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Abstract
The pseudo-rapidity distributions of the charged particles produced in the asymmetric collision systems p+Al, p+Au and 3
He+Au at 

√

s
NN

= 200 GeV are evaluated in the framework of a fireball model with Tsallis thermodynamics. The fireball 
model assumes that the experimentally measured particles are produced by fireballs following the Tsallis distribution and 
it can effectively describe the experimental data. Our results as well as previous results for d+Au collisions at 

√

s
NN

= 200 
GeV and p+Pb collisions at 

√

s
NN

= 5.02 TeV validate that the fireball model based on Tsallis thermodynamics can provide 
a universal framework for pseudo-rapidity distribution of the charged particles produced in asymmetric collision systems. We 
predict the centrality dependence of the total charged particle multiplicity in the p+Al, p+Au and 3He+Au collisions. Addi-
tionally, the dependences of the fireball model parameters ( y

0a , y0A , �a and �A ) on the centrality and system size are studied.
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1  Introduction

High-energy heavy-ion collisions provide a unique way to 
understand the origin of the universe. However, their pro-
cesses cannot be directly observed in experiments. We can 
only study the collision process indirectly by analyzing the 
properties of the final particles produced in the collisions. 
The pseudo-rapidity distribution of charged particles is one 
of the important experimental observables. The study of this 
observable could lead to a better understanding of the prop-
erties of the particles produced in the collisions, the particle 
production mechanism and so on. There have been numerous 
works in previous studies using different models, such as 
HIJING [1], AMPT [2–4], EPOS-LHC [5], a multi-source 
thermal model [6, 7], a new revised Landau hydrodynam-
ics model [8], a 1 + 1-dimensional hydrodynamics model 
[9, 10], a dynamical initial state model coupled to (3 + 1)D 
viscous relativistic hydrodynamics [11] and so on, to analyze 
the existing experimental data of pseudo-rapidity distribu-
tions of the charged particles [12–30]. Although these mod-
els are based on different physical ideas, valuable physical 
information on the collision process has been extracted and 
learned.

Recently, a fireball model based on Tsallis thermodynam-
ics was utilized to analyze the pseudo-rapidity distribution 
of charged particles measured in high-energy heavy-ion 
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collisions [31–33]. In our previous works [32, 33], we used 
the fireball model to study the pseudo-rapidity distributions 
of the charged particles produced in p+p(p ) collisions for 
energies ranging from 

√

sNN = 23.6 GeV to 13 TeV and 
A+A collisions at the RHIC and LHC and extended the 
fireball model to the asymmetric collision systems, i.e., 
d+Au collisions at 

√

sNN = 200 GeV and p+Pb collisions at 
√

sNN = 5.02 TeV, by considering the asymmetric collision 
geometry configuration. In this paper, we utilize recently 
published data from the PHINEX Collaboration [30] at 
RHIC to systematically study the pseudo-rapidity distribu-
tions of the charged particles produced in asymmetric colli-
sion systems, including p+Al, p+Au and 3He+Au collisions 
at 
√

sNN = 200 GeV. We also predict the total multiplicities 
of the charged particles from the fireball model and study 
their centrality dependence. Further, we analyze the cen-
trality and system size dependencies of the fireball model 
parameters obtained from the pseudo-rapidity distributions 
of the charged particles.

The paper is organized as follows. In Sect. 2, the fireball 
model with Tsallis thermodynamics is briefly introduced. In 
Sect. 3, the fitting results of the fireball model and the total 
charged particle multiplicities extracted from the fireball 
model are shown. The dependences of the model parameters 
on the centrality and size of the collision systems are also 
presented. A brief conclusion is drawn in Sect. 4.

