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Abstract In this work, we explore the use of an iterative

Bayesian Monte Carlo (iBMC) method for nuclear data

evaluation within a TALYS Evaluated Nuclear Data

Library (TENDL) framework. The goal is to probe the

model and parameter space of the TALYS code system to

find the optimal model and parameter sets that reproduces

selected experimental data. The method involves the

simultaneous variation of many nuclear reaction models as

well as their parameters included in the TALYS code. The

‘best’ model set with its parameter set was obtained by

comparing model calculations with selected experimental

data. Three experimental data types were used: (1) reaction

cross sections, (2) residual production cross sections, and

(3) the elastic angular distributions. To improve our fit to

experimental data, we update our ‘best’ parameter set—the

file that maximizes the likelihood function—in an iterative

fashion. Convergence was determined by monitoring the

evolution of the maximum likelihood estimate (MLE)

values and was considered reached when the relative

change in the MLE for the last two iterations was within

5%. Once the final ‘best’ file is identified, we infer

parameter uncertainties and covariance information to this

file by varying model parameters around this file. In this

way, we ensured that the parameter distributions are cen-

tered on our evaluation. The proposed method was applied

to the evaluation of p?59Co between 1 and 100 MeV.

Finally, the adjusted files were compared with experi-

mental data from the EXFOR database as well as with

evaluations from the TENDL-2019, JENDL/He-2007 and

JENDL-4.0/HE nuclear data libraries.

Keywords Iterative Bayesian Monte Carlo (iBMC) �
Nuclear reaction models � Model parameters �
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1 Introduction

The use of nuclear reaction models combined with

experimental data and Bayesian statistical inference has

gain prominence in nuclear data evaluation, especially in

the fast energy region, over the past decade or so. These

techniques have been developed partly in order to over-

come the assumption of linearity used with the Generalized

Least Squares (GLS) methods [1, 2] used in nuclear data

evaluation and also, because of the increasing availability

of computational resources which now makes large Monte

Carlo calculations possible. Examples of nuclear data and

covariance evaluation methods based on microscopic

experimental data and statistical inference include the

Total Monte Carlo (TMC) method presented in Ref. [3],

the Bayesian Monte Carlo [4, 5], the filtered Monte

Carlo [6], the Backward–Forward Monte Carlo
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3 École Polytechnique Fédérale de Lausanne, Lausanne,

Switzerland

4 Nuclear Data Section, International Atomic Energy

Commission (IAEA), Vienna, Austria

5 Division of Applied Nuclear Physics, Department of Physics

and Astronomy, Uppsala University, Uppsala, Sweden

123

NUCL SCI TECH (2022) 33:50(0123456789().,-volV)(0123456789().,-volV)

https://doi.org/10.1007/s41365-022-01034-w

http://orcid.org/0000-0003-4868-1522
http://crossmark.crossref.org/dialog/?doi=10.1007/s41365-022-01034-w&amp;domain=pdf
https://doi.org/10.1007/s41365-022-01034-w


(BFMC) [7], the Unified Monte Carlo (UMC-G and UMC-

B) [8, 9], and the combination of Total Monte Carlo and

the Unified Monte Carlo (TMC ? UMC-B) methods pre-

sented in Ref. [10]. Successful applications of the BMC

and BFMC methods with respect to integral experiments

have been presented in Refs. [11–13]. Also available is the

Monte Carlo Bayesian Analysis (MOCABA) method

which uses Bayesian updating algorithms for the adjust-

ment of nuclear data based on integral benchmark experi-

ments [14]. A similar approach based on Bayesian Monte

Carlo which combines differential and integral experiments

for data adjustment has been presented in Ref. [15].

One underlying assumption of the Monte Carlo-based

evaluation methods that make use of microscopic experi-

ments presented above is that the source of uncertainty in

nuclear data is a result of our imperfect knowledge of the

parameters to nuclear reaction models [7]. Therefore, it is

assumed that by varying the input parameters to these

models, one could improve the agreement between model

outputs and carefully selected experimental data. However,

comparisons between model calculations and experiments

most often reveal that nuclear reaction models are still

deficient and are therefore unable to reproduce experi-

mental data. In some cases, the models appear to be

completely off the experimental data available, i.e., they

are not able to reproduce even the shape of the experi-

mental data [16, 17]. An example is the 59Co(p,2np)

channel between 1 and 100 MeV, where large deviations

were observed between model calculations and the exper-

imental data available. One approach (assuming the models

were perfect but with uncertain parameters) has been to

widen the model parameter space in order to increase the

likelihood of drawing parameter combinations that can

better reproduce experimental data as carried out in

Refs. [4, 15]. However, as observed in Refs. [10, 15],

increasing the parameter space could lead to situations

where a combination of model parameters are being drawn

from a region of the parameter space where the likelihood

is low. This normally leads to a situation where very low or

insignificant file weights are assigned to a large number of

the random nuclear data files produced as observed in

Refs. [10, 15].

One approach has been to attribute the inability of

models to reproduce experimental data to the presence of

model defects and to try to incorporate these defects in

evaluations in a statistically rigorous way as presented in

Refs. [16, 18, 19]. In Refs. [4, 7] for example, the likeli-

hood function was modified in order to take into account

the effects of these model defects. While the efforts at

including the effects of model defects into the evaluation

process is very commendable, we believe that since the

model space has been left largely unexplored especially

with respect to proton induced reactions [17, 20], by

exploring the model and model parameter space together,

we can be able to identify the optimal model combinations

with their corresponding parameter sets that can better

reproduce available microscopic experimental data. The

underlying assumption being that there is a true solution

hiding in the model and parameter space which can be

identified and therefore, by sampling from a rather large

non-informative prior, we would be able to locate this

‘true’ solution. However, we do note that there are no

perfect models and hence, our ‘best’ models would always

contain deficiencies. Therefore, the inclusion of these

model defects into the method presented in this work is

proposed for future work. An alternative approach for

including model uncertainties would be to carry out a

Bayesian Model Averaging over all or a selection of the

model combinations available as proposed in

Refs. [21, 22]. In Ref. [22], instead of selecting a single

model combination (as in this case) and proceeding with it

as if it is the true model set, we averaged over all or a

selection of the models. In this way, a central file with its

corresponding covariance matrix were obtained for both

cross sections and angular distributions. Bayesian Model

Averaging (BMA) was not carried out in this work.

The idea of this work is that once the best model and

parameter combination is identified, we can improve the

evaluation (the central file) by re-sampling the model

parameters around this file in an iterative fashion, each

time, using the previous ‘best’ file or evaluation as the new

central file. We believe that after a number of iterations

within the limits of the considered models, convergence

would be reached. The convergence criterion used is the

relative difference between the maximum likelihood esti-

mates of the last two iterations. More information on the

convergence criteria used has been presented in Sect. 2.4.

In this work, the proposed iterative Bayes methodology

termed iBMC (Iterative Bayesian Monte Carlo) has been

applied to the evaluation and adjustment of p?59Co

between 1 and 100 MeV. Evaluation of proton-induced

reactions on 59Co is important for several reasons. First,

cobalt-based alloys are used in nuclear reactors as struc-

tural materials because of their high strength and hardness

properties [23]. Additionally, since 59Co is a mono-iso-

tope, experimental data for 59Co is ideal for the verification

and development of nuclear reaction codes [24]. Further-

more, radioisotopes such as 55Co and 57Co that can be

produced from the irradiation of protons on 59Co are used

for medical research. Proton data are also needed in the

design and analysis of subcritical reactor systems such as

the proposed MYRRHA reactor (Multi-purpose hYbrid

Research Reactor for High-tech Applications), which
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would make use of spallation reactions in order to provide

a source of external neutrons for its subcritical core [25].

2 Methods

2.1 Selection of experimental data

The first step in the nuclear data evaluation process is

usually to carefully select experimental data since using all

the experiments from the EXFOR database [26] without

any selection normally leads to the computation of very

large chi squares between model calculations and experi-

ments. The large chi squares can be attributed partly to the

presence of discrepant and outlier experiments as well as

the presence of experiments with unreported or under-re-

ported uncertainties. In this work, outliers were treated

using a binary accept/reject approach. For example (as

carried out also in Ref. [15]), experiments that were

observed to be inconsistent with all or most of the data sets

available for a particular channel and energy range were

assigned a binary value of zero and therefore were not

considered. In addition, experiments that deviate from the

trend of the evaluations from the major nuclear data

libraries (when available) were not considered. Similarly,

experiments without reported uncertainties were penalized

by assigning them a binary value of zero except in the cases

where the considered experimental data set(s) under con-

sideration were the only experiment(s) available in the

energy range of interest. In this case, a 10% relative

uncertainty is assumed for each data point of that particular

experimental data set. Also, in a situation where these

experimental data sets with unreported uncertainties have

been considered and reported to be of reasonable quality in

Ref. [27], a 10% relative uncertainty was assumed. In some

cases, as carried out also in Ref. [27], experiments that

were found to be close to the threshold energies and hence,

usually difficult to measure, were not considered in our

optimization procedure.

We note that the selection and rejection of experiments

introduces bias into the evaluation process as is normally

the case with all other evaluated nuclear data libraries.

Ref. [4] however argues that, instead of rejecting dis-

crepant and outlier experiments as carried out in this work,

subjective weights which take into account the quality of

each experimental data set, could instead, be assigned to

each data set. In this way, ‘bad’ experiments would be

assigned with smaller weights and hence contribute less to

the optimization and therefore, no experimental informa-

tion would be discarded. In Ref. [28], the use of Marginal

Likelihood Optimization (MLO) for the automatic correc-

tion of the uncertainties of inconsistent experiments was

proposed. Another approach as presented in Ref. [29] has

been to identify Unrecognized Sources of Uncertainties

(USU) in experiments and try to include them in evalua-

tions. These approaches were however, not utilized in this

work.

In this work, three experimental data types were utilized

in the evaluation procedure: (1) reaction cross sections, (2)

residual production cross sections, and (3) the elastic

angular distributions. In the case of the reaction cross

sections, the following eight reaction channels were con-

sidered: (p,non-el), (p,n), (p,3n), (p,4n), (p,2np)g,

(p,2np)m, (p,c), and (p,xn) cross sections. These channels

were selected because (1) experimental data were available

within the considered energy range for the considered cross

sections of 59Co and (2) because we desire a general pur-

pose file which is optimized to many reaction channels

with experimental data as much as possible. A total of 169

reaction crosssection experimental data points were used in

the optimization. For the residual production cross sec-

tions, a total of 141 experimental data points were con-

sidered for the following cross sections:

• 59Co(p,x)46Sc,

• 59Co(p,x)48V,

• 59Co(p,x)52Mn,

• 59Co(p,x)55Fe,

• 59Co(p,x)55Co,

• 59Co(p,x)56Co,

• 59Co(p,x)57Co,

• 59Co(p,x)58Co,

• 59Co(p,x)57Ni.

