Skip to main content
Log in

Development of multi-group Monte-Carlo transport and depletion coupling calculation method and verification with metal-fueled fast reactor

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The accurate modeling of depletion, intricately tied to the solution of the neutron transport equation, is crucial for the design, analysis, and licensing of nuclear reactors and their fuel cycles. This paper introduces a novel multi-group Monte-Carlo depletion calculation approach. Multi-group cross-sections (MGXS) are derived from both 3D whole-core model and 2D fuel subassembly model using the continuous-energy Monte-Carlo method. Core calculations employ the multi-group Monte-Carlo method, accommodating both homogeneous and specific local heterogeneous geometries. The proposed method has been validated against the MET-1000 metal-fueled fast reactors, using both the OECD/NEA benchmark and a new refueling benchmark introduced in this paper. Our findings suggest that microscopic MGXS, produced via the Monte-Carlo method, are viable for fast reactor depletion analyses. Furthermore, the locally heterogeneous model with angular-dependent MGXS offers robust predictions for core reactivity, control rod value, sodium void value, Doppler constants, power distribution, and concentration levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://www.doi.org/10.57760/sciencedb.j00186.00229 and https://cstr.cn/31253.11.sciencedb.j00186.00229.

References

  1. P.K. Romano, C.J. Josey, A.E. Johnson et al., Depletion capabilities in the OpenMC Monte Carlo particle transport code. Ann. Nucl. Energy 152, 107989 (2020). https://doi.org/10.1016/j.anucene.2020.107989

    Article  Google Scholar 

  2. T. Goorley, M. James, T. Booth et al., Initial MCNP6 release overview. Nucl. Technol. 180, 298–315 (2012). https://doi.org/10.13182/NT11-135

    Article  ADS  Google Scholar 

  3. D.P. Griesheimer, D.F. Gill, B.R. Nease et al., MC21 v.6.0 – A Continuous-Energy Monte Carlo Particle Transport Code with Integrated Reactor Feedback Capabilities, in: SNA MC 2013 - Jt. Int. Conf. Supercomput. Nucl. Appl. Monte Carlo, EDP Sciences, 2014: p. 06008. https://doi.org/10.1051/snamc/20140600

  4. J. Leppänen, M. Pusa, T. Viitanen et al., The Serpent Monte Carlo code: status, development and applications in 2013. Ann. Nucl. Energy 82, 142–150 (2015). https://doi.org/10.1016/j.anucene.2014.08.024

    Article  Google Scholar 

  5. L. Deng, G. Li, B.-Y. Zhang et al., A high fidelity general purpose 3-D Monte Carlo particle transport program JMCT3.0. Nucl. Sci. Tech. 33, 108 (2022). https://doi.org/10.1007/s41365-022-01092-0

    Article  Google Scholar 

  6. K. Wang, Z. Li, D. She et al., RMC – A Monte Carlo code for reactor core analysis. Ann. Nucl. Energy 82, 121–129 (2015). https://doi.org/10.1016/j.anucene.2014.08.048

    Article  Google Scholar 

  7. H.-F. Liu, P. Ge, S.-P. Yu et al., Data decomposition method for full-core Monte Carlo transport–burnup calculation. Nucl. Sci. Tech. 29, 20 (2018). https://doi.org/10.1007/s41365-018-0366-4

    Article  Google Scholar 

  8. Y. Nagaya, K. Okumura, T. Mori et al., MVP/GMVP II : General purpose Monte Carlo Codes for neutron and photon transport calculations based on continuous energy and multigroup methods. 2004. https://jopss.jaea.go.jp/pdfdata/JAERI-1348.pdf (accessed June 8, 2022)

  9. C.M. Perfetti, Advanced Monte Carlo Methods for eigenvalue sensitivity coefficient calculations. Thesis, 2012. http://deepblue.lib.umich.edu/handle/2027.42/93973 (accessed June 8, 2022)

  10. M. Zangian, A. Minuchehr, A. Zolfaghari, Development and validation of a new multigroup Monte Carlo Criticality Calculations (MC3) code. Prog. Nucl. Energy 81, 53–59 (2015). https://doi.org/10.1016/j.pnucene.2015.01.007