2 � Theoretical descriptions

In the self-consistent Tsallis thermodynamics, the Tsallis 
distribution is proposed as a generalization of the Boltz-
mann-Gibbs distribution [34]. To describe the transverse 
momentum spectrum of particles, the Tsallis distribution is 
written as [31–33]

where g is the particle state degeneracy, V is the volume, 
mT =

√

m2

0
+ p2

T
 is the transverse mass and m0 is the particle 

rest mass, y is the rapidity, q is the entropic factor, which 
measures the non-additivity of the entropy [34, 35], � is the 
chemical potential and T is the temperature. The Boltzmann 
distribution is recovered when q = 1 . We take � = 0 because 
the multiplicities of �+ and �− are equal and they are the 
majority of particles produced in the collision systems con-
sidered. For the middle rapidity y ≈ 0 , Eq. (1) can be rewrit-
ten as

(1)

d
2N

2�pTdpTdy
=gV

mT cosh y

(2�)3

×

[

1 + (q − 1)
mT cosh y − �

T

]−
q

q−1

,

The parameters q and T are extracted from the experimental 
transverse momentum spectrum of the particles.

In the fireball model with Tsallis thermodynamics [31–33], 
the particles measured in the experiment were produced by 
fireballs following Tsallis distribution Eq. (1). The density 
distribution of these fireballs in the rapidity space is �(yf) , 
where yf is the rapidity of the fireball. Therefore the transverse 
momentum spectrum of particles can be written as

where N is the total particle multiplicity and A is the nor-
malization constant such that

Sometimes, the experimental data are measured in the 
pseudo-rapidity � space. To describe the experimental data 
dN

d�
 , we substitute the relation between rapidity and pseudo-

rapidity [36]

into Eq. (3) and integrate the transverse momentum in the 
equation to obtain [32, 33]

where

Because of the term of 
√

1 −
m2

0

m2

T
cosh

2 y
 , Eq. (6) cannot be 

analytically integrated over pT and it is done numerically.
In this paper the asymmetric collision systems are stud-

ied, and the distribution �(yf) is assumed to be the sum of 
two asymmetric q-Gaussian functions [33],

(2)
d
2N
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(2�)3
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where y0a(A) and �a(A) are the centroid position and width of 
the fireball distribution in the direction of the light (heavy) 
nucleus beam, respectively. The normalization of Eq. (8) is 
handled by the normalization constant A in Eq. (3). x is the 
parameter to characterize the extent of asymmetry, which 
was first proposed in our previous work [33]. In this work, 
we take q� = q as in [31–33]. A representative figure of Eq. 
(8) is shown in Appendix 1 with the parameters obtained for 
the p+Al collisions at 0-5% centrality and 

√

sNN = 200 GeV.

3 � Results and discussion

Because the data of the transverse momentum spectra of 
the charged particles produced in p+Al, p+Au and 3He+Au 
collisions at 

√

sNN = 200 GeV have not been released yet, 
the data of the transverse momentum spectra of �0 produced 
from these collisions are obtained from [37] in this study. 
Using Eq. (2) by taking g = 1 and V as a free parameter, the 
parameters T and q for the Tsallis distribution are extracted 
and listed in Table 2 in Appendix 2. A representative figure 
of the transverse momentum spectra of �0 for p+Al col-
lisions at 

√

sNN = 200GeV is shown in Appendix 3. It is 
worth noting that the transverse momentum spectrum of 
�
0 is very similar to that of �± at 

√

sNN = 200 GeV for a 
given collision centrality, and the temperature parameter 
T extracted from �0 should reasonably characterize the 

(8)

�

�

yf
�

=
1

√

2��a

�

1 +
�

q� − 1
�

�

yf − y0a
�2

2�2
a

�−
1

q�−1

+
x

√

2��A

�

1 +
�

q� − 1
�

�

yf + y0A
�2

2�2

A

�−
1

q�−1

,

property of the collision system. We take the parameters 
T and q from the closest centrality when the centrality of 
the particle transverse momentum spectrum and centrality 
of the charged particle pseudo-rapidity distribution are not 
the same. These two parameters and the fireball model with 
Tsallis thermodynamics, Eqs. (6) and (8), are then utilized 
to study the pseudo-rapidity distribution of the charged par-
ticles produced in the collisions. The corresponding values 
of x in Eq. (8) are also listed in Table 3 in Appendix 2.