In the case of the elastic angular distributions, the angles

were considered from 1� to 180� while the incident ener-

gies considered were from 5 to 40 MeV and a total of 185

experimental data points were considered.

2.2 Model calculations

Model calculations were performed using the TALYS

version 1.9 [30] code. TALYS is a state-of-the-art nuclear

reactions code used for the analysis of nuclear reactions for

a number of incident particles. These particles include

neutrons, protons, deuterons, tritons, 3He- and a particles

within the 1 keV to 200 MeV energy range [30].

In Table 1, similar to Ref. [20], the models considered

in this work are listed. A total of 52 different physical

models were randomly varied. A model as used here rep-

resents either a complete nuclear reaction model such as

the Jeukenne–Lejeune–Mahaux optical model, or a sub-

model, and in some cases, components of a model or sub-

model. On the other hand, a model set or combination,

represents a vector of these models or sub-models, coupled

together in the TALYS code for nuclear reaction
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calculations. For example, statepot is a flag used to invoke

the optical model parameterization for each excited state in

a Distorted Wave Born Approximation (DWBA) or cou-

pled-channels calculation. As can be seen in Table 1, the

TALYS code contains 4 pre-equilibrium models, 6 level

density models, 8 gamma-strength function models, 4 mass

models, and 4 Jeukenne–Lejeune–Mahaux (JLM) optical

models, among others. Several of these models are linked

together for nuclear reaction calculation with the outputs of

some models used as input to other models. Even though

all these models are available in TALYS, the default

models have been used in proton evaluations for the proton

sub-library of the TENDL library [20].

Since we assumed that all models were equally impor-

tant a priori, our algorithm sampled each model type within

its bounds. To achieved a non-informative prior as much as

possible, each model type was sampled from a uniform

distribution within its bounds. Models were then randomly

drawn from each model distribution to create a total of

about 200 model combinations. In the case of the level

density (ld) model for example, there are six different

models available in TALYS. Hence, these models were

each assigned a unique ID and then sampled from model 1

to 6 in such a way that each ld model was equally likely to

be selected. In addition, parameters to each model

combination were also randomly generated to create mul-

tiply TALYS input files each with unique parameters,

which were then run with the TALYS code to produce

random cross-sectional curves as well as angular

distributions.

It should be noted that each model combination together

with their unique parameter set gives different cross-sec-

tional curves and angular distributions. In Fig. 1 for

example, 59Co(p,n) cross-sectional curves computed with

three different model combinations are presented. Also, the

calculated cross sections are compared with the default

TALYS models (TENDL-2019) and the JENDL/He-2007

and JENDL-4.0/HE libraries as well as with experimental

data. In the case of the models labelled (A) in the figure,

the following models: ldmodel 6: Microscopic level den-

sities (temperature dependent Hartree–Fock–Bogolyubov

(HFB), Gogny force) from Hilaire’s combinatorial tables;

preeqmode 4: Multi-step direct/compound model; strength

4: Hartree–Fock–Bogolyubov tables and massmodel 1:

Möller table ? other models, were used. For the model

combination labelled (B), the following models were uti-

lized: ldmodel 2: Back-shifted Fermi gas model; preeq-

mode 2: Exciton model:- Numerical transition rates with

energy-dependent matrix element; strength 1: Kopecky-

Uhl generalized Lorentzian, ? other models. No mass

Table 1 List of selected

TALYS models and sub-models

considered for model variation

TALYS keywords Number of models Model type

preeqmode 4 Pre-equilibrium (PE)

ldmodel 6 Level density models

ctmglobal 1 Constant temperature

massmodel 4 Mass model

widthmode 4 Width fluctuation

spincutmodel 2 Spin cutoff parameter

gshell 1 Shell effects

statepot 1 Excited state in optical model

spherical 1 Spherical optical model

radialmodel 2 Radial matter densities

shellmodel 2 Liquid drop expression

kvibmodel 2 Vibrational enhancement

preeqspin 3 Spin distribution (PE)

preeqsurface 1 Surface corrections (PE)

preeqcomplex 1 Kalbach model (pickup)

twocomponent 1 Component exciton model

pairmodel 2 Pairing correction (PE)

expmass 1 Experimental masses

strength 8 Gamma-strength function

strengthM1 2 M1 gamma-ray strength function

jlmmode 4 JLM optical model

PE denotes the pre-equilibrium model and JLM refers to the Jeukenne–Lejeune–Mahaux optical

model [33]
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model was invoked in this case of (B). In the case of

models labelled (C), the cross-sectional curves were pro-

duced using ldmodel 3: Generalized superfluid model;

preeqmode 2: Exciton model:- Numerical transition rates

with energy-dependent matrix element; strength 4: Har-

tree–Fock–Bogolyubov (HFB) tables; massmodel 1: Möller

table, ? other models. The other models as stated here are

default TALYS models that were included in the model

calculations. For each model combination, two cross-sec-

tional curves are shown: (1) with default parameters and

the other with perturb parameters. These initial calculations

give an idea of the shape and possible spread of the cross-

sectional curves for each model combination. It was

observed in this work that the shape of the cross-sectional

curves produced with each model combination was not

affected with variation of the parameters and hence, a

smaller number of parameters variations can be carried out

around each model combination in the case of the initial or

parent generation. It can be seen from the figure that model

combination (B) gives a better fit to the available experi-

mental data than model combinations (A) and (C). How-

ever, care must be taken as there is no guarantee that a

model set which produces a good fit to experimental data

for a particular channel would produce good fits for other

channels. The ‘best’ file in Fig. 1 represents the optimal file

selected from the parent generation (Gen. 0) taking into

consideration both reaction and residual production cross

sections as well as the elastic angular distributions. The

parent generation here refers to the initial random nuclear

data (ND) files produced from the variation of both models

and their parameters and signifies the initial generation

from which all subsequent generations were produced.

Detailed description of the optimization procedure is pre-

sented in Sects. 2.3 and 2.4.

By randomly varying parameters of each model com-

bination using the TALYS code package [30], a set of

random nuclear data files in the Evaluated Nuclear Data

File (ENDF) format were produced. Each TALYS input

file contains a set of these models as presented in Table 1

as well as the parameters to these models (see Table 2). In

a situation where a model type is not explicitly listed in the

TALYS input file, a default TALYS model was used.

Similar to Table 1, a list of selected model parameters

with their corresponding parameter widths (uncertainties)

is presented in Table 2. A similar table is presented in

Ref. [20]. The parameter uncertainties were obtained from

the TENDL project [20, 30]. We note here that these

parameter widths or uncertainties were obtained using

default models in TALYS. We however think that this is a

good enough starting point for our iBMC methodology.

These parameter widths were used as prior uncertainties for

the sampling of the parameters from a uniform distribution

for each model combination used in this work. From the

table, the parameter widths (uncertainties) are given as a

fraction (%) of their absolute values except in the case of

level density parameter a, and the gp and gm parameters of

the pre-equilibrium model, where the uncertainties are

given in terms of the mass number A. As can be seen from

the table, the parameters have been grouped under the

following model types: the optical model, pre-equilibrium,

gamma-ray strength function and level density models. In

the case of the optical model, the phenomenological optical

model parameters are used for a potential of the Koning-

Delaroche form [32] while the parameters for the semi-

microscopic optical model are used for the Jeukenne–

Lejeune–Mahaux (JLM) microscopic optical model

potential [33]. Since the fission cross section was not

considered in this work, fission models and their parame-

ters are not presented in the table.

From Table 2, the geometrical parameters rpV and apV
denotes the radius and diffuseness parameters of the real

central potential, apD is the surface diffusivity and rpc is the

Coulomb radius. rpSO, a
p
SO,v

p
SO1, v

p
SO2, w

p
SO1, w

p
SO2 are the

spin-orbit potential parameters and v1 � v4 are

adjustable parameters used in the computation of the depth

of the real central potential. w1 � w2 and d1 � d4 are the

adjustable parameters used in the computation of the vol-

ume and surface absorption optical model potential,

respectively. The superscript p denotes proton induced

reactions while the subscripts V, D, SO, and W denotes the

volume-central, the surface-central, spin-orbit potentials

and the imaginary depth of the optical model, respectively.

Fig. 1 (Color online) 59Co(p,n) cross section computed with three

different model combinations compared with cross sections computed

with the default TALYS models (TENDL-2019), the JENDL/He-

2007 and JENDL-4.0/HE libraries, as well as experimental data. The

‘best’ file here is the optimal file selected from the parent generation

taking into consideration, reaction and residual production cross

sections as well as the elastic angular distributions. For each model

combination A, B, and C, calculations were carried out with default

and then perturbed model parameters
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A more detailed description of these parameters can be

found in Refs. [30–32]. In the case of the JLM model

parameters, kV , kW , kV1, and kW1 denotes the overall real,

imaginary, real isovector, and imaginary isovector poten-

tial depth normalization factors of the semi-microscopic

optical model potential, respectively [33]. kVSO
and kWSO

are the real and imaginary spin orbit (SO) potential depth

normalization factors, respectively. It should be noted that

all parameters were assumed to be energy independent in

our calculations.

In the case of the pre-equilibrium model, gp and gm are

the single-particle state densities, M2 is the average

squared matrix element used in the exciton model and Rc is

the parameter for the pre-equilibrium c-decay. Cstrip, Cbreak

and Cknock are the stripping, break-up and knock-out con-

tributions used to scale the complex-particle pre-equilib-

rium cross section per outgoing particle, respectively [31].

Esurf is the effective well depth for surface effects in the

exciton model. Rmm, Rpm, Rpp, and Rmp are, respectively, the

neutron–neutron ratio, the proton-neutron ratio, the proton–

proton ratio, and the neutron–proton ratio of the matrix

element used in the two component exciton model. In the

case of the level density model parameters, krot is the

rotational enhancement factor of the level density model,

r2 is the spin cutoff parameter which represents the width

of the angular momentum distribution of the level density,

a is the level-density parameter which is related to the

density of single-particle states near the Fermi energy, and

E0 and T are the the back-shift energy and the temperature

used in the constant temperature model, respectively. Rr is

a global adjustable constant for the spin cutoff parameter.

In the case of the gamma ray strength function, Cc is the

average radiative capture width and rE‘, EE‘ and CE‘ are

the strength, energy and width of the giant resonance,

respectively. Where E‘ represents the electric (E) multipole

type and ‘ the multipolarity [30]. These gamma-ray

strength function parameters are used in the description of

the gamma emission channel [30]. It should be noted here

that not all the TALYS model parameters are listed in

Table 2, a more complete list of all the model parameters

can be found in Ref. [31] while the parameter uncertainties

can be found in Refs. [4, 30]. As can be seen from the

table, rather large parameter uncertainties were assigned to

the krot, Cstrip, Cbreak and Cknock in order to take into

account the shortcomings of the corresponding pre-equi-

librium models [20]. As mentioned earlier, these parame-

ters were varied simultaneously for each model

combination to create multiple TALYS input files.

