþ1 and 2kRþ2kRþ1, respectively.

For kR = 5, the required number of sampling points for

quarter, half, and full factorial schemes will be 19, 27, and

43, respectively. For kR = 50, the corresponding sampling
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points will be 2.81474 9 1014, 5.6295 9 1014,

1.1259 9 1015, respectively.

From the above discussion, it is obvious that all the

CCD based schemes (full, half and quarter factorial

points) will be prohibitive when kR is large. The authors

would like to propose another improvement. The concept

behind the proposed improvement can be explained with

the help of the following example. Since regression

equation is used to generate the response surface using

CCD, assuming kR = 2 with two independent variables

X1 and X2, a linear regression equation can be expressed

as:

EðY X ¼ xj Þ ¼ EðY Xj Þ ¼ b0 þ b1X1 þ b2X2 ð7Þ

where, b0, b1, and b2 are the regression coefficients needed

to define the response surface.

A second-order response surface with two independent

variables can be expressed as:

EðY Xj Þ ¼ b0 þ b1X1 þ b2X2 þ b11X
2
1 þ b22X

2
2

þ b12X1X2 ð8Þ

Equation (8) can be transformed into a linear regression

equation by substituting X3 ¼ X2
1, X4 ¼ X2

2 , X5 ¼ X1X2,

b3 ¼ b11, b4 ¼ b22, b5 ¼ b12. Then, Eq. (8) becomes:

EðY Xj Þ ¼ b0 þ b1X1 þ b2X2 þ b3X3 þ b4X4

þ b5X5 ð9Þ

In general, any regression model that is linear in the

parameters is a linear regression model,

regardless of the shape of the response surface that it

represents (Myers et al. 2009). This observation prompted

the authors to use edge points instead of factorial points in

Scheme 3. The modified scheme will be denoted hereafter

as ‘‘Alternate Scheme M3’’. It can be shown that for

Alternate Scheme M3, the total numbers of sampling points

required will be (kR ? 1)(kR ? 2)/2. For kR = 5 and 50,

the required number of sampling will be 21, and 1326,

respectively. Even when kR = 50, the total number of

deterministic evaluations becomes manageable. It is sig-

nificantly smaller than the numbers of the order of 1014

required for Scheme M3 discussed earlier.

In order to compare the implementation potential of the

aforementioned schemes, the total number of samples

required for each scheme is plotted versus the total number

of sensitive random variables number, kR in the formula-

tion in Fig. 2. The curve between the points is plotted just

to show the trend of improvement in the efficiency. In

generating curves for Scheme M2, for a total number of

random variables kR, the most sensitive random variables

m is assumed to be the approximate value of kR/2. When kR
is an odd number, kR/2 is rounded up to the next integer.

Figure 2 clearly indicates that Scheme 3 and Alternate

Scheme M3 are now viable options to estimate reliability

of large structural systems.

Verification of IRSM-SORM

Before a new concept can be accepted, it requires verifi-

cations. The proposed concept is verified for different types

of problem. For this paper, two examples are given; one

relatively simple and the other is more difficult and com-

plicated. A commercially available computer program,

STATISTICA (StatSoft 2012), is used for the formulation

of response surface function. Another commercially

available computer program, COMREL (RCP 2003) is

used for the reliability evaluation using SORM.

Example 1: Laterally Loaded Pile

An onshore steel pipe–pile of length 100 m is considered to

be subjected to a lateral force, F = 750 kN to retain a ship

in its berth, as shown in Fig. 3. The outside radius, r and

the thickness, t of the pile are 30.0 and 1.0 cm, respec-

tively. The elastic modulus of pile made of steel,

EP = 2.01 9 108 kN/m2 and the modulus of soil subgrade

reaction, Kh = 1500 kN/m3. The statistical characteristics

of 5 random variables, as reported in the literature (Bednar

1986; NBoS 1980), are summarized in Table 2.

If the soil-pile system considered here is presented as a

beam on elastic foundation, the governing equation can be

expressed as (Poulus and Davis 1980):
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EPI(d
4ux=dz

4Þ þ Khux ¼ 0 ð10Þ

where, EP is elastic modulus of the pile; I is the moment of

inertia of the pile section;ux is the lateral drift, z is the

depth, and Kh is the lateral subgrade reaction.