In Figs. 1, 2 and 3, the results of the pseudo-rapidity 
distributions of the charged particles from the fireball 
model with Tsallis thermodynamics for different centrality 
bins in p+Al, p+Au and 3He+Au collisions at 

√

sNN = 200 
GeV are shown. The fireball model effectively describes 
the experimental data within the errors. Notably, the data 
quality of the pseudo-rapidity distributions of the charged 
particles is not as good as that for the d+Au collisions at 

Fig. 1   (Color online) The pseudo-rapidity distributions of the charged 
particles produced in p+Al collisions at 

√

s
NN

= 200 GeV for differ-
ent centralities. The symbols are experimental data taken from [30]. 
The curves are the results from Eqs. (6) and (8)

Fig. 2   (Color online) Same as Fig.  1, but for p+Au collisions at 
√

s
NN

= 200 GeV

Fig. 3   (Color online) Same as Fig.  1, but for 3He+Au collisions at 
√

s
NN

= 200 GeV



	 J.-Q. Tao et al.

1 3

172  Page 4 of 8

√

sNN = 200 GeV shown in [33], i.e., in terms of larger 
errors, a fewer number of data points as well as a lower 
pseudo-rapidity coverage, which leads to larger uncer-
tainties to the fireball model parameters and affects our 
analyses of the fireball model parameters versus collision 
centrality and the collision system size to some extent 
later in the following. The pseudo-rapidity distribution of 
the charged particles for centrality 5–10% is lower than 
the case for centrality 10–20% in some pseudo-rapidity 
regions for the 3He+Au collisions, which is observed 
in Fig. 3. A larger x at centrality 5–10% compared with 
the others for the 3He+Au collisions is also observed in 
Table 3 in Appendix 2. We emphasize that the same fitting 
protocol is applied for all the pseudo-rapidity distribu-
tion data of the charged particles. Because the collision 
system is asymmetric, the pseudo-rapidity distribution 
of the charged particles has significant forward/backward 
asymmetry. Fewer particles are produced in the direc-
tion of the light nucleus (p, 3He) beam compared to the 
heavy nucleus (Al, Au) beam. As the d+Au collision sys-
tem at 

√

sNN = 200 GeV and the p+Pb collision system at 
√

sNN = 5.02 TeV we studied in [33], the pseudo-rapidity 
distributions of the charged particles produced by these 
collision systems also become more symmetric from the 
central to peripheral collisions. This is because the periph-
eral collisions for asymmetric collision systems are more 
similar to the symmetric p+p collisions according to col-
lision geometry.

We then evaluate the centrality dependence of the total 
multiplicities of the charged particles produced in these col-
lision systems. Integrating Eq. (6) over the � ∈ [−10, 10] we 
obtain the total multiplicity of the charged particles for each 
centrality from the fireball model. Because the correspond-
ing experimental data are not yet available, we only analyze 
the results extracted from the fireball model and treat them 
as predictions. Figure 4 shows the total multiplicities of the 
charged particles calculated from the fireball model versus 
the collision centrality c. c = 0 represents the most central 
collisions, and c = 1 represents the most peripheral colli-
sions. It can be observed that the fitting function taken from 
[14] can effectively describe the centrality dependence of the 
total multiplicities of the charged particles. As the central-
ity changes from the central to peripheral collisions, fewer 
charged particles are produced.

