Skip to main content
Log in

Multi-objective optimization and evaluation of supercritical CO2 Brayton cycle for nuclear power generation

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The supercritical CO2 Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout, compact structure, and high cycle efficiency. Mathematical models of four Brayton cycle layouts are developed in this study for different reactors to reduce the cost and increase the thermohydraulic performance of nuclear power generation to promote the commercialization of nuclear energy. Parametric analysis, multi-objective optimizations, and four decision-making methods are applied to obtain each Brayton scheme’s optimal thermohydraulic and economic indexes. Results show that for the same design thermal power scale of reactors, the higher the core’s exit temperature, the better the Brayton cycle’s thermo-economic performance. Among the four-cycle layouts, the recompression cycle (RC) has the best overall performance, followed by the simple recuperation cycle (SR) and the intercooling cycle (IC), and the worst is the reheating cycle (RH). However, RH has the lowest total cost of investment (Ctot) of $1619.85 million, and IC has the lowest levelized cost of energy (LCOE) of 0.012 $/(kWh). The nuclear Brayton cycle system’s overall performance has been improved due to optimization. The performance of the molten salt reactor combined with the intercooling cycle (MSR-IC) scheme has the greatest improvement, with the net output power (Wnet), thermal efficiency ηt, and exergy efficiency (ηe) improved by 8.58%, 8.58%, and 11.21%, respectively. The performance of the lead-cooled fast reactor combined with the simple recuperation cycle scheme was optimized to increase Ctot by 27.78%. In comparison, the internal rate of return (IRR) increased by only 7.8%, which is not friendly to investors with limited funds. For the nuclear Brayton cycle, the molten salt reactor combined with the recompression cycle scheme should receive priority, and the gas-cooled fast reactor combined with the reheating cycle scheme should be considered carefully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://cstr.cn/31253.11.sciencedb.13640 and https://www.doi.org/https://doi.org/10.57760/sciencedb.13640.

Abbreviations

GFR:

Gas-cooled fast reactor

SFR:

Sodium-cooled fast reactor

LFR:

Lead-cooled fast reactor

MSR:

Molten salt reactor

SR:

Simple recuperation cycle

RC:

Recompression cycle

RH:

Re-heating cycle

IC:

Intercooling cycle

SC:

Specific cost

LCOE:

Levelized cost of energy

IRR:

Internal rate of return

PBP:

Payback period

SP:

Size parameters

APR:

Area per net output power

HX:

Heat exchanger

HTR:

High-temperature recuperator

LTR:

Low-temperature recuperator

MC:

Main compressor

DMM:

Decision-making method

NSGA:

Non-dominated sorting genetic algorithm

ORC:

Organic Rankine cycle

PC:

Pre-cooler

RC:

Recompressor

Turb:

Turbine

S-CO2BC:

Supercritical carbon dioxide Brayton cycle

A :

Area, m2

c :

Heat capacity, J/K

C :

Cost, $

CF:

Cash flow, $

d :

Flow channel diameter, m

D :

Hydraulic diameter, m

f :

Friction coefficient

h :

Specific enthalpy, kJ/kg

I :

Exergy destruction, W

L :

Channel length, m

m :

Mass flow rate, kg/s

p :

Pitch, mm

P :

Pressure, kPa

PR:

Pressure ratio

Q :

Heat energy, W

s :

Specific entropy, kJ/(kg K)

t :

Thickness, mm

T :

Temperature, K

V :

Volume flow, m2/s

W :

Work, kJ

0:

Ambient conditions

cold:

Cold fluid

hot:

Hot fluid

e:

Exergy

f:

Work fluid

net:

Net

i :

State point

in:

Inlet

min:

Minimum

max:

Maximum

out:

Outlet

tot:

Total

rev:

Revenues

xp:

Expenses

c:

Compressor

t:

Turbine

ε :

Surface roughness

η :

Efficiency

μ :