Poulus and Davi (Poulus and Davis 1980) suggested an

explicit expression to estimate the top drift of the pile.

Assuming the permissible drift Xall to be 50 cm, the cor-

responding limit state function (LSF) for the top drift can

be expressed as:

g(X) ¼ Xall � ux
¼ Xall � 2FB=(2Khr) � [sinh(BL)cosh(BL)

� sin(BL)cos(BL)/D] ð11Þ

B ¼ ðrKh=2EPIÞ1=4 and D ¼ sinh2(BLÞ� sin
2
(BL) ð12Þ

All the variables were defined earlier.

Representing the pile by two-dimensional (2D) beam

elements resting on lateral spring elements and using a

commercially available finite element computer program

COSMOS/M (Structural Research and Analysis Corpora-

tion (SRAC) 2000), the lateral drift at the top of the pile,

ux is estimated as 22.58 cm. The same value can be

obtained by using Eq. (11). This validates the FE

representation.

Reliability Evaluation Using Proposed Different Schemes

Initially, using SD and second order polynomial without

cross terms, an AI-RS was constructed. The sensitivity

indexes for F, Kh, r, E and t are found to be -0.950, 0.225,

0.215, 0.020 and 0.016, respectively. For this illustrative

example, t with the lowest sensitivity index is considered to

be a deterministic variable at its mean value. The corre-

sponding LSF with 4 random variables for the top lateral

drift using Scheme 1 is found to be:

ĝðXÞ ¼ 50�ð2.5991 � 104 þ 104.40 � F� 77.54

� Kh�9.7881� 10�4 � r� 6.298 � 10�5 � E

�1.5844 � 10�2 � F2 þ 0.175 � K2
h þ 1.2683 � 10�5 � r2)

ð13Þ

Similar expressions for LSF for Schemes 2, M2, 3, M3

and Alternate Scheme M3 are generated. The reliability

indexes and the corresponding probabilities of failure are

then estimated using SORM. The results are summarized in

Table 3.

To generate a reference point for comparison, using 105

MCS and explicit LSF represented by Eq. (11), the prob-

ability of failure is estimated to be 2.32 9 10-2, denoted as

(MCS-4 RVs) in Table 3. The corresponding reliability

index can be shown to be 1.991. If all five random variables

are used in generating the LSF, the PF is found to be

2.33 9 10-2 (MCS-5 RVs), this is essentially the same as

that of with 4 random variables. This exercise clearly

indicates the benefit of reducing the size of the problem by

using the information on the sensitivity indexes. Using LSF

given by Eq. (11) and SORM, the reliability index is found

to be 1.990. For this particular simple problem, the relia-

bility indexes estimated by SORM and MCS with 105

simulations using LSF with 4 and 5 random variables are

essentially the same. This gives a very reasonable reference

ux

F x

KhL

z

Fig. 3 Laterally loaded pile-example 1

Table 2 Statistical characteristic of random variables- Example 1

Random variables Symbol Distribution Nominal Mean Bias COV Refs.

1 Lateral load F EV-I 750 kN 585 0.78 0.37 (NBS 1980)

2 Radius r Ln 0.30 m 0.30 1.00 0.10 (Bednar 1986)

3 Thickness t Ln 1.0 cm 1.0 1.00 0.05 (Bednar 1986)

4 Pile elastic modulus EP Ln 2.01 9 108 kN/m2 2.01 9 108 1.00 0.06 (NBS 1980)

5 Lateral sub grade reaction Kh Ln 1500 kN/m3 1725 1.15a 0.21a

a Data not available. Assumed parameters are based on judgment
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value against which other schemes proposed here need to

be compared.

The reliability indexes using Schemes 1, 2, and 3 found

to be 1.248, 1.979, and 2.003, respectively, as shown in

Table 3. They required 9, 15, and 25 deterministic evalu-

ations, respectively. As expected, Scheme 1 is very effi-

cient but will not satisfy the accuracy requirement. The

efficiency of Scheme 2 is improved by considering

Scheme M2 by adding the cross terms for the most sensi-

tive variables F, Kh, and r, denoted as Scheme M2-1

(modified Scheme 2 with F as the most significant vari-

able), M2-2 (modified Scheme 2 with F and Kh as the most

significant variable), and M2-3 (modified Scheme 2 with F,

Kh and r as the most significant variable), respectively, as

shown in Table 3. The corresponding reliability indexes

are 1.972, 1.979, and 1.979, requiring 12, 14, and 15

deterministic analyses, respectively. Adding more cross

terms to Scheme M2-2 or Scheme M2-3 did not improve

the reliability estimation. In all these cases, the estimated

reliability indexes are very similar to the reference value of

1.991 and reliability information is extracted using tens of

deterministic evaluations.