We also analyze both the centrality and system size 
dependence of the parameters ( y0a , y0A , �a and �A ) of the 
fireball model. In Fig. 5 the dependence of the fireball model 
parameters on the collision centrality in the p+Al, p+Au and 
3He+Au collisions at

√

sNN = 200 GeV is shown. Inspired by 
the linear relation of the centrality dependence of the fireball 
model parameters for d+Au collisions at 

√

sNN = 200 GeV 
and p+Pb collisions at 

√

sNN = 5.02 TeV shown in Fig. 12 

of our previous work [33], the linear fittings are performed 
to guide the eyes in Fig. 5 and the fitting functions are listed 
in Table 1. The negative and positive slopes of the linear 
fittings for the fireball model parameters (y0a, y0A and �A) 
versus centrality are similar to those of the d+Au and p+Pb 
collisions in [33]. In the following discussion, the results for 
d+Au and p+Pb are obtained from [33]. It can be observed 
that the slopes of the linear fittings for parameter y0a versus 
centrality are positive and the corresponding slopes of the 
linear fittings for parameter y0A versus centrality are nega-
tive for the p+Al, p+Au and d+Au collisions at 

√

sNN = 200 
GeV. However, the slopes of the linear fittings for parame-
ters (y0a, y0A) reverse the signs, respectively, for the 3He+Au 
collision at 

√

sNN = 200 GeV compared to the above-men-
tioned cases. The slopes of the linear fittings for parameters 
(y0a, y0A) are positive for p+Pb at 

√

sNN = 5.02 TeV. It can 
also be observed that there is a universal trend with increas-
ing centrality for parameter �a(A) except the lightest collision 
system p+Al, i.e., �a increases with increasing centrality in 
the direction of the light nucleus beam and �A decreases with 

Fig. 4   Total charged particle multiplicities produced in the p+Al, p+Au 
and 3He+Au collisions at 

√

s
NN

= 200 GeV versus the collision central-
ity c. The squares are the fireball model results. The lines are the fitting 
results. The fitting function is from [14] and specified in the legend
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increasing centrality in the direction of the heavy nucleus 
beam. In the p+Al collision system, �a and �A have opposite 
trends with increasing centrality to their counterparts in the 

other collision systems. These different patterns indicate the 
complex dynamics in the asymmetric collisions relevant to 

Fig. 5   (Color online) Centrality 
dependence of model param-
eters y

0a , y0A , �a and �A in p+Al, 
p+Au and 3He+Au collision 
at 
√

s
NN

= 200 GeV. The lines 
are the linear fit results to guide 
the eyes

Fig. 6   (Color online) Colli-
sion system size dependence 
of model parameters y

0a , y0A , 
�a , �A for p+p, p+Al (0-5%), 
p+Au (0-5%), d+Au (0-20%), 
3He+Au (0-5%) and Au+Au 
(0-6%) collisions at 

√

s
NN

= 200 
GeV. The parameters for the 
p+p, d+Au and Au+Au colli-
sions are taken from [33]

Table 1   Results of the linear 
fits are shown in Fig. 5. The c 
represents the centrality

System (GeV) y
0a �a y

0A �A

p+Al 200 2.32c+ 1.33 −0.19c + 1.57 −2.13c + 2.04 1.51c + 1.32
p+Au 200 0.61c+ 1.16 0.56c+ 1.09 −0.69c + 2.19 −0.27c + 1.95
3He+Au 200 −0.60c + 1.96 2.03c+ 0.26 0.32c+ 1.63 −1.21c + 2.32
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the combinations of the projectile and target as well as the 
collision energy, which needs more investigations.

Figure 6 shows the collision system size dependence 
of the fireball model parameters at 

√

sNN = 200 GeV. 
For collision systems other than p+p, the parameters of 
the most central collisions are considered. In the p+p 
and Au+Au collisions, the parameters y0a = y0A = y0 , 
�a = �A = � , where y0 and � are the rapidity centroid 
and width of fireball distribution in the symmetric col-
lision system, as detailed in [33]. It can be deduced that 
when the light nucleus is p, y0a decreases as the size of 
the heavy nucleus increases, whereas y0A shows the oppo-
site trend. This indicates that a larger heavy nucleus has 
stronger stopping power for p. When the heavy nucleus is 
Au, y0a increases as the size of the light nucleus increases, 
whereas y0A shows the opposite trend. This means that a 
larger light nucleus is more difficult to stop by Au but has 
a stronger stopping power for Au. For parameters �a and 
�A , no conclusive patterns are observed. We expect that 
more discussions can be added when the data quality of 
the pseudo-rapidity distributions of the charged particles is 
improved by experimentalists. These phenomena manifest 
the complex dynamics in the asymmetric collisions.