The incident proton energy grid for model calculations

was selected taking into consideration the incident energies

of the available experimental data as well as the avail-

ability of computational resources. It must be stated here

that in order to observe the potential coverage of the

parameter space for each model combination, two initial

TALYS calculations are normally executed using two

parameter vectors with extreme values, e.g., with: (1) the

lower and (2) the upper bound values of each parameter.

The lower and upper bounds corresponds to the minimum

and maximum values of each parameter from the

Table 2 List of selected model parameters with their parameter

widths (uncertainties)

Parameter Uncertainty (%) Parameter Uncertainty (%)

OMP - phenomenological

rpV 2.0 apV 2.0

vp1 2.0 vp2 3.0

vp3 3.0 vp4 5.0

wp
1 10.0 wp

2 10.0

wp
3 10.0 wp

4 10.0

dp1 10.0 dp2 10.0

dp3 10.0 rpD 3.0

apD 4.0 rpSO 10.0

apSO 10.0 vpSO1 5.0

vpSO2 10.0 wp
SO1 20.0

wp
SO2 20.0 rpc 10.0

OMP - Semi-microscopic optical model (JLM)

kV 5 kV1 5

kW 5 kW1 5

kVSO
5 kWSO

5

Level density parameters

a 11.25–0.03125.A r2 30.0

E0 20.0 T 10.0

krot 80.0 Rr 30.0

Pre-equilibrium

Rc 50.0 M2 30.0

gp 11.25–0.03125.A gm 11.25–0.03125.A

Cbreak 80.0 Cknock 80.0

Cstrip 80.0 Esurf 20.0

Rmm 30.0 Rpm 30.0

Rpp 30.0 Rmp 30.0

Gamma ray strength function

Cc 5.0 rE‘ 20

CE‘ 20 EE‘ 10

The parameters are listed according to the following model types: the

optical model (made up of the phenomenological and semi-micro-

scopic optical models), pre-equilibrium and level density models as

well as the gamma ray strength function. The uncertainties are given

as a fraction (%) of their absolute values except in the case of the

level density a parameter, and the gp and gm parameters, where the

parameter uncertainties are given in terms of the mass number A. A
complete list of all the model parameters used in TALYS can be

found in Ref. [31]
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associated uniform prior parameter distributions. From

these calculations, we are able to observe (visually) the

trend and potential spread of the cross sections and the

angular distributions of interest with respect to the scat-

tered experimental data available. This was done because

as mentioned earlier, the parameter widths as presented in

Table 2 were obtained by comparing the cross-sectional

curves produced with default TALYS model combination

with varying parameters and hence, might not be applica-

ble to other model combinations under consideration.

Additionally, by observing the lower and upper bound

curves, we are able to determine if any changes in the

parameters within the uncertainties as given in Table 2,

would significantly affect the spread of the considered

cross sections. We note that since no parameter correlations

were included in these initial calculations, this approach

might not describe the entire coverage of the parameter

space. This however is helpful in determining the potential

uncertainty band for each cross section. Also, it must be

stated here that we normally start with calculations with

relatively small number of excitation energy bins of 20.

The bin size is then increased to 60 for subsequent itera-

tions in order to improve the accuracy of the TALYS

results but at a higher computational cost. We note also that

the total number of 200 model combinations used in this

work does not cover the entire model space. We are

however of the opinion that the number is adequate for

demonstrating the applicability of the proposed method.

The 200 model combinations were each run with the

TALYS code while varying all the model parameters to

produce a large set of random ENDF nuclear data files. The

random ENDF files produced were converted into x� y

tables for comparison with experimental data. The reason

for going through the TALYS ! ENDF ! x� y

tables route instead of using the x� y tables directly pro-

duced by TALYS is because, during processing of TALYS

results into the ENDF format, renormalizations are some-

times applied to the results using auxiliary codes such as

the autonorm utility within the T6 code package [30]

which is used to smoothen the results of TALYS at the

incident energies where different model results are joined

together [30]. These normalizations should normally not

affect the results significantly, however, in order to enable

a fair comparison between our evaluations and that of other

nuclear data libraries which were only available in the

ENDF format, the TALYS ! ENDF ! x� y route was

used.

2.3 Bayesian calibration and selecting the winning

model

The ultimate goal of a Bayesian calibration is to maxi-

mize the likelihood that model outputs are statistically

consistent with experimental data [34]. The first step in this

work involves the pre-selection of models and their

parameters, followed by the quantification of the uncer-

tainties of model parameters and the determination of their

distributions. As mentioned earlier, the parameter uncer-

tainties were adopted from the TENDL library project. In

this work, it was assumed that we have no prior informa-

tion on the models as well as on their parameters and

hence, the models and their parameters were both sampled

from uniform distributions. This assumption is entirely not

true since the model types used (see Table 1) were pre-

selected using expert judgment and to some extent, model

sensitivity analysis. The model sensitivity analysis

involved holding constant all other models as the default

TALYS models while changing the model of interest, one-

at-a-time. The spread in the cross sections give an indica-

tion of the sensitivity of each model to the cross section of

interest. For example, in Fig. 2, excitation functions for the
59Co(p,3n) cross section computed with the four mass

models implemented in the TALYS code is presented. No

changes in the 59Co(p,3n) cross section were observed after

changing and running the different mass models one-at-a-

time for the energy range under consideration. This gives

an indication that the mass models implemented in TALYS

are not sensitive to the 59Co(p,3n) cross section. The ‘Best

file (5th Gen.)’ in the figure represents the final evaluation

obtained in this work while the TENDL-2019 represents

the evaluation from the TENDL-2019 library.

The pre-selection of models was carried out in order to

limit the model space because of computational resource

constraints. We do however understand that by using

expert judgement to select a subset of the models available

Fig. 2 (Color online) 59Co(p,3n) cross section computed using the

different mass models implemented in TALYS. All other models

were maintained as the default TALYS models while changing each

mass models one-at-a-time. The ‘Best file (5th Gen.)’ represents our

evaluation. It can be observed that changing the mass models did not

have any significant impact on the (p,3n) cross section
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in the TALYS code system [30], we introduce some user

bias into the initial model selection process. We however

note here that since we are limited by the models available

in TALYS in this case, selection bias cannot be entirely

excluded from the process. A possible solution would have

been to use all the models available in TALYS as well as

additional models from other nuclear reaction codes such

as EMPIRE [35]. This would increase the model space

tremendously but would ultimately lead to a higher com-

putation cost. A more detailed study on the use of Bayesian

model selection and the Occam’s Razor in the selection of

model combinations within a Total Monte Carlo frame-

work is proposed and presented in Ref. [36].

Furthermore, it was observed in this study that some

model combinations produced model outputs with non-

smooth curves which appear unphysical and therefore were

excluded from subsequent model runs. For example, the
59Coðp; cÞ cross section computed with three different

model combinations (A, B, and C) are compared with

experimental data and the TENDL-2017 evaluation. Res-

onance-like structures which are difficult to explain from

nuclear reaction theory were observed for 59Coðp; cÞ
between about 4 and 10 MeV for model combination (A) as

can be seen in Fig. 3, and therefore, this model combina-

tion was excluded from subsequent calculations. Note that

model combinations (A), (B), and (C) are the same model

combinations presented earlier in Fig. 1. As can be seen

from Fig. 3, a relatively ‘bad’ model set such as model

combination (A) can be difficult to identify by using only

the v2 as the goodness of fit estimator since it can be

observed that the cross-sectional curves produced by this

model combination was able to reproduce quite favorably,

the experimental data from Butler (1957). It can also be

observed from the figure that the cross-sectional curves

passes through some experimental data points from Drake

(1973) which results in a relatively low v2 making it dif-

ficult to identify this model combination as a ‘bad’ model

set. Because of this, visual inspection is sometimes needed

to identify these ‘bad’ model sets. This should however be

carried out on an isotope-by-isotope and channel-by-

channel basis.

In the case of the input parameters to the models, all the

parameters available within the TALYS code were varied.

In this way, we were able to largely exclude parameter

selection bias from our analyses. We however note that

since only the TALYS code was used, we are constrained

by the parameters available in TALYS. We also note that

not all the model parameters are sensitive to the considered

cross sections or the elastic angular distributions and

therefore, these parameters could have been identified

through a parameter sensitivity analyses and then excluded

from the parameter variation process. This approach was

however not carried out in this work.

Now, suppose that we have a set of J models, Mj
~ , where

j ¼ 1; 2; . . .; J, given a set of experimental data (rE~ ) with

corresponding uncertainties (DrE~ ). Each model combina-

tion also consists of a vector of K model parameters, pk~ ,

where k ¼ 1; 2; . . .;K. As mentioned earlier, a model in

this case refers to a vector of different models and sub-

models as presented in Table 1 while the parameter set

denotes a vector of parameters to these models (see

Table 2). As previously mentioned, we assume that all

models are of equal importance a priori and therefore each

model is characterized by a uniform prior distribution

(PðMj
~ ; pk~Þ). As carried out also in Ref. [15], we assume

that we have no prior knowledge on the model parameters

and hence, the parameters pk~ were also drawn from a

uniform distribution. Now, if LðrE~ jMj
~ ; pk~Þ is our likelihood

function for model Mj
~ and parameter set pk~ , the likelihood

function can be given within the Bayesian Monte Carlo [4]

and Unified Monte Carlo (UMCB-G and UMC-B) [8, 9]

approaches as:

LðrE~ jMj
~ ; pk~Þ / exp �

v2Gðk;jÞ
2

 !
; ð1Þ

where vGðk;jÞ is the global chi square given in Eq. 5. Given

that PðMj
~ ; pk~Þ is our combined prior distribution of models

and their parameters, and LðrE~ jMj
~ ; pk~Þ is the likelihood

Fig. 3 (Color online) 59Coðp; cÞ cross section computed with three

different model combinations (A, B and C), are compared with cross

sections computed with the default TALYS models (TENDL-2017),

the JENDL/He-2007 and JENDL-4.0/HE libraries, as well as

experimental data. The ‘best’ file is the file selected from the parent

generation taking into consideration the reaction and residual

production cross sections, and the elastic angular distributions. It

can be observed that the curves from model combination (A) have

non-smooth curves between 4 and 12 MeV which are difficult to

explain from nuclear reaction theory
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function given in Eq. 1, we can now compute our posterior

distribution (PðMj
~ ; pk~ jrE~ Þ) as follows:

PðMj
~ ; pk~ jrE~ Þ ¼ LðrE~ jMj

~ ; pk~ÞPðMj
~ ; pk~Þ

PðrE~ Þ ; ð2Þ

where PðrE~ Þ, which is the marginal likelihood also referred

to as the model evidence, is simply a normalization con-

stant and therefore not considered in the optimization.