Reliability indexes using Scheme M3 with half and

quarter factorial points and Alternate Scheme M3 are found

to be 2.003, 1.998, and 2.092 using 17, 13, and 15 deter-

ministic analyses, as shown in Table 3. Their accuracy is

similar to Scheme 3 using 25 deterministic analyses.

Overall, the accuracies in all the schemes in M2 are little

inferior to that of all different schemes for M3.

Example 2: Coupled Shear Wall in High Rise

Building

In this example, a more complicated 2-D plane shear walls

problem with 11 random variables is considered, as

reported in(Smith and Coull 1991). The coupled shear wall

in a 20-story building was subjected to a uniformly dis-

tributed wind loading of intensity 16.5 kN/m, along the

height, as shown in Fig. 4. Information available in the

literature is used to characterize the statistical information

on all the random variables (JCSS 2000; Mirza and

MacGregor 1979), as summarized in Table 4.

The top drift of the coupled shear wall system is sug-

gested as (Smith and Coull 1991):

ux ¼
wH4

8EI
� f1� 1

K2
½1� 4=ðKaHÞ2 þ 8=ððKaHÞ4

coshðKaHÞÞð1þ KaH sinhðKaHÞ � coshðKaHÞÞ�g
ð14Þ

where

a ¼ ½12IeL2=ðb3hIÞ�0:5; K ¼ ½1þ AI=ðA1A2L
2Þ�0:5 ð15Þ

Ie ¼ Ib=ð1þ rÞ; r ¼ 12EIb=ðb2GAÞk; G ¼ E=ð2ð1þ vÞÞ
ð16Þ

A ¼ A1 þ A2; I ¼ I1 þ I2 ð17Þ
A1 ¼ t1 � w1; A2 ¼ t2 � w2 ð18Þ

I1 ¼ t1 � w3
1=12; I2 ¼ t2 � w3

2=12 ð19Þ

Table 3 Results of reliability analysis-example 1

Variables sensitivities b PF No. of calls

N
F Kh r E t

(i) Response surface

1 Second order polynomial -0.950 0.225 0.215 0.020 0.016 2.227 1.30 9 10-2 11

2 Scheme 1 -0.755 0.477 0.449 0.004 – 1.248 1.06 9 10-2 9

3 Scheme 2 -0.850 0.383 0.360 0.035 – 1.979 2.39 9 10-2 15

4 Scheme M2-1, H -0.846 0.387 0.364 0.036 – 1.972 2.43 9 10–2 12

Scheme M2-2, H, Kh -0.850 0.383 0.360 0.036 – 1.979 2.39 9 10-2 14

Scheme M2-3, H, Kh, r -0.850 0.383 0.360 0.035 – 1.979 2.39 9 10-2 15

5 Scheme 3 -0.847 0.393 0.357 0.035 – 2.003 2.26 9 10-2 25

Scheme M3, half -0.857 0.398 0.325 -0.027 – 2.003 2.26 9 10-2 17

Quarter -0.892 0.370 0.256 -0.048 – 1.998 2.29 9 10-2 13

6 Alternate Scheme M3 -0.892 0.370 0.256 -0.048 – 2.092 1.82 9 10-2 15

(ii) Explicit limit state

7 Monte Carlo-4 RVs 1.991 2.33 9 10-2 105

8 SORM-4 RVs -0.857 0.370 0.358 0.036 – 1.991 2.32 9 10-2 1

9 Monte Carlo-5 RVs 1.992 2.33 9 10-2 105

10 SORM-5 RVs -0.856 0.370 0.358 0.036 0.028 1.990 2.33 9 10-2 1
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where, t1, w1, t2, and w2 are the thickness and width of the

left and right walls, respectively; A1, A2, I1, and I2 are the

cross sectional areas and moment of inertia of the left and

right wall, respectively; b, L, h, and H are the clear span of

the beams, the distance between the centerlines of the two

walls, the story height, and the total height, respectively;

EIb, EIe are the true and equivalent flexural rigidity of the

connecting beam, respectively; k = 1.2 represents the

cross sectional shape factor for shear for the coupled beam

of a rectangular cross section; and E, G, v are the modulus

of elasticity, the shear modulus and Poisson‘s ratio,

respectively.