    Article  Google Scholar 

  11. A.G. Nelson, S. Shaner, W. Boyd et al., Incorporation of a multigroup transport capability in the OpenMC Monte Carlo Particle transport code. Trans. Am. Nucl. Soc. 117, 679–681 (2017)

    Google Scholar 

  12. C. Demaziere, Modelling of nuclear reactor multi-physics (Academic Press Inc, S.l., 2019)

    Google Scholar 

  13. J. Leppänen, M. Pusa, E. Fridman, Overview of methodology for spatial homogenization in the Serpent 2 Monte Carlo code. Ann. Nucl. Energy 96, 126–136 (2016). https://doi.org/10.1016/j.anucene.2016.06.007

    Article  Google Scholar 

  14. H.J. Park, H. Shim, H. Joo et al., Qualification test of few group constants generated from an MC method by the two-step neutronics analysis system McCARD/MASTER, Undefined. (2011). https://www.semanticscholar.org/paper/QUALIFICATION-TEST-OF-FEW-GROUP-CONSTANTS-GENERATED-Park-Shim/5a84271a20a77dd754c0f298777f5dec2ef71dc7 (accessed March 21, 2022)

  15. W. Boyd, A. Nelson, P.K. Romano et al., Multigroup cross-section generation with the OpenMC monte carlo particle transport code. Nucl. Technol. 205, 928–944 (2019). https://doi.org/10.1080/00295450.2019.1571828

    Article  ADS  Google Scholar 

  16. E. Nikitin, E. Fridman, K. Mikityuk, Solution of the OECD/NEA neutronic SFR benchmark with Serpent-DYN3D and Serpent-PARCS code systems. Ann. Nucl. Energy 75, 492–497 (2015). https://doi.org/10.1016/j.anucene.2014.08.054

    Article  Google Scholar 

  17. H. Guo, K. Feng, Y. Wu et al., Preliminary verification of multi-group cross-sections generation and locally heterogeneous transport calculation using OpenMC with CEFR start-up tests benchmark. Prog. Nucl. Energy 154, 104484 (2022). https://doi.org/10.1016/j.pnucene.2022.104484

    Article  Google Scholar 

  18. T.D.C. Nguyen, H. Lee, D. Lee, Use of Monte Carlo code MCS for multigroup cross section generation for fast reactor analysis. Nucl. Eng. Technol. 53, 2788–2802 (2021). https://doi.org/10.1016/j.net.2021.03.005

    Article  Google Scholar 

  19. T.Q. Tran, A. Cherezov, X. Du, D. Lee, Verification of a two-step code system MCS/RAST-F to fast reactor core analysis. Nucl. Eng. Technol. 54, 1789–1803 (2021). https://doi.org/10.1016/j.net.2021.10.038

    Article  Google Scholar 

  20. P.K. Romano, N.E. Horelik, B.R. Herman et al., OpenMC: a state-of-the-art Monte Carlo code for research and development. Ann. Nucl. Energy 82, 90–97 (2015). https://doi.org/10.1016/j.anucene.2014.07.048

    Article  Google Scholar 

  21. H. Guo, E. Garcia, B. Faure et al., Advanced method for neutronic simulation of control rods in sodium fast reactors: numerical and experimental validation. Ann. Nucl. Energy 129, 90–100 (2019). https://doi.org/10.1016/j.anucene.2019.01.042

    Article  Google Scholar 

  22. A.G. Nelson, W. Boyd, P.K. Romano, The effect of the flux separability approximation on multigroup neutron transport. J. Nucl. Eng. 2, 86–96 (2021). https://doi.org/10.3390/jne2010009

    Article  Google Scholar 

  23. A. Lüthi, R. Chawla, G. Rimpault, Improved gamma-heating calculational methods for fast reactors and their validation for plutonium-burning configurations. Nucl. Sci. Eng. 138, 233–255 (2001). https://doi.org/10.13182/NSE01-A2211

    Article  ADS  Google Scholar 

  24. P. Deng, B.K. Jeon, H. Park et al., Coupled neutron and gamma heating calculation based on VARIANT transport solutions. Nucl. Sci. Eng. 193, 1310–1338 (2019). https://doi.org/10.1080/00295639.2019.1621617