Equation 2 becomes:

PðMj
~ ; pk~ jrE~ Þ ¼ LðrE~ jMj

~ ; pk~ÞPðMj
~ ; pk~Þ: ð3Þ

Based on Eq. 1, we assign each random nuclear data file

with a weight equal to the likelihood function, also called

Bayesian Monte Carlo (BMC) weights (see Ref. [4]):

wk;j ¼ exp �
v2Gðk;jÞ
2

 !
: ð4Þ

From Eqs. 1 and 4, rE~ is our experimental data, and v2Gðk;jÞ
and wk;j , respectively, are the global reduced chi square

and BMC weights for parameter set k and model combi-

nation j. v2Gðk;jÞ is our single but multiple criteria objective

function obtained as a linear combination of the individual

reduced v2 computed for each considered experimental

data type (b) and given by:

v2Gðk;jÞ ¼
1

Nb

XNb

b¼1

v2Gðk;jÞðbÞ; ð5Þ

where v2ðk;jÞðbÞ is a vector of reduced chi square values

computed using the experimental data type b and Nb is the

total number of considered experimental data types. For Nb

experimental data types, Eq. 5 can be given as:

v2Gðk;jÞ ¼
v2kðxsÞ þ v2kðrpÞ þ v2kðDAÞ

Nb
; ð6Þ

where Nb is equal to three in this case, v2kðxsÞ and v2kðrpÞ
are the reduced chi squares computed for the reaction and

the residual production cross sections, respectively, and

v2kðDAÞ is the reduced chi square computed for the elastic

angular distributions. Eq. 6 can be written as:

v2Gðk;jÞ ¼ wE
b1
v2kðxsÞ þ wE

b2
v2kðrpÞ þ wE

b3
v2kðDAÞ; ð7Þ

where the wE
b1
, wE

b2
and wE

b3
are the coefficients of the linear

combination presented in Eq. 7 and represents the

weighting factors for the experimental data types: (1)

reaction cross sections, (2) residual production cross sec-

tions, and (3) elastic angular distribution, respectively. In

Eq. 7, the experimental data types are equally weighted,

implying that equal weighting factors were assigned to

each: wE
b1

¼ wE
b2

¼ wE
b3

¼ 1=Nb. This is normally the case

for a general purpose nuclear data library evaluation where

all experimental data types are assigned equal importance.

Alternatively, the weighting factors for each experimental

data type can be determined by the evaluator depending on

the needs of the evaluation. Since the weighting factors are

normalized, they must sum up to 1:

XNb

b¼1

wE
b ¼ 1: ð8Þ

Equation 5 was computed assuming that there were no

correlations between the different experimental data types

considered. We note that this assumption is simplistic since

in some cases, similar or the same instruments, methods,

and authors were involved in the experiments and mea-

surements of more than one experimental data type, which

could introduce cross correlations between these experi-

mental data types. For example, F. Ditroi was involved in

the measurement and analysis of the reaction cross section,
59Co(p,3n), between 16.0 and 69.8 MeV as well as in the

measurement of the residual production cross section,
59Co(p,x)56Co, between 15.0 and 69.8 MeV. However,

these cross correlations are not readily available and

therefore not used in this work.

Similarly, in the computation of the individual reduced

chi squares in Eq. 6 such as the v2kðxsÞ, the experimental

data sets were assumed to be uncorrelated. To include

experimental correlations, the generalized chi square as

presented in Ref. [4] should have been used. However,

experimental correlations are scarce especially with respect

to proton induced reactions and when available, are usually

incomplete. Therefore, the reduced chi square with respect

to the reaction cross sections (v2kðxsÞ) for example, was

computed using Eq. 9 (similar expressions have been pre-

sented also in Refs. [4] and [17]):

v2kðxsÞ ¼
1

Nc

XNc

c¼1

1

Nm

XNm

m¼1

1

Npt

XNpt

i¼1

� rciTðkÞ � rcmiE

DrcmiE

�2

; ð9Þ

where Nc is the total number of considered channels c, Nm

is the total number of experimental data sets m, and Npt is

the total number of considered data points for each

experimental data set; rcmiE and rciTðkÞ are. respectively, the

vectors of the experimental and TALYS calculated cross

sections at the energy i, for the data set m, and channel c.

Similarly, DrcmiE is the corresponding experimental uncer-

tainty at energy i, data set m and channel c. In cases where

there were no matches in energy (or in angle in the case of

the elastic angular distributions) between the TALYS cal-

culations and the considered experiments, similar to what

was carried out in Refs. [15, 17], we linearly interpolate to

fill in the missing TALYS values. The same approach as

presented in Eq. 9 was applied for the computation of
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v2kðrpÞ and v2kðDAÞ, however, in the case of the v2kðDAÞ, we
match TALYS calculations with that of the experiments in

both angle and in energy but we only interpolate on the

angle.

In Refs. [15, 17], the reduced chi square presented in

Eq. 9, was computed by averaging the chi square values for

each channel over all the considered experimental data

points. This approach, as stated also in Ref. [4], assigns

equal weights (aside their uncertainties) to all the experi-

mental data points which may lead to a situation where an

experimental data set with a large number of measurements

completely dominates the goodness of fit estimations. Also,

channels with many different experimental data sets but

fewer measurements would be assigned smaller weights

compared to those with fewer experimental data sets but

with many measurements. In an attempt to assign channels

with many different experimental data sets with larger

weights (aside their uncertainties) in line with what was

carried out in Ref. [4], we averaged the chi square over

each experimental data set by dividing by Npt as presented

in Eq. 9. In this way, each experimental data set con-

tributes equally to the goodness of fit estimation. Further,

since the measurements from each data set are known to be

highly correlated, by averaging over each experimental

data set, we effectively combine the information from each

experimental set into a single goodness of fit estimate. The

correlations come about as a result of the fact that usually,

the same equipment as well as methods (and authors) were

used or involved in these measurements. It is also known

that the addition of correlated experiments is not as

effective in reducing the uncertainty in our calibration as

the uncorrelated or independent experiments [37]. Experi-

mental data set as used here refers to one or more mea-

surements carried out at a specific energy or energy range,

for a particular channel and isotope, with a unique EXFOR

ID in the EXFOR database.

Statistical information of the posterior distribution in

Bayesian estimations as presented in Eqs. 2 and 3, can

normally be summarized by computing central tendency

statistics [38], where the posterior mean is used as the best

estimate (with its corresponding variance). However, given

a large sample size and assuming that our prior was sam-

pled from a uniform distribution, as stated in Ref. [39], the

posterior probability density function (PDF) can be

asymptotically approximated by a Gaussian PDF centered

on the Maximum a Posteriori (MAP) estimate. Therefore,

in this work, as used also in Bayesian Model Selection

(BMS) [40], the best or winning model becomes the model

(and parameter) set that maximizes the posterior proba-

bility which is also known as the Maximum a Posteriori

(MAP) estimate (i.e., the mode of the posterior distribu-

tion), given as:

LMAP ¼ argmax
m

½LðrE~ jMj
~ ; pk~ÞPðMj

~ ; pk~Þ�; ð10Þ

where LMAP is the Maximum a Posteriori (MAP) estimate

and the index m denotes the considered models with their

parameters. However, in Bayesian statistics, as stated in

Ref. [38], the maximum likelihood estimation (MLE) ‘‘is a

special case of Bayesian Estimation (BE) in which (1) the

estimate is based on the mode of the posterior distribution,

and (2) all the parameters values are equally likely’’. The

MLE is therefore viewed as a special case of the MAP

estimate in the case where a uniform distribution is

assumed for the prior distribution of the parameters [38].

Since in this work, we assume a uniform distribution for

the models as well as for their parameters, the MLE was

used. Therefore, given a uniform distribution of models

and their parameters, Eq. 10 reduces to the maximum

likelihood estimate denoted by LMLE and given as:

LMLE ¼ argmax
m

½LðrE~ jMj
~ ; pk~Þ�: ð11Þ

The LMAP and LMLE estimates were computed and

compared for selected model parameters in the case of

p?59Co and found to be the same (see Table 8). Therefore,

from Eq. 11, the model combination (with its parameter

set) which maximizes the likelihood function was consid-

ered as the winning model set and the file that makes the

experimental data most probable.

2.4 Iterative Bayes procedure

The algorithm for the Iterative Bayesian procedure

proposed in this work is presented in Table 3. The idea of

the iterative procedure is to minimize the bias between our

experimental observables and the corresponding model

outputs in an iterative fashion. As can be seen from the

table, we start with the selection of model combinations

and their parameters (including parameter uncertainties and

distributions)—see Table 1 for more information on the

considered models. Next, we select the energy grid for the

TALYS calculations. The energy grid was chosen such that

there was a large number of matches in incident energy

between the TALYS calculations and that of the corre-

sponding experimental data. As mentioned earlier, we

linearly interpolate in energy in the case of the reaction and

residual production cross sections, and in angle, in the case

of the elastic angular distributions, for the purpose of filling

in the missing TALYS values.

Next, a set of random combinations of the models were

generated from uniform distributions. In addition, the

model parameters to each model combination were also

sampled from uniform distributions to create a large set of

TALYS input files. These input files were then run with the
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TALYS code system to produce a set of random nuclear

data files in the ENDF format. These initial random nuclear

data files constitute the parent generation (Gen. 0). The

ENDF files produced were processed into x� y tables for

the purpose of comparison with experimental data from the

EXFOR database as well as with other nuclear data

libraries, which were obtained in the ENDF format. The

selection of experimental data for the considered channels

has been presented earlier in Sect. 2.1.

Next, we select the ‘best’ model combination (with the

parameter set) by identifying the random nuclear data file

with the largest likelihood function value. Using this best

file as our new central file or ‘best’ estimate, we re-sample

around this file, however, this time only varying the model

parameters of the selected model to produce another set of

random nuclear data files referred to as the 1st generation

(Gen. 1). The idea here is that, once we are able to identify

the ‘best’ model combination, we proceed with subsequent

iterations as though the models selected were the true

models. To proceed with the many different models for

each iteration would imply that no model combination is

good enough and hence, an average should instead, be

taken over all or a selection of the models. This approach

has been proposed and presented in a dedicated paper [22].