Kinematic viscosity

δ :

Relative roughness

ρ :

Density

α :

Heat transfer coefficient

References

  1. N. Bauer, I. Mouratiadou, G. Luderer et al., Global fossil energy markets and climate change mitigation–an analysis with REMIND. Clim. Change 136, 69–82 (2016). https://doi.org/10.1007/s10584-013-0901-6

    Article  ADS  Google Scholar 

  2. J. Koomey, N.E. Hultman, A reactor-level analysis of busbar costs for US nuclear plants, 1970–2005. Energy Policy 35, 5630–5642 (2007). https://doi.org/10.1016/j.enpol.2007.06.005

    Article  Google Scholar 

  3. S. Nagataki, N. Takamura, A review of the Fukushima nuclear reactor accident: radiation effects on the thyroid and strategies for prevention. Curr. Opin. Endocrinol. Diabetes Obes. 21, 384–393 (2014). https://doi.org/10.1097/MED.0000000000000098

    Article  Google Scholar 

  4. F. Bertrand, N. Marie, A. Bachrata et al., Simplified criteria for a comparison of the accidental behaviour of Gen IV nuclear reactors and of PWRS. Nucl. Eng. Des. 372, 110962 (2021). https://doi.org/10.1016/j.nucengdes.2020.110962

    Article  Google Scholar 

  5. P. Hejzlar, N.E. Todreas, E. Shwageraus et al., Cross-comparison of fast reactor concepts with various coolants. Nucl. Eng. Des. 239, 267–291 (2009). https://doi.org/10.1016/j.nucengdes.2009.07.007

    Article  Google Scholar 

  6. J.E. Kelly, Generation IV international forum: a decade of progress through international cooperation. Prog. Nucl. Energy 77, 240–246 (2014). https://doi.org/10.1016/j.pnucene.2014.02.010

    Article  Google Scholar 

  7. Y. Ahn, S.J. Bae, M. Kim et al., Review of supercritical CO2 power cycle technology and current status of research and development. Nucl. Eng. Technol. 47, 647–661 (2015). https://doi.org/10.1016/j.net.2015.06.009

    Article  Google Scholar 

  8. H. Tian, Z. Xu, P. Liu et al., How to select regenerative configurations of CO2 transcritical Rankine cycle based on the temperature matching analysis. Int. J. Hydrog. Energy 44, 2560–2579 (2020). https://doi.org/10.1002/er.4945

    Article  Google Scholar 

  9. R.V. Padilla, R. Benito, W. Stein, An exergy analysis of recompression supercritical CO2 cycles with and without reheating. Energy Procedia 69, 1181–1191 (2015). https://doi.org/10.1016/j.egypro.2015.03.201

    Article  Google Scholar 

  10. I. Pioro. Handbook of Generation-IV Nuclear Reactors (American Society of Mechanical Engineers Digital Collection, 2017). https://doi.org/10.1016/C2014-0-01699-1

  11. H. Li, Y. Zhang, M. Yao et al., Design assessment of a 5 MW fossil-fired supercritical CO2 power cycle pilot loop. Energy 174, 792–804 (2019). https://doi.org/10.1016/j.energy.2019.02.178

    Article  Google Scholar 

  12. B.S. Oh, Y.H. Ahn, H. Yu et al., Safety evaluation of supercritical CO2 cooled micro modular reactor. Ann. Nucl. Energy 110, 1202–1216 (2017). https://doi.org/10.1016/j.energy.2019.02.178

    Article  Google Scholar 

  13. J.H. Park, H.S. Park, J.G. Kwon et al., Optimization and thermodynamic analysis of supercritical CO2 Brayton recompression cycle for various small modular reactors. Energy 160, 520–535 (2018). https://doi.org/10.1016/j.energy.2018.06.155