Problem Simplification

The drift ux is found to be 1.57 cm when the coupled shear

wall was discretized by 0.1 9 0.25 m rectangular elements

using COSMOS (Structural Research and Analysis Cor-

poration (SRAC) 2000), as shown in Fig. 4. The drift is

estimated to be 1.6 cm using Eq. (14). The allowable drift

is assumed to be H/2000 expressed in cm.

For this example with 11 random variables, to generate

second-order AI-RSs with SD without and with cross terms

will require the estimation of 23 and 78 coefficients,

respectively, a relatively challenging task. To minimize the

computational effort, initially only a first-order AI-RS is

generated requiring the estimation of 12 coefficients, and

the sensitivity indexes of all 11 random variables are cal-

culated. Only four variables w, E, w2, and t2 with sensi-

tivity indexes of -0.983, 0.180. 0.023, and 0.23,

respectively, are considered to be significant random

variables and all remaining other seven variables are con-

sidered to be deterministic at their mean values. The reli-

ability index using this first-order AI-RS is estimated to be

2.378.

Using Scheme 1, i.e., SD with second-order polynomial

without cross terms, the LSF for the lateral deflection at the

top of the frame is expressed as:

Detail A

0.1 0.25 m rectangular elements 

A

w
  =

16
.5

  k
N

/m h=
2.

8 
m

H =
56

 m

t2t1

w1 b w2

db

Fig. 4 Coupled shear wall-Example 2

Table 4 Statistical characteristic of random variables-example 2

Random variables Sym. Dist. Nominal Mean Bias COV Refs.

1 Wind loading w EV-I 16.5 kN/m 12.87 0.78 0.37 (NBS 1980)

2 The elastic modulus E Ln 36000 MPa 36000 1.0 0.15 (JCSS 2000)

3 Poisson‘s ratio v Ln 0.15 0.15 1.0 0.18 a

4 Left wall width w1 N 5.00 m 5.00 1.0 0.05 a

5 Left wall thickness t1 N 0.30 m 0.30 1.0 0.10 a

6 Right wall width w2 N 7.00 m 7.00 1.0 0.05 a

7 Right wall thickness t2 N 0.30 m 0.30 1.0 0.10 a

8 Coupled beam depth db N 0.40 m 0.40 1.0 0.02 (Mirza and MacGregor 1979)

9 Coupled beam thickness tb N 0.30 m 0.30 1.0 0.02 (Mirza and MacGregor 1979)

10 Span of coupled beam b N 2.00 m 2.00 1.0 0.01 (Mirza and MacGregor 1979)

11 Centerline distance L N 8.00 m 8.00 1.0 0.01 (Mirza and MacGregor 1979)

12 Story height h Deterministic 2.80 m

a Data not available. Assumed parameters are based on engineering judgment
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ĝðXÞ ¼ H=2000�ð�1875.64þ22.26� w� 8.59� 10�6

� E þ 518.66 � w2þ2.5081� 10�3 � t2

�0:22� w2�39.66 � w2
2�4.7780� 103 � t22Þ

ð20Þ

Similar to the previous example, the reliability index is

estimated to be 2.210 using Eq. (20) and SORM. The cor-

responding reliability index using 105MCS is estimated to be

2.209. If all 11 random variables are considered in the LSF,

the corresponding reliability indexes using SORM andMCS

are estimated to be 2.206 and 2.205, respectively. Obviously,

using only 4 instead of 11 did not change the estimation of the

reliability indexes considerably. The information is sum-

marized in Table 5. For this particular example, the relia-

bility index is found to be 2.205 using only 9 deterministic

evaluations using Scheme 1 (SD without cross terms in all

iterations) and SORM indicating Scheme 1 is good enough.

This indicates that Scheme 1 need not be completely elim-

inated for further consideration. As in Example 1, the relia-

bility indexes are also estimated using Schemes 1, 2, 3, M2

with three different schemes, M3 with half and quarter fac-

torial points and Alternate Scheme M3. The results are

summarized in Table 5.