Next, is to update the model parameters and their

uncertainties. However, before updating the parameter

uncertainties, we first compute the Effective Sample Size

(ESS). This was done in order to ensure that a sufficient

number of effective samples are available for the compu-

tation of the posterior uncertainties and covariances. The

effective sample size (ESS) is given as the squared sum of

the file weights divided by the summed squares of these

weights:

ESS ¼
�Pn

k¼1 wk

�2Pn
k¼1 w

2
k

: ð12Þ

The ESS is a useful metric for understanding the infor-

mation value of each random nuclear data file and therefore

gives an indication on how many random samples have

significant impact on the posterior distribution. It has been

noticed in this work that with an ESS 6 10%, very few

random nuclear data files have significant impact on the

posterior distribution and hence, as a rule of the thumb, we

only update the parameter uncertainties for an ESS > 10%.

We then repeat our model parameter variation step (steps 3

through to 14 in Table 3) in an iterative fashion until we

reach convergence.

Convergence was determined by monitoring the evolu-

tion of the maximum likelihood estimate computed for

Table 3 Iterative Bayesian

Monte Carlo (iBMC) algorithm.

LðrE~ jMj
~ ; pk~Þ is the likelihood

function for each iteration (or

generation), j. rE~ is our

experimental data while Mj
~ is

our model vector and pk~ is a

vector of model parameters for

random file k. ESS is the

Effective Sample Size given in

Eq. 12. DA denotes angular

distributions

iBMC algorithm

1: Select model combinations ? parameter set (including

determining parameter uncertainties and their distributions)

2: Select energy grid and bins for TALYS calculations

3: Generate a large set of random TALYS input files by drawing

model combinations and parameters from uniform distributions

4: Execute the TALYS code system to produce random ENDF files

5: Process random ENDF files into x–y tables

6: Select experimental data for the considered channels and DA

7: Fill in missing TALYS values using linear interpolation

8: for j ¼ 1; 2; . . .; do

9: Compute the likelihood function for each random ND file

10: Select file with ‘best’ model combination (BM):

BM ! LMLE ¼ *argmaxm½LðrE~ jMj
~ ; pk~Þ�

11: Update the model parameters

12: Compute ESS and update parameter uncertainties for generations with ESS > 10%

13: Compute the DL(MLE) for the last two iterations

14: Is DL(MLE) 6 0:05ð5%Þ?
15: If no, repeat steps 3 to 14 (until convergence) however, varying

only model parameters around the selected model set.

16: end for

17: Return a solution for Bayesian calibration

18: Vary model parameters around final ‘best’ file to infer uncertain-

ties and covariance information associated with this file.
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each iteration. If L
ðnÞ
MLE represents the maximum likeli-

hood estimate (MLE) for the last (n) iteration and L
ðn�1Þ
MLE

,

the MLE value of the last but one iteration, then DLMLE,

the relative change in the likelihood function can be given

as:

DL(MLE) ¼
���� L

ðnÞ
MLE

� L
ðn�1Þ
MLE

L
ðnÞ
LME

���� 6 eG: ð13Þ

The iteration is said to have converged when the relative

change in the maximum likelihood estimates (DLMLE) for

the last two iterations is within a target global tolerance

denoted by eG. In this work, we chose to set the value of eG
to: eG 6 0:05ð5%Þ. It should be noted however that this

value was chosen arbitrarily. Ideally, a smaller tolerance

value (eG) is preferred however, small values of eG can be

difficult to achieve for a number of reasons: (1) because of

the limitation of the models used, (2) the condition of

Pareto optimality in multi-objective optimization, (3)

computational resource constraint, and (4) when target

accuracy is reached. In the case of (1), since the fit can only

be improved with parameter variations within the limits of

the selected models, we are constrained by the deficiencies

of the winning model set. For example, if the winning

model set is unable to reproduce the shape of experimental

data for a particular channel, only varying the parameters

would not be sufficient for improving the fits to experi-

mental data. As mentioned earlier, the effects of model

defects would then have to be taken into account in these

cases.

With (2), a point worthy of note is that within the limits

of our models in a multi-objective optimization procedure

(as in this case), a point is reached in the iteration process,

where further variation of the parameters is not able to

improve the fits to the reaction cross sections for example,

without making the fits to the residual production cross

sections or elastic angular distributions worse-off. This

condition is referred to as Pareto optimality [41]. This is

because, multi-objective optimization problems as in our

case, involves the simultaneous optimization of multiple

competing objectives, which most often, leads to trade-off

solutions largely known as Pareto-optimal solutions. A

possible solution would be to assign subjective weights to

each criteria or the chi square computed for each experi-

mental data type as presented in Eq. 7 depending on the

needs of the evaluation. For example, if the target of the

evaluation is the production of radioisotopes, relatively

larger weights could be assigned to the residual production

cross sections in the computation of the global chi square.

This would place more importance on the residual cross

sections in the optimization procedure. Since the goal of

this work was however to provide a general purpose

evaluation which should compare reasonably well with

experimental data for all or a large number of the cross

sections, as well as the residual production cross section

and angular distributions, equal weights were assigned to

each individual experimental data type. As a general rule of

the thumb, when no further improvements are possible with

the global likelihood function, the iteration should be

stopped since the Pareto optimum might have been

reached.

For (3), the creation of random nuclear data files can be

computationally expensive depending on the energy grid

and the TALYS excitation bin size used. For example,

more than 6000 random nuclear data files were produced

and used in this work. This translated into several months

of computational time. Therefore, the value of eG should be

chosen taken into consideration the accuracy gained as well

as the computational resources available. In the case of (4),

the value of eG can be chosen with a particular objective or

target accuracy in mind. For example, one underlying

objective of this work has been to create an evaluation that

globally outperforms and significantly improves the

TENDL-2019 evaluation for the p?59Co. Hence, the iter-

ation can be stopped after this objective is achieved. To

check if the final results were robust to a change in eG, the
adjusted results were compared with experimental data for

different changes in eG: 15%, 10% and 5% and it was

observed in the case of p?59Co and p?111Cd that the

Pareto optimum was reached at about 5% for the reaction

cross sections (see Table 5 for example). We note here that

only static or energy-independent model parameters were

used for the entire energy range under consideration,

hence, this does not offer enough flexibility in the adjust-

ment or fitting procedure. The use of energy-dependent

parameters are proposed for future work.

Next, we return the final solution for Bayesian calibra-

tion, i.e., the final ‘best’ file. This file was then compared

against available microscopic experimental data from the

EXFOR database as well as with evaluations from other

nuclear data libraries (if available). For testing and vali-

dation of the evaluation, we also compare our evaluation

with experimental data from the channels that were not

used in the optimization. This was done so as not to use the

same experimental data for both adjustment and validation.

Where available, the ‘best’ file should also be taken

through integral validation where the evaluation is tested

against a large set of integral benchmark experiments.

These benchmarks are however, not readily available for

proton induced reactions and therefore, not used in this

work. Finally, we update also, the final parameter uncer-

tainties (see Sect. 2.5).
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2.5 Updating model parameter uncertainties

Once we are satisfied with the ‘best’ file, we move to the

next step where we infer parameter uncertainties and

covariance information to this file. We note here that in

Bayesian inference, each parameter is described by a

probability distribution instead of a point estimate. There-

fore, by varying the model parameters around this file, we

ensure that the prior parameter distribution is centered

around the ‘best’ file. The covariance information associ-

ated with this file is then contained in the distribution of the

random nuclear data files produced. Alternatively, as done

in most nuclear data libraries, the covariance information

associated with the evaluation can be stored in MF31-40

(in ENDF terminology).

Under appropriate regularity conditions, the posterior

can be approximated to a normal distribution with a mean

and standard deviation [42]. Therefore, if we assume that

the parameter posterior distribution is Gaussian, a weighted

variance ðvarwðpi~ÞÞ for parameter (pi) can be computed as

follows:

varwðpi~Þ ¼
PK

k¼1 wk~ :pik~
2PK

k¼1 wk~
� �pi

2
w; ð14Þ

where wk and pik are the file weight and value of the

parameter (pi) of the random file k, respectively, �piw is the

weighted average value of the parameter, pi, which can be

given by:

�piw ¼
PK

k¼1 wk~ :pik~PK
k¼1 wk~

: ð15Þ

As mentioned earlier, given a large sample size and also

that, the parameters are sampled from uniform distribu-

tions, the MLE is approximately equal or close to the mean

values of each parameter. It is shown later in Table 8 that

the mean values of the posterior parameter distributions

were closed to the MLE estimates with respect to the

optical model parameters as expected. Similarly, we can

compute a weighted parameter covariance matrix between

parameters pi and ps as follows:

covwðpi; psÞ ¼
PK

k¼1 wk~ ðpik~ � �piÞðpsk~ � �psÞPK
k¼1 wk~

: ð16Þ

where �pi and �ps are the mean values of pi and ps param-

eters, respectively, psk is the value of the parameter (ps) in

the random file k and covwðpi; psÞ is the weighted covari-

ance matrix between parameters pi and ps.

The use of the global likelihood function used in this

work for updating the parameter uncertainties as presented

in Eq. 4 raises a number of concerns:

1. Parameter sensitivities were not explicitly taken into

account in the computation of the global reduced chi

square as presented in Eq. 6. This is particularly

important since each parameter would normally have

different sensitivities to different cross sections and/or

the angular distributions. This could lead to a situation

where the weighted averaged parameters computed

from the posterior distribution would not necessarily

provide the best central values. In these cases, the

parameter mean and the MLE values would be

different. A possible solution would be to include

parameter sensitivities as channel weights in the

computation of v2ðxsÞ, v2ðrpÞ and v2ðDAÞ. In this

way, if a particular channel is only sensitive to 2 or 3

parameters, this information would be included in the

computation of the global reduced chi square. The

inclusion of parameter sensitivities is however beyond

the scope of this work.

2. The use of energy-independent parameters as used in

this work does not give enough flexibility to the

adjustment procedure. It should be noted here, as

mentioned also in Ref. [4], that the predictive power of

TALYS is energy dependent and therefore, the use of

energy-dependent parameters in the computation of

weights would give more flexibility to the adjustment

procedure as parameters can be mapped to the weights

in energy and/or in angle, thereby improving the ability

to better constrain the model parameters to experi-

mental data. An example on the use of energy-

dependent parameters in the treatment of model

defects for nuclear data evaluation is presented in

Ref. [43].

3. Experimental correlations were not included in the

optimization. Since some of the experimental errors

are known to be correlated, these correlations should

have been included by using the generalized chi square

presented in Ref. [4]. However, since these correla-

tions were not readily available, no correlations were

used.

2.6 Updating the cross sections

Similar to Sect. 2.5, the weighted mean of the cross

sections which corresponds to (or must be close to the

values of the ‘best’ file) can be given as:

rcTðkÞw
¼
PK

k¼1 wk~ : rcTðkÞ
�!

PK
k¼1 wk~

; ð17Þ

where rcTðkÞw is the weighted mean of the TALYS (T)

calculated cross sections taken from K random files and

rcTðkÞ
�!

is a vector of TALYS calculated cross sections of
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interest. w denotes weighted and wk represents the weights

as a function of random files. The corresponding weighted

variance (varw rcTðkÞw

� �
), similar to Eq. 14 can be expres-

sed as:

varw rcTðkÞw

� �
¼
PK

k¼1 wk
�!