    Article  Google Scholar 

  14. Y.-N. Ma, P. Hu, C.-Q. Jia et al., Thermo-economic analysis and multi-objective optimization of supercritical Brayton cycles with CO2-based mixtures. Appl. Therm. Eng. 219, 119492 (2023). https://doi.org/10.1016/j.applthermaleng.2022.119492

    Article  Google Scholar 

  15. S.J. Bae, Y. Ahn, J. Lee, et al., Hybrid system of Supercritical Carbon Dioxide Brayton cycle and carbon dioxide rankine cycle combined fuel cell, in Turbo Expo: Power for Land, Sea, and Air, vol. 45660 (American Society of Mechanical Engineers, 2014), p. V03BT36A004

  16. K. Wang, Y.-L. He, H.-H. Zhu, Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: a review and a comprehensive comparison of different cycle layouts. Appl. Energy 195, 819–836 (2017). https://doi.org/10.1016/j.apenergy.2017.03.099

    Article  ADS  Google Scholar 

  17. L. Shi, H. Tian, G. Shu, Multi-mode analysis of a CO2-based combined refrigeration and power cycle for engine waste heat recovery. Appl. Energy 264, 114670 (2020). https://doi.org/10.1016/j.apenergy.2020.114670

    Article  Google Scholar 

  18. S. Kim, Y. Cho, M.S. Kim et al., Characteristics and optimization of supercritical CO2 recompression power cycle and the influence of pinch point temperature difference of recuperators. Energy 147, 1216–1226 (2018). https://doi.org/10.1016/j.energy.2017.12.161

    Article  Google Scholar 

  19. J. Song, X.-S. Li, X.-D. Ren et al., Performance analysis and parametric optimization of supercritical carbon dioxide (S-CO2) cycle with bottoming organic Rankine cycle (ORC). Energy 143, 406–416 (2018). https://doi.org/10.1016/j.energy.2017.10.136

    Article  Google Scholar 

  20. X. Bian, X. Wang, R. Wang et al., A comprehensive evaluation of the effect of different control valves on the dynamic performance of a recompression supercritical CO2 Brayton cycle. Energy 248, 123630 (2022). https://doi.org/10.1016/j.energy.2022.123630

    Article  Google Scholar 

  21. R. Wang, X. Li, Z. Qin et al., Dynamic response and emergency measures under failure conditions of sCO2 Brayton cycle. Energy Sci. Eng. 10, 4726–4746 (2022). https://doi.org/10.1002/ese3.1300

    Article  Google Scholar 

  22. K. Wang, M.-J. Li, J.-Q. Guo et al., A systematic comparison of different S-CO2 Brayton cycle layouts based on multi-objective optimization for applications in solar power tower plants. Appl. energy. 212, 109–121 (2018). https://doi.org/10.1016/j.apenergy.2017.12.031

    Article  ADS  Google Scholar 

  23. F.G. Battisti, J.M. Cardemil, A.K. da Silva, A multivariable optimization of a Brayton power cycle operating with CO2 as working fluid. Energy 112, 908–916 (2016). https://doi.org/10.1016/j.energy.2016.06.118

    Article  Google Scholar 

  24. J. Wang, Z. Sun, Y. Dai, S. Ma, Parametric optimization design for supercritical CO2 power cycle using genetic algorithm and artificial neural network. Appl. Energy 87, 1317–1324 (2010). https://doi.org/10.1016/j.apenergy.2009.07.017

    Article  ADS  Google Scholar 

  25. M.M. Naserian, S. Farahat, F. Sarhaddi, Exergoeconomic multi objective optimization and sensitivity analysis of a regenerative Brayton cycle. Energy Convers. Manag. 117, 95–105 (2016). https://doi.org/10.1016/j.enconman.2016.03.014

    Article  Google Scholar 

  26. Y. Li, G. Liu, X. Liu et al., Thermodynamic multi-objective optimization of a solar-dish Brayton system based on maximum power output, thermal efficiency and ecological performance. Renew. Energ. 95, 465–473 (2016). https://doi.org/10.1016/j.renene.2016.04.052