Several important observations can be made from the

results. Scheme M3 (quarter) failed to estimate the relia-

bility index. The authors made similar observations dealing

with other problems. They will not recommend it if it is

used alone for the reliability estimation at this stage of their

study. For this illustrative complicated structural problem,

to reduce the size of the problem, the use of sensitivity

indexes using the first-order AI-RS is reasonable. Except

for Scheme M3 with quarter factorials points, reliability

indexes obtained for all different schemes are found to be

very similar to the reference value considered to be 2.209

obtained by 105 MCS with 4 random variables. The

deterministic evaluations for all these alternatives varied

between 9 and 25. The results clearly indicate that the

information on the reliability index can be extracted with

the reasonable accuracy for relatively small and large

structural problems using only tens of deterministic eval-

uations at highly intelligently selected points using the

proposed novel concept. The authors believe that they

proposed a novel alternative to classical MCS.

Conclusions

A novel concept is proposed to estimate the reliability of real

large Civil/Mechanical systems represented by finite ele-

ments. The intent of the proposed concept is to extract reli-

ability information by conducing only tens of deterministic

evaluations at very intelligently selected points instead of

thousands or millions particularly for structural systems

represented by finite elements to satisfy realistic behavior

requiring extensive computer time for a deterministic anal-

ysis. It integrates the basic SORM and a modified RSM

concept by eliminating its three basic weaknesses but keeps

the basic simplicity for everyday use by practicing engineers.

It is denoted as AI-RSM-SORM in this paper. The efficiency

of the integrated scheme is improved further by using

Table 5 Results of reliability

analysis-example 2
Variables sensitivities b PF N

w E w2 t2

(i) Response surface

1 First order polynomial -0.983 0.180 0.023 0.023 2.378 8.71 9 10-3 23

2 Scheme 1 -0.927 0.370 0.045 0.047 2.205 1.37 9 10-2 9

3 Scheme 2 -0.920 -0.380 0.063 0.069 2.193 1.42 9 10-2 15

Scheme M2-1 w -0.925 -0.374 0.050 0.054 2.198 1.40 9 10-2 12

Scheme M2-2 w, E, -0.921 -0.379 0.062 0.068 2.193 1.41 9 10-2 14

Scheme M2-3 w, E, w2 -0.920 -0.380 0.063 0.069 2.193 1.42 9 10-2 15

5 Scheme 3, -0.937 -0.344 0.043 0.047 2.119 1.70 9 10-2 25

6 Scheme M3

Half -0.929 -0.365 0.410 0.044 2.101 1.78 9 10-2 17

Quarter -0.103 0.161 -0.280 0.941 0.946 1.72 9 10-1 13

7 Alternate Scheme M3 -0.941 0.337 0.014 0.011 2.104 1.77 9 10-2 15

(ii) Explicit limit state

8 Monte Carlo-4 RVs 2.209 1.36 9 10-2 105

9 SORM-4 RVs -0.921 0.382 0.046 0.047 2.210 1.35 9 10-2 1

10 Monte Carlo-11 RVs 2.205 1.37 9 10-2 105

11 SORM-11 RVs -0.920 0.381 0.046 0.049 2.206 1.37 9 10-2 1
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sensitivity analysis and several advanced computational,

statistical, and factorial schemes. A new concept, denoted as

Alternate Scheme M3 is proposed to generate a response

surface using CCD by using edge points instead of factorial

points. Accuracy and efficiency of all the schemes are veri-

fied with the help of two examples; one is relatively simple

and the other is more complicated. For both examples, the

underlying reliabilities are estimated by using the basicMCS

since the necessary limit state functions can be expressed

mathematically in close form. The information is used to

develop the reference or benchmark value. The systems are

then represented by finite elements and all the schemes are

used to estimate the underlying reliability. The accuracies of

all the schemes are established by comparing the results with

the reference value. Schemes M2 and Alternate Scheme M3

appeared to be very accurate and efficient. Both schemes

extract reliability information using only tens of determin-

istic evaluations at very intelligently selected points without

sacrificing accuracy, for both relatively small and relatively

large structural systems considered in the paper. The concept

provides an alternative to classicalMCS, themajor objective

of the paper.
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