:rcTðkÞ
�! 2

PK
k¼1 wk~

� rcTðkÞ
2
: ð18Þ

Similarly, a weighted or the posterior covariance matrix

between cross sections at energy a (rcTa
�!

) and b (rcTb
�!

) can be

given as:

covw rcTa ; r
c
Tb

� �
¼

PK
k¼1 wk~ rcTaðkÞ

�!
�rcTa

� �
rcTbðkÞ
�!

�rcTb

� �
PK

k¼1 wk~
:

ð19Þ

The sample weighted correlation coefficient (rw) can be

given as [44]:

rw ¼

PK
k¼1 wk~ rcTaðkÞ

�!
�rcTa

� �
rcTbðkÞ
�!

�rcTb

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1 wk~ rcTaðkÞ
�!

�rcTa

� �2r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1 wk~ rcTbðkÞ

�!
�rcTb

� �2r :

ð20Þ

It must be stated here that even though these covariances

and correlation matrices were produced in this work, the

same information is contained in the large set of random

cross sections produced. These random nuclear data files

can be processed and used in a Total Monte Carlo approach

for uncertainty propagation to applications [3, 13, 15].

3 Results

In Table 4, the winning model combination, i.e., the

models selected from the parent generation are compared

with the corresponding default TALYS models for the p ?
59Co valid for the 1 to 100 MeV energy range. As men-

tioned earlier, the parameters to the selected models were

subsequently varied to obtain the 1st generation random

nuclear data files. It should be noted here that the proton

sub-library of TENDL-2019 [20] were produced using

default TALYS models and parameters. In the case where

selected models were observed to be the same as the

default models, these models were not listed in Table 4.

Examples of these models include the widthmode (TALYS

keyword used to invoke the models used for width fluc-

tuation corrections in compound nucleus calculations),

statepot (flag for specifying different optical model

parameterization for each excited state in a Distorted Wave

Born Approximation (DWBA) or coupled-channels

calculation), gshell (flag to include the damping of shell

effects with excitation energy in single-particle level den-

sities), preeqsurface (flag to use surface corrections in the

exciton model), and massmodel (flag used to invoke the

models for nuclear masses). In the case of the mass model

for example, there are four mass models available in

TALYS however, massmodel 2: Goriely HFB-Skyrme

table which is the default TALYS model was used and

hence the mass model is not listed in Table 4. However, it

was observed in this work that varying the mass models in

TALYS did not have any significant impact on the con-

sidered cross sections and the elastic angular distributions.

In the case of the pre-equilibrium model, there are two

versions of the exciton model available in TALYS: (1) the

default two-component model in which the neutron or

proton type of particles and holes are followed throughout

the reaction and (2) the one-component model which does

not distinguish between protons and neutrons. The exciton

model has been proven to be a powerful tool for the

analysis of continuum emission spectra and excitation

functions for projectile energies above several MeV [45].

From Table 4, it can be seen that the pre-equilibrium

model 3 (denoted by the TALYS keyword preeqmode 3)

was selected in place of the default exciton model (pree-

qmode 2). In the case of the default exciton model used in

TALYS, the transition rates are expressed in terms of an

effective squared matrix element while in the case of the

selected PE model (preeqmode 3), instead of modeling the

intranuclear transition rate by an average squared matrix

element, the transition rate is related to the average imag-

inary optical model potential depth [31, 45]. Also, since the

exciton models do not provide a spin distribution for the

residual states after pre-equilibrium emission [45], TALYS

gives the option to use either pre-equilibrium or compound

nucleus spin distribution for the pre-equilibrium population

of the residual nuclides. The default model implemented in

TALYS is preeqspin 1 where the pre-equilibrium spin

distribution is made equal to the relative spin-dependent

population after compound nucleus emission [31]. How-

ever, preeqspin 2: the spin distribution from total level

densities was selected in this work.

Similarly, in the case of level density (ld), the Back-

shifted Fermi gas model (ldmodel 2) was preferred to the

default model (ldmodel 1: Constant Temperature ? Fermi

gas model). While the default ld and selected ld models are

both phenomenological models, they defer in that in the

case of the default model, the Constant Temperature Model

(CTM) is used at low energies in combination with the

Fermi gas model at high energies while in the case of the

Back-shifted Fermi gas model, instead of using a constant

temperature part, the model is expressed in terms of an

effective excitation energy [20, 46]. Also, even though
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some semi-microscopic optical (JLM) models were inclu-

ded in the model variations, the default phenomenological

optical model potentials (OMP) as implemented in TALYS

was selected. TALYS uses the local and global parame-

terizations of Koning and Delaroche [32, 45] as the default

optical model. In the case of the compound nucleus cal-

culations, the default TALYS model for the width fluctu-

ation correction (WFC) is the Moldauer expression,

however, the Hofmann–Richert–Tepel–Weidenmüller

(HRTW) model was selected (i.e., TALYS keyword

widthmode 2). Even though the HRTW model was selec-

ted, it was found in this work that using the HRTW model

instead of the Moldauer model had no effect on proton

induced reaction cross sections as expected. With the

HRTW method, it is assumed that the main correlation

effect between the incident and outgoing waves is in the

elastic channel while with the Moldauer’s expression, a v2

law with m degrees of freedom is assumed for the distri-

bution for the partial widths (C), which can be calculated

from a Porter-Thomas distribution [31, 47].

In relation to the strength function, the Gogny D1M

Hartree–Fock–Bogoliubov (HFB) ? quasiparticle random-

phase approximation (QRPA) [48] (strength 8) was selec-

ted in place of the default Brink-Axel Lorentzian

model [50, 51] (strength 2). It should be noted that for

neutron induced reactions, the default model implemented

in TALYS is the generalized Lorentzian form of Kopecky

and Uhl (strength 1) [31, 49]. According to the Brink-Axel

hypothesis, the photo-absorption cross section of the giant

electric dipole resonance (GDR) is independent of the

detailed structure of the initial state and assumes a standard

Lorentzian form for the giant dipole resonance

shape [49, 50]. However, even though the standard Lor-

entzian model accurately describes the GDR close to the

resonance centroid for medium and heavy-mass

nuclei [54], it often overestimates experimental gamma-ray

strength functions at and below the neutron binding energy

for dominant E1 radiation and therefore, other improve-

ments such as the Generalized Lorentzian function (GLO)

which includes the energy and temperature dependent

width in the description of the GDR were devel-

oped [55, 56]. It is well known that the reliability of the

gamma-ray strength predictions can be greatly improved

through the use of microscopic and semi-microscopic

models [57]. Therefore, by selecting the Gongny D1M

HFB?QRPA model which is a microscopic model, it is

expected that this would improve the gamma-ray strength

function predictions and hence the description of the

gamma emission channel. More information on Gogny-

HFB?QRPA strength functions and its application to

radiative nucleon capture cross section is presented in

Ref. [56].

With reference to the spin cutoff parameter which rep-

resents the width of the angular momentum distribution of

the level density, there are two expressions implemented in

TALYS [31]: (1) spincutmodel 1 (default model) - r2 = c

Table 4 List of the winning model combination obtained from the parent generation for p ? 59Co compared with the default TALYS model

Model type Selected models Default models

Pre-equilibrium Preeqmode 3: Exciton model—numerical Preeqmode 2: exciton model: numerical

transition rates with optical model for collision

probability

transition rates with energy-dependent matrix element

Level density ldmodel 2: Back-shifted Fermi gas model ldmodel 1: Constant temperature ? Fermi gas model

Width fluctuation Widthmode 2: Hofmann–Richert–Tepel–Weidenmüller Widthmode 1: Moldauer model

Spin cutoff parameter Spincutmodel 2:r2= c
ffiffiffiffiffiffiffiffiffi
U=a

p
Spincutmodel 1: r2 = c a/ã

ffiffiffiffiffiffiffiffiffi
U=a

p
Vibrational

enhancement
kvibmodel 1: Kvib=exp(0:00555A

2=3t4=3) kvibmodel 2: Kvib=exp[ds - (dU/t)]

Spin distribution (PE) Preeqspin 2: the spin distribution preeqspin 1: PE spin distribution is equal to the relative

spin-

from total level densities is adopted dependent population after compound nucleus emission

Gamma-strength

function

Strength 8: Gogny D1M HFB?QRPA [48] Strength 2: Brink-Axel Lorentzian [50]

These models were then used as the nominal models around which the parameters were varied to obtain the 1st generation outputs. The other

models shown in Table 1 but not presented in this table were found to be the same as the default TALYS models. For the vibrational

enhancement of the level density (Kvib) as presented, dS and dU are the changes in the entropy (S) and excitation energy (U), respectively, t is

the thermodynamic temperature and A denotes the mass number [30, 52, 53]. In the case of the spin cutoff parameter (r2), U is the excitation

energy, a is energy-dependent level density parameter, ã is the asymptotic level density value obtained when all shell effects are damped and c is
the rigid body moment of inertia [30, 52]. Gogny D1M HFB represents the Hartree–Fock–Bogolyubov model with the Gogny D1M nucleon

force while QRPA is the Quasi-particle Random Phase Approximation model [48]
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a/ã
ffiffiffiffiffiffiffiffiffi
U=a

p
and spincutmodel 2 - r2= c

ffiffiffiffiffiffiffiffiffi
U=a

p
. Where a

denotes the energy-dependent level density parameter a, ã

is the asymptotic level density value obtained when all

shell effects are damped and c is the rigid body moment of

inertia [30, 52]. spincutmodel 2 was selected instead of the

default spincutmodel 1. The spin cutoff parameter has been

observed to be one of the most uncertain parameter in level

density calculations [58]. Similarly, out of the two

expressions for the vibrational enhancement of the level

density, kvibmodel 1: Kvib=exp(0:00555A
2=3t4=3) was

selected in place of the default model (kvibmodel 2:

Kvib=exp[d S-(d U /t)]). Where Kvib is the vibrational

enhancement of the level density, dS and dU denote the

changes in the entropy (S) and excitation energy (U),

respectively, and t is the thermodynamic temperature while

A denotes the mass number [30, 52, 53]. A detailed

description and comparison of the models is beyond the

scope of this work. For more information on the pre-

equilibrium, optical models and level density models, we

refer readers to Refs. [32, 45, 46]. Also, the influence of

nuclear mass uncertainties from both models and experi-

ments on reactions rates has been systematically studied

using the TALYS code and presented in Ref. [59].