    Article  Google Scholar 

  27. O.L. De Weck, Multiobjective optimization: history and promise, in The Third China-Japan-Korea Joint Symposium on Optimization of Structural and MechanICal Systems (Kanazawa, Japan, 2004)

  28. Z. Hu, D. He, H. Zhao, Multi-objective optimization of energy distribution in steel enterprises considering both exergy efficiency and energy cost. Energy 263, 125623 (2023). https://doi.org/10.1016/j.energy.2022.125623

    Article  Google Scholar 

  29. Y. Li, S. Liao, G. Liu, Thermo-economic multi-objective optimization for a solar-dish Brayton system using NSGA-II and decision making. Int. J. Elec. Power. 64, 167–175 (2015). https://doi.org/10.1016/j.ijepes.2014.07.027

    Article  Google Scholar 

  30. R. Kumar, S. Kaushik, R. Kumar et al., Multi-objective thermodynamic optimization of an irreversible regenerative Brayton cycle using evolutionary algorithm and decision making. Ain. Shams. Eng. J. 7, 741–753 (2016). https://doi.org/10.1016/j.asej.2015.06.007

    Article  Google Scholar 

  31. R.V. Rao, H.S. Keesari, Rao algorithms for multi-objective optimization of selected thermodynamic cycles. Eng. Comput. 37, 3409–3437 (2021). https://doi.org/10.1007/s00366-020-01008-9

    Article  Google Scholar 

  32. V. Dostal, M.J. Driscoll, P. Hejzlar, A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors (MIT-ANP-TR-100, Cambridge, 2004). https://doi.org/10.13182/NT154-265v

    Book  Google Scholar 

  33. Y. Chang, P. Finck, C. Grandy et al., Advanced Burner Test Reactor Preconceptual Design Report (Argonne National Lab, Lemont, 2008)

    Book  Google Scholar 

  34. K. Schultz, L. Brown, G. Besenbruch et al., Large-Scale Production of Hydrogen by Nuclear Energy for the Hydrogen Economy (General Atomics, San Diego, 2003)

    Book  Google Scholar 

  35. A. Bejan, G. Tsatsaronis, M.J. Moran, Thermal Design and Optimization (Wiley, New York, 1995). https://doi.org/10.1016/s0360-5442(96)90000-6

    Book  Google Scholar 

  36. M. Marchionni, G. Bianchi, S.A. Tassou, Techno-economic assessment of Joule–Brayton cycle architectures for heat to power conversion from high-grade heat sources using CO2 in the supercritical state. Energy 148, 1140–1152 (2018). https://doi.org/10.1016/j.energy.2018.02.005

    Article  Google Scholar 

  37. Y. Cao, H.N. Rad, D.H. Jamali et al., A novel multi-objective spiral optimization algorithm for an innovative solar/biomass-based multi-generation energy system: 3E analyses, and optimization algorithms comparison. Energy. Convers. Manag. 219, 112961 (2020). https://doi.org/10.1016/j.enconman.2020.112961

    Article  Google Scholar 

  38. X. Wang, Y. Guo, Consistency analysis of judgment matrix based on G1 method. Chin. J. Manag. Sci. 14, 65–70 (2012). https://doi.org/10.3321/j.issn:1003-207X.2006.03.012

    Article  Google Scholar 

  39. K. Tuček, J. Carlsson, H. Wider, Comparison of sodium and lead-cooled fast reactors regarding reactor physics aspects, severe safety and economical issues. Nucl. Eng. Des. 236, 1589–1598 (2006). https://doi.org/10.1016/j.nucengdes.2006.04.019

    Article  Google Scholar 

  40. C. Handwerk, M. Driscoll, P. Hejzlar, Use of Beryllium Oxide to Shape Power and Reduce Void Reactivity in Gas-Cooled Fast Reactors, ANS Topical Meeting on Reactor Physics (Vancouver, Canada, 2006)