4 � Summary

In this paper, we studied the pseudo-rapidity distributions 
of the charged particles produced in p + Al, p + Au and 
3 He + Au collisions at 

√

sNN = 200 GeV using the fireball 
model with Tsallis thermodynamics. The model can well 
fit the experimental data from the asymmetric collisions. 
We also extracted the total multiplicities of the charged par-
ticles from the fireball model as predictions and analyzed 
their dependence on collision centrality. Notably, the data 
quality of the pseudo-rapidity distributions of the charged 
particles produced in the p + Al, p + Au and 3 He + Au 
collisions at 

√

sNN = 200 GeV affected our results to some 
extent. Combining our previous results of d+Au collisions at 
√

sNN = 200 GeV and p+Pb collision at 
√

sNN = 5.02 TeV, 
we analyzed the centrality and system size dependence of the 
fireball model parameters ( y0a , y0A , �a and �A ). Interesting 
patterns were revealed, which indicated the complex dynam-
ics in the asymmetric collisions. Our results confirmed the 
conclusion made previously in [33] that the fireball model 
with Tsallis thermodynamics as a universal framework could 
also describe the pseudo-rapidity distribution of charged 
particles produced in asymmetric collision systems.

Appendix 1: Fireball distribution of Eq. (8)

A representative figure of the fireball distribution of Eq. 
(8) using the parameters obtained for the p+Al collisions 
at 0–5% centrality and 

√

sNN = 200 GeV is shown in Fig. 7.

Appendix 2: Parameters q, T and x

The parameters of q and T extracted by fitting the trans-
verse momentum spectrum of particles [37] with Tsallis 
distribution Eq. (2) as well as parameter x in Eq. (8) are 
listed in Tables 2 and 3.

Fig. 7   (Color online) Fireball distribution with the parameters 
obtained from p+Al collisions for 0–5% centrality at 

√

s
NN

= 200 
GeV is shown. a The value of x is varied; b the value of q′ is varied

Table 2   Parameters q and T for the p+Al, p+Au and 3He+Au colli-
sions at 

√

s
NN

= 200 GeV for different centralities

System Centrality q T (GeV) �
2∕NDF

p+Al 0–5% 1.092 ± 0.004 0.127 ± 0.012 0.129
0–20% 1.098 ± 0.004 0.115 ± 0.012 0.151

20–40% 1.101 ± 0.004 0.107 ± 0.010 0.288
40–60% 1.101 ± 0.004 0.108 ± 0.012 0.223
60–72% 1.103 ± 0.005 0.098 ± 0.013 0.232

p+Au 0–5% 1.089 ± 0.004 0.138 ± 0.012 0.261
0–20% 1.090 ± 0.004 0.138 ± 0.012 0.117

20–40% 1.095 ± 0.004 0.127 ±    0.012 0.122
40–60% 1.096 ± 0.004 0.123 ± 0.012 0.204
60–84% 1.105 ± 0.004 0.103 ± 0.010 0.164

3He+Au 0–5% 1.092 ± 0.004 0.133 ± 0.010 0.082
0–20% 1.095 ± 0.004 0.127 ± 0.011 0.066

20–40% 1.098  ± 0.004 0.118 ± 0.011 0.046
40–60% 1.101 ± 0.004 0.112 ± 0.011 0.164
60–84% 1.103 ± 0.004 0.104 ± 0.011 0.157
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Appendix 3: The particle spectra fit

Using Eq. (2), the fitting figure of the transverse momen-
tum spectra of �0 produced in the p+Al collisions at 
√

sNN = 200 GeV is shown in Fig. 8. Similar results are 
obtained for the p+Au and 3He+Au collision systems at 
√

sNN = 200 GeV.
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