In Fig. 4, the global reduced v2 distribution as well as

the reduced v2 distributions computed for the reaction and

the residual production cross sections as well as the elastic

angular distributions for p?59Co are presented. The v2

distributions in the plots represent the distribution from the

5th generation. Also in the same figure, the reduced chi

square values computed for the ‘best’ file from the parent,

1st, 2nd, 3rd, 4th, and the 5th generations, are compared

with the values obtained for the TENDL-2019 evaluation

using the same experimental data. The global reduced v2

distribution was obtained by taking the average over the

different experimental data types considered.

From Fig. 4, it can be seen that our ‘best’ file from the

parent generation did poorly compared with the evaluations

from the other generations. This is expected since, first, a

smaller number of excitation energy bins (20 bins) was

used for TALYS calculations of the parent generation

while a larger bin size of 60 was used for the other gen-

erations as well as for the TENDL-2019 evaluation. It has

been observed that the accuracy of TALYS calculations

increases with the number of excitation energy bins used.

This however, comes at a higher computational cost. By

using a smaller number of bins for the parent generation,

we were able to run a relatively large number of different

model combinations (200 model combinations in total).

This however, did not have any significant impact on our

model calculations since the same number of bins were

used for all the models. From the figure, an improvement in

the global reduced v2 can be observed from a high of 41.98

for the parent generation, to a low of 17.01 for our final

evaluation (5th Gen.) as expected. Except for the parent

generation, the evaluations from the other generations

outperformed the TENDL evaluation: reduced v2 values of
41.98, 21.78, 19.51, 17.87, 17.40 and 17.01 were obtained

for the parent, 1st, 2nd, 3rd, 4th and 5th generations

compared with a reduced v2 value of 22.77 obtained for the

TENDL-2019 evaluation. The reduced v2 value obtained

for the reaction (v2(xs) = 16.67) and residual production

(v2(rp) = 19.37) cross sections as well as for the elastic

angular distributions (v2(DA) = 15.00) for the 5th genera-

tion, performed better than the TENDL-2019 evaluation:

v2(xs) = 23.13, v2(rp) = 20.77 and v2(DA) = 24.94. Also,

modest gains were made with regard to the 2nd and 3rd

generations: a global average v2 value of 19.51 and 17.87

were obtained, respectively, compared with 21.78 for the

1st generation. This gives an indication that it is possible to

improve our evaluations in an iterative fashion. A relative

difference of 4.81% (which is less than the 5% target

accuracy presented in Eq. 13) was obtained between the

global MLE estimates of the 4th and 5th iterations imply-

ing that we have reached our targeted convergence value.

In Tables 5 and 6, the reduced chi squares values

computed for the different channels used in the adjustments

and for each generation, are compared with evaluations

from the TENDL-2019 and JENDL-4.0/HE libraries for the

reaction and residual production cross sections, respec-

tively. Comparison was only made with the TENDL and

the JENDL libraries since these were the only libraries with

p?59Co evaluations. The Frankenstein files as presented in

the tables were obtained by optimizing model calculations

to experimental data for each individual cross section (or

the elastic angular distributions), one at a time.

From Table 5, it can be seen from the large reduced chi

squares obtained for the (p,c) channel for all the genera-

tions that it was difficult for the models in TALYS to

reproduce the experimental data for the (p,c) cross sec-

tion. In the case of the JENDL-4.0/HE library, a very large

reduced chi square value of 1367.91 was obtained for the

(p,c) cross section signifying that the JENDL-4.0/HE

evaluation was completely off the experimental data for the

(p,c) channel. This can be confirmed visually from Fig. 5

where the JENDL-4.0/HE evaluation for example, was

observed to have significantly under-predicted all the data

from Drake (1973) but reproduces the data from Butler

(1957) relatively well. This accounts for the large reduced

chi square obtained for the (p,c) cross-sectional evaluation
from the JENDL-4.0/HE library. A relatively smaller

reduced chi square value of 40.33 was however obtained

for the TENDL-2019 evaluation compared with a value of

53.93 from this work (Best file (5th Gen.)). This value was

however, reduced to 36.83 for the Frankenstein file. It
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Fig. 4 (Color online) A distribution of the reduced v2 obtained from

the 5th generation showing values obtained for the ‘best’ files from

the parent, 1st, 2nd, 3rd, 4th, and 5th generations as well as with the

evaluation from TENDL-2019. xs denotes reaction cross sections,

rp—residual production cross sections and DA—angular distribu-

tions. The global reduced v2 was computed by combining the

individual reduced v2 values obtained from the different experimental

data types

Table 5 Comparison of the reduced chi square values between ‘best’ files from different the generations and the evaluations from the TENDL-

2019 and JENDL-4.0/HE libraries for p?59Co between 1-100 MeV, in the case of reaction cross sections

MT entry Cross

section

Parent Gen. (Gen.

0)

Gen. 1 Gen.

2

Gen.

3

Gen.

4

Gen.

5

TENDL-

2019

JENDL-4.0/

HE

Frankenstein file (Gen.

5)

MT003 (p,non) 3.80 1.39 2.87 2.85 4.23 1.35 3.80 – 0.57

MT004 (p,n) 5.90 3.82 3.59 3.60 4.23 4.58 6.27 5.48 1.53

MT017 (p,3n) 16.04 20.06 13.38 16.08 13.98 16.27 24.11 15.13 3.97

MT028g (p,np)g 2.22 0.85 1.06 1.62 1.05 1.12 4.77 – 1.27

MT028m (p,np)m 2.30 3.12 4.60 4.12 3.67 7.68 3.06 – 0.53

MT037 (p,4n) 9.63 7.57 4.36 5.36 1.82 6.91 14.45 21.36 0.75

MT102 (p,c) 457.18 107.35 48.52 52.14 47.52 53.93 40.33 1367.91 36.83

MT201 (p,xn) 58.64 51.64 58.78 45.71 45.59 41.57 89.87 2.62 8.80

Average 69.46 24.47 17.14 16.43 15.26 16.67 23.33 282.50 6.78

No cross-sectional data were available for the (p,non), (p,np)g, and (p,np)m channels in the JENDL-4.0/HE library and hence, these cross

sections are not presented. The average value of 282.50 for the JENDL-4.0/HE library, was therefore obtained by taking the average over only

the (p,n), (p,3n), (p,4n), (p,c) and (p,xn) channels. The Frankenstein file is the best file obtained from single channel adjustments to experimental

reaction data
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should be noted here that the Frankenstein file is however,

constrained by the model combination used. The relatively

large reduced chi square values obtained for the (p,c) cross
section in the case of the evaluations from this work is

largely due to the inability of our models to reproduce the

two experimental data sets available. We observed in this

work that model combinations that were able to fit the data

from Butler (1957) where unable to fit data from Drake

(1973) and vice versa. Hence, only trade-off solutions

could be obtained. We however note here that it is

impossible to cover the entire model and parameter space

and hence, there would always be a possibility that better

solutions may exist in some hidden region of the model

and/or parameter space necessitating for the use of more

efficient sampling approaches than the brute force

approach used in this work. It is instructive to note that

even though the use of surrogate models could greatly

reduce the computational cost burden, we think that the use

of surrogate models would further introduce some simpli-

fications and assumptions into our model calculations since

they are simplified approximations of more complex

models such as the models used in nuclear data evalua-

tions. For both experiments (i.e., Drake (1973) and Butler

(1957)), no experimental uncertainties were reported,

hence, a 10% relative uncertainty was assumed for each

data point since these were the only experimental data sets

available within the considered energy range. Also, no

cross-sectional data were available for the (p,non), (p,np)g,

and (p,np)m channels in the JENDL-4.0/HE library and

therefore, the average reduced chi square presented in

Table 5 for the JENDL-4.0/HE evaluation is an average

over the (p,n), (p,3n), (p,4n), (p,c) and the (p,xn) reaction

channels.

In the case of the residual production cross sections

presented in Table 6, it can be seen that the 59Co(p,x)48V

cross section benefited greatly from the iterative procedure;

a large reduced chi square value of 172 for the parent

generation was significantly decreased to a value of 49.28

(Gen. 1), 39.81 (Gen. 2), 37.28 (Gen. 3), 35.38 (Gen. 4) and

14.73 (Gen.5). It was however observed that the JENDL-

4.0/HE evaluations outperformed the evaluations from this

work and that from the TENDL-2019 library; reduced chi

square values of 13.42 and 60.02 were obtained for the

JENDL-4.0/HE and TENDL-2019, respectively. As can be

seen in Fig. 7, the JENDL-4.0/HE evaluation appears to be

reproducing the experimental data from Michel (1985)

while the evaluation from this work appears to be repro-

ducing experimental data from Michel (1997). In fact, the

JENDL-4.0/HE library outperformed our evaluations

except in the case of the 59Co(p,x)57Ni, where our evalu-

ation (Gen.5) was observed to be in a better agreement with

experimental data. As mentioned previously, one disad-

vantage of a multi-objective optimization procedure is that

it gives the best trade-off solutions, hence a situation can

occur (as in this case), where even though our evaluation

performs better globally, it performed badly when com-

pared locally with experimental data.

In Table 7, a comparison of the reduced chi square

values obtained for the different generations and that of the

TENDL-2019 library for p?59Co between 1-100 MeV are

presented for the elastic angular distributions. No evalua-

tion was available in the JENDL-4.0/He and JENDL/He-

2007 libraries for p?59Co elastic angular distributions and

therefore, were not presented. Similar to Tables 5 and 6,

the Frankenstein file in the table denotes the file obtained

by optimizing model calculations to only the elastic

Table 6 Comparison of the reduced chi square values between the ‘best’ files from different generations and the evaluations from the TENDL-

2019 and JENDL-4.0/HE libraries for p?59Co between 1 and 100 MeV in the case of residual cross sections

TALYS

name

Cross section Gen. 0 Gen.

1

Gen.

2

Gen.

3

Gen.

4

Gen.

5

TENDL-

2019

JENDL-4.0/

HE

Frankenstein file (Gen.