    Google Scholar 

  41. E. Hoffman, W. Yang, R. Hill, Preliminary Core Design Studies for the Advanced Burner Reactor Over a Wide Range of Conversion Ratios (Argonne National Lab, Lemont, 2008)

    Book  Google Scholar 

  42. A. Nikiforova, P. Hejzlar, N.E. Todreas, Lead-cooled flexible conversion ratio fast reactor. Nucl. Eng. Des. 239, 2596–2611 (2009). https://doi.org/10.1016/j.nucengdes.2009.07.013

    Article  Google Scholar 

  43. S. Mondal, S. De, CO2 based power cycle with multi-stage compression and intercooling for low temperature waste heat recovery. Energy 90, 1132–1143 (2015). https://doi.org/10.1016/j.energy.2015.06.060

    Article  Google Scholar 

  44. W.C. Williams, P. Hejzlar, P. Saha, Analysis of a convection loop for GFR post-LOCA decay heat removal. Nucl. Sci. Eng. 1, 753–762 (2004). https://doi.org/10.1115/icone12-49360

    Article  Google Scholar 

  45. H. Li, Y. Yang, Z. Cheng et al., Study on off-design performance of transcritical CO2 power cycle for the utilization of geothermal energy. Geothermics 71, 369–379 (2018). https://doi.org/10.1016/j.geothermics.2017.09.002

    Article  ADS  Google Scholar 

  46. I.E. Idelchik, Handbook of Hydraulic Resistance (Washington, Seattle, 1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by G-PY, Y-FC, NZ, and P-JM. The first draft of the manuscript was written by G-PY and Y-FC and supervised by P-JM, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Guo-Peng Yu or Ping-Jian Ming.

Ethics declarations

The authors declare that they have no competing interests.

Additional information

This work was supported of National Natural Science Foundation of China Fund (No. 52306033), State Key Laboratory of Engines Fund (No. SKLE-K2022-07), and the Jiangxi Provincial Postgraduate Innovation Special Fund (No. YC2022-s513).

Appendix: Nusselt number and friction factor calculation

Appendix: Nusselt number and friction factor calculation

For the semi-circular straight channel PCHE, the Nussle number is calculated by the Gnielinski correlation [44]. The Nussle number in Eq. (13) is calculated by Eqs. (A1)–(A3).

$${{Nu}} = 4.089\,\left( {{{Re}} < 2300} \right)$$
(A1)
$${{Nu}} = 4.089 + \frac{{{{Nu}}_{{{{Re}} = 5000}} - 4.089}}{5000 - 2300}\left( {{{Re}} - 2300} \right)\,\,\left( {2300 \leqslant {{Re}} < 5000} \right)$$
(A2)
$${{Nu}} = \frac{{\left( {f_{{\text{d}}} /8} \right)\left( {{{Re}} - 1000} \right){{Pr}}}}{{1 + 12.7\left( {{{Pr}}^{2/3} - 1} \right)\sqrt {f_{{\text{d}}} /8} }}\,\,\left( {{{Re}} \geqslant 5000} \right)$$
(A3)
$$f_{{\text{d}}} = \left( {\frac{1}{{1.8\log_{10} \left( {{{Re}}} \right) - 1.5}}} \right)^{2}$$
(A4)

The friction factor (f) used for the Darcy–Weisbach equation [Eq. (16)] depends on the relative roughness of the channels [Eq. (A5)] and the Reynolds number. The Reynolds number from laminar to turbulent flow is calculated by Eqs. (A6)–(A9).