    Article  ADS  Google Scholar 

  25. M. Pusa, Rational approximations to the matrix exponential in burnup calculations. Nucl. Sci. Eng. 169, 155–167 (2011). https://doi.org/10.13182/NSE10-81

    Article  ADS  Google Scholar 

  26. M. Pusa, Higher-order Chebyshev rational approximation method and application to burnup equations. Nucl. Sci. Eng. 182, 297–318 (2016). https://doi.org/10.13182/NSE15-26

    Article  Google Scholar 

  27. H. Guo, X. Peng, Y. Wu et al., Neutronics modelling of control rod compensation operation in small modular fast reactor using OpenMC. Nucl. Eng. Technol. 54, 803–810 (2021). https://doi.org/10.1016/j.net.2021.09.017

    Article  Google Scholar 

  28. OECD/NEA, Benchmark for neutronic analysis of sodium-cooled fast reactor cores with various fuel types and core sizes, OECD/NEA, 2016

  29. T. Ogata, Metal fuel. Compr. Nucl. Mater. (2012). https://doi.org/10.1016/B978-0-08-056033-5.00049-5

    Article  Google Scholar 

  30. K. Devan, A. Riyas, P. Mohanakrishnan, Approach to equilibrium fuelling scheme of 500MWe PFBR based on 3-D core burnup modeling. Nucl. Eng. Des. 241, 1596–1605 (2011). https://doi.org/10.1016/j.nucengdes.2011.02.026

    Article  Google Scholar 

  31. Y. Wu, Q. Song, K. Feng et al., Multigroup cross-sections generated using Monte-Carlo method with flux-moment homogenization technique for fast reactor analysis. Nucl. Eng. Technol. 55, 2474–2482 (2023). https://doi.org/10.1016/j.net.2023.04.011

    Article  Google Scholar 

  32. K. Ohgama, T. Hara, H. Ohta et al., A design study on a metal fuel fast reactor core for high efficiency minor actinide transmutation by loading silicon carbide composite material. J. Nucl. Sci. Technol. 59, 735–747 (2022). https://doi.org/10.1080/00223131.2021.2005702

    Article  Google Scholar 

  33. V. Pascal, R. Selabi, J. Tommasi, PHENIX: Interpretation of ECRIX-H transmutation experiment with TRIPOLI4D, in: MC 2017, Jeju, Korea, 2017

  34. H. Guo, P. Sciora, T. Kooyman et al., Application of boron carbide as burnable poison in sodium fast reactors. Nucl. Technol. 205, 1433–1446 (2019). https://doi.org/10.1080/00295450.2019.1620054

    Article  ADS  Google Scholar 

  35. Z. Zhang, Y. Dong, Q. Shi et al., 600-MWe high-temperature gas-cooled reactor nuclear power plant HTR-PM600. Nucl. Sci. Tech. 33, 101 (2022). https://doi.org/10.1007/s41365-022-01089-9

    Article  Google Scholar 

  36. B.H. Yan, C. Wang, L.G. Li, The technology of micro heat pipe cooled reactor: a review. Ann. Nucl. Energy 135, 106948 (2020). https://doi.org/10.1016/j.anucene.2019.106948

    Article  Google Scholar 

  37. G. Sun, M. Cheng, Development of a MCNP5 and ORIGEN2 based burnup code for molten salt reactor. Nucl. Sci. Tech. 27, 65 (2016). https://doi.org/10.1007/s41365-016-0070-1

    Article  Google Scholar 

Download references

Acknowledgements

The computations in this paper were run on the π 2.0 cluster supported by the Center for High-Performance Computing at Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Hui Guo,  Yi-Wei Wu, Qu-Fei Song, Yu-Yang Shen, Han-Yang Gu. The first draft of the manuscript was written by Hui Guo and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Han-Yang Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 12105170, 12135008), Science and Technology on Reactor System Design Technology Laboratory.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Wu, YW., Song, QF. et al. Development of multi-group Monte-Carlo transport and depletion coupling calculation method and verification with metal-fueled fast reactor. NUCL SCI TECH 34, 163 (2023). https://doi.org/10.1007/s41365-023-01310-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01310-3

Keywords

Navigation