$$\delta = \frac{\varepsilon }{d}$$
(A5)
$${{Re}}_{0} = \left\{ {\begin{array}{*{20}c} {2000,} & {\delta < 0.007} \\ {754\exp \left( {0.0065/\delta } \right),} & {\delta \ge 0.007} \\ \end{array} } \right.$$
(A6)
$${{Re}}_{1} = \left\{ {\begin{array}{*{20}c} {2000,} & {\delta < 0.007} \\ {1160\left( {1/\delta } \right)^{0.11} ,} & {\delta \ge 0.007} \\ \end{array} } \right.$$
(A7)
$${{Re}}_{2} = 2090\left( {1/\delta } \right)^{0.0635}$$
(A8)
$${{Re}}_{3} = 441.19\delta^{ - 1.1772}$$
(A9)

The friction factor (f) in Eq. (16) is calculated by Eq. (35) [45].

$$f = \frac{64}{{Re}}\,\,(Re < Re_{0} )$$
(A10)
$$f = \left\{ {\begin{array}{*{20}c} {0.032 + 3.895 \times 10^{ - 7} \left( {{{Re}} - 2000} \right),} & {\delta_{{\text{rel }}} < 0.007} \\ {4.4{{Re}}^{ - 0.595} \exp \left( { - 0.00275/\delta_{{\text{rel }}} } \right),} & {\delta_{{\text{rel }}} \ge 0.007} \\ \end{array} } \right.\,\,\,\left( {{{Re}}_{\text{0}} < {{Re}} < {{Re}}_{\text{1}} } \right)$$
(A11)

When Re1 > Re > Re2, the f is obtained from Eq. (A12), where f1 is obtained from the formula given by Idelchik [46], as shown in Eq. (A13). The Colebrook–White correlation [44] is used to calculate fi, and fn is calculated by iteration. When the error between fi and fn is less than 0.01, it can be assumed that fi = fn. Eqs. (A16)–(A19) use the same calculation method.

$$f = \left( {f_{2} - f_{1} } \right)\exp \left\{ { - \left[ {0.0017\left( {{{Re}}_{2} - {{Re}}} \right)} \right]^{2} } \right\} + f_{1}$$
(A12)
$$f_{1} = \left\{ {\begin{array}{*{20}c} {0.032,} & {\delta < 0.007} \\ {0.075 - \left( {\frac{0.0109}{{\delta_{ \, } 0.286}}} \right),} & {\delta \ge 0.007} \\ \end{array} } \right.$$
(A13)
$$f_{i} = 0.11\left( {\delta + 68/{{Re}}_{2} } \right)^{0.25}$$
(A14)
$$f_{n} = \left[ {\frac{1}{{2\log_{10} \left( {\frac{2.51}{{{{Re}}_{2} \sqrt {f_{{\text{i}}} } }} + \frac{\delta }{3.7}} \right)}}} \right]^{2}$$
(A15)

When \({{Re}}_{2} < {{Re}} < {{Re}}_{3}\)

$$f_{i} = 0.11\left( {\delta + 68/{{Re}}_{2} } \right)^{0.25}$$
(A16)
$$f_{n} = \left[ {\frac{1}{{2\log_{10} \left( {\frac{2.51}{{{{Re}}\sqrt f_{i} }} + \frac{\delta }{3.7}} \right)}}} \right]^{2}$$
(A17)

When \({{Re}} > {{Re}}_{3}\)

$$f_{i} = 0.11\left( {\delta + 68/{{Re}}_{3} } \right)^{0.25}$$
(A18)
$$f_{n} = \left[ {\frac{1}{{2\log_{10} \left( {\frac{2.51}{{{{Re}}_{3} \sqrt {f_{i} } }} + \frac{\delta }{3.7}} \right)}}} \right]^{2}$$
(A19)

For more information on the above equations, it is recommended to refer to the references cited in Appendix.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, GP., Cheng, YF., Zhang, N. et al. Multi-objective optimization and evaluation of supercritical CO2 Brayton cycle for nuclear power generation. NUCL SCI TECH 35, 22 (2024). https://doi.org/10.1007/s41365-024-01363-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-024-01363-y

Keywords

Navigation