5)

rp021046 59Co(p,x)46Sc 16.45 28.97 28.25 13.38 10.21 8.56 31.60 5.11 6.45

rp023048 59Co(p,x)48V 172.00 49.28 39.81 37.93 35.38 14.73 60.02 13.42 7.41

rp025052 59Co(p,x)52Mn 30.29 36.92 36.96 37.28 35.60 34.66 31.01 18.86 27.20

rp026055 59Co(p,x)55Fe 24.57 17.47 22.15 15.47 18.67 23.47 15.08 7.10 10.70

rp027055 59Co(p,x)55Co 2.99 12.07 13.85 17.13 18.43 22.75 7.24 4.10 3.88

rp027056 59Co(p,x)56Co 32.04 12.65 17.55 25.78 22.68 37.51 6.93 16.27 10.90

rp027057 59Co(p,x)57Co 12.17 11.80 14.78 13.08 16.83 13.06 2.91 1.85 5.47

rp028057 59Co(p,x)57Ni 0.27 1.16 0.34 0.26 0.57 0.23 0.23 1.14 0.13

Average 36.35 21.29 21.71 20.04 19.79 19.37 20.50 8.48 9.02

In the last column, the Frankenstein file denotes the file obtained by optimizing the cross sections to only experimental data from each residual

production (rp) cross section one-at-a-time
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angular distributions. Also, it should be noted that for the

parent generation (Gen. 0), the following incident energies

were not computed with TALYS: 5.25, 6.50, 7.00, 7.50,

30.30 and 40.00 MeV, and therefore, no results were

reported for these energies in the case of parent generation

in Table 7. This was done in order to speed up the calcu-

lational time for the parent generation. It should be noted

however that, this did not have significant impact on the

optimization since the spread of the elastic angular distri-

butions due to model variations was observed to be

relatively small (see Fig. 9). Furthermore, it can be seen

from the table that the evaluations from the 5th generation

is an improvement on the Gen. 0, 1 and 2. The reduced chi

square value however increased to 17.14 for Gen. 4 before

reducing again to 15.00 for the 5th Gen. It was also

observed that our evaluation significantly outperformed the

TENDL-2019 evaluation where a reduced v2 = 22.95 was

obtained. In addition, it can be observed from Tables 5 and

7 that by optimizing model calculations to single channels

or only the elastic angular distributions, relatively smaller

Fig. 5 (Color online) Excitation functions against incident proton

energies for the following reaction cross sections: (p,non-el), (p,n),

(p,3n), (p,c), (p,4n), and (p,np)m. The evaluation from this work (i.e.,

Best file (5th Gen.)) is compared with the evaluations from TENDL-

2019, and the JENDL/He-2007 and JENDL-4.0/HE libraries, and

experimental data from EXFOR. The curves in violet represent

random cross sections from the 5th generation

123

Iterative Bayesian Monte Carlo for nuclear data evaluation Page 19 of 31 50



averaged reduced chi square values can be obtained as can

be seen with the Frankenstein files.

In Fig. 5, excitation functions for the (p,non-el), (p,n),

(p,3n) and (p,c), (p,4n) and (p,np)m cross sections of 59Co

are compared with the evaluations from the TENDL-2019

library. Also, where available, comparisons are made with

evaluations from JENDL-4.0/HE as well as with evalua-

tions from the older JENDL/He-2007 library. It can be seen

from the figure that our evaluation performed slightly

better than the TENDL-2019 library for the (p,non-el) cross

section over the entire energy region. It can be seen that

both evaluations slightly over predicted the data from

Mccamis (1986) between about 35 and 50 MeV. Even

though the TENDL-2019 evaluation slightly over predicted

the data from Kirkby (1966) at 98.5 MeV, our evaluation

was within its experimental uncertainties which resulted in

a reduced chi square value of 0.041292. For the (p,3n)

cross section, the TENDL-2019 evaluation under predicted

the experimental cross sections from about 45 to 100 MeV.

The evaluation from this work was however observed to be

in good agreement with experimental data from Sharp

(1956) and Ditroi (2013) and also, data from Sharp (1956)

and Michel (1997) from about 60 to 100 MeV as well as

with Johnson (1984) between about 35 and 42 MeV. In

general, in the case of the (p,c) channel, it was observed

that the models in TALYS had difficulty reproducing the

two experimental data available altogether. Hence, it can

observed that the TENDL-2019 for example under pre-

dicted most of the data from Butler (1957). Also, the

JENDL-4.0/HE evaluation severely under predicted the

data from Drake (1973) but fits relatively well with most of

the experiments from Butler (1957). Our (p,c) evaluation
appears to be a trade-off solution for the two experimental

data sets available. In the case of the (p,4n) channel, our

evaluation compares favorably with experiments from

Church (1969) and Michel (1979) between 35 and about 50

MeV and compares well with Michel (1997) and Ditroi

(2013) between 60 and 100 MeV. The TENDL-2019

evaluation appears to fit the experimental data from Sharp

(1956) between 60 and 100 MeV but was unable to

reproduce experiments in the threshold and lower energies.

The JENDL-4.0/HE evaluation, similar to this work,

described data from Michel (1979) favorably but under

predicted the data from the experiments in the high energy

region between about 55 to 100 MeV. In the case of the

(p,np)m cross section, both TENDL-2019 and the evalua-

tion from this work were unable to reproduce experiments

at the threshold energies to about 22 MeV. Our evaluation

however reproduced favorably the experimental data from

about 22 to 30 MeV.

With respect to the (p,n) channel, it can be seen that our

evaluation describes the experimental data in the lower

energy region as well as data from Chodil (1967) reason-

ably well. It was however observed that the JENDL/He-

2007 evaluation for the (p,n) channel outperformed both

our evaluation and that from the TENDL-2019 and

JENDL-4.0/HE libraries especially between about 5 - 12

MeV. Interestingly, the evaluation from JENDL-4.0/HE

appears to be worse-off compared with the JENDL/He-

Table 7 (Color online) Comparison of the reduced chi square values between the ‘best’ files from different generations and the TENDL-2019

evaluation for p?59Co between 1 and 100 MeV in the case of the elastic angular distributions

Incident energy

(MeV)

Author of

Exp.

Parent Gen. (Gen.

0)

Gen.

1

Gen.

2

Gen.

3

Gen.

4

Gen.

5

TENDL-

2019

Frankenstein file (Gen.

5)

5.25 D.A. Bromley – 0.47 0.30 0.71 0.53 0.71 1.38 0.82

6.50 K. Kimura – 4.63 4.27 3.53 3.93 3.53 5.60 3.28

7.00 K. Kimura – 6.54 6.45 4.70 5.92 4.70 9.97 3.88

7.40 K. Kimura 9.58 8.98 7.84 6.03 6.98 6.03 9.56 5.48

7.50 W.F. Waldorf – 74.96 60.62 47.62 52.35 47.62 67.21 45.76

9.67 G.W.

Greenlees

32.71 34.86 23.17 20.38 17.76 20.38 32.70 21.14

11.00 C.M. Perey 17.14 19.38 14.33 15.17 13.84 15.17 17.18 17.11

30.30 B.W. Ridley – 20.27 49.82 29.57 41.85 29.57 56.60 16.56

40.00 M.P. Fricke – 6.14 10.32 7.25 11.09 7.25 24.94 5.87

Average 19.81 19.58 19.68 15.00 17.14 15.00 22.95 13.32

The angles considered are between 1� and 180�
In the last column, the reduced chi square values were obtained by optimizing model calculations to only the elastic angular distributions data.

Note that for angular distributions, we match the experiments in both energy and angle. However, we only interpolate on the angle to fill in

missing TALYS values. The Frankenstein file is the file obtained by optimizing our model calculations to only the experimental elastic angular

distributions data
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2007 library which is an older library. One observation

made in this work is that it appears more effort was put into

improving the residual production cross sections of 59Co in

the JENDL-4.0/HE library than the reaction cross sections.

In Fig. 6, cross sections against incident proton energies

computed for the following residual cross sections:
59Co(p,x)56Co, 59Co(p,x)55Co, 59Co(p,x)57Ni and
59Co(p,x)51Cr are compared with the evaluations from the

TENDL-2019, the JENDL/He-2007 and JENDL-4.0/HE

libraries. Similarly, in Fig. 7, the following residual cross

sections: 59Co(p,x)51Mn, 59Co(p,x)54Mn, 59Co(p,x)48V and
59Co(p,x)46Sc, are presented. From the Fig. 6, it can be

seen that our evaluation and that from the JENDL-4.0/HE

and the JENDL/He-2007 libraries are in good agreement

with experimental data with reference to the 59Co(p,x)57Ni

cross section. However, the TENDL-2019 evaluation

slightly under predicts all the data in the entire energy

region shown. In the case of the 59Co(p,x)56Co cross sec-

tion, our evaluation is in good agreement with data in the

threshold energies but under predicted experimental data in

the lower energy range between about 30 to 70 MeV.

Similarly, the TENDL-2019 and JENDL/He-2007

evaluations had difficulty in reproducing the experimental

data especially at the lower energies. However, the

JENDL/He-2007 and the TENDL-2019 evaluations are in

good agreement with experimental data from about 50 to

100 MeV. The JENDL-4.0/HE evaluation was however in

good agreement with experimental data from the threshold

to about 48 MeV but similar to our evaluation, under

predicted experimental data from about 50 to 100 meV for

the 59Co(p,x)56Co cross section.

In the case of the 59Co(p,x)55Co, the TENDL-2019 and

JENDL-4.0/HE evaluation compares favorably with the

experimental data than our evaluation and that of the

JENDL/He-2007 library. This accounted for the relatively

smaller reduced chi squared obtained for TENDL-2019

(7.24) and JENDL-4.0/HE (4.10) compared with 22.75 for

our evaluation in Table 6. Similarly, in the case of
59Co(p,x)51Cr, it can be observed that the JENDL-4.0/HE

evaluation reproduces the shape of the cross section quite

well except in the very high energy region between about

85 and 100 MeV where it under predicted the cross section

by large margins. Our evaluation and the JENDL/He-2007

evaluation however, compared favorably with experimen-

tal data at the threshold energies. It was observed that the

Fig. 6 (Color online) Excitation functions against incident proton

energies for the following residual cross sections: 59Co(p,x)56Co,
59Co(p,x)55Co, 59Co(p,x)57Ni and 59Co(p,x)51Cr. The evaluation from

this work (i.e., Best file (5th Gen.) is compared with the evaluations

from TENDL-2019, and the JENDL/He-2007 and JENDL-4.0/HE

libraries and experimental data from EXFOR. The curves in violet

represent random cross sections from the 5th generation
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JENDL/He-2007 library over predicted the 59Co(p,x)55Co

cross sections with large margins from about 55 to 100

MeV and also data from the threshold to about 55 MeV.

The JENDL-4.0/HE evaluation of 59Co(p,x)55Co can be

said to be a major improvement in the JENDL/He-2007

evaluation.

For the 59Co(p,x)51Mn, 59Co(p,x)54Mn, 59Co(p,x)48V

and 59Co(p,x)46Sc cross sections presented in Fig. 7, our

evaluation was seen to be in good agreement with experi-

mental data and in fact, outperformed the TENDL-2019

evaluations for all the channels presented. In the case of
59Co(p,x)51Mn for example, our evaluation satisfactorily

fits experimental data from Sharp (1956) and is observed to

be within the experimental uncertainty of the data from

Wagner (1954). Since no experimental uncertainties were

recorded for Sharp (1956), a 10% uncertainty was assumed.

For 59Co(p,x)48V, our evaluation is in good agreement with

experimental data from Titarenko (1996) as well as with

data from Michel (1985), from threshold to about 90 MeV.

The JENDL/He-2007 evaluation appears to be fitting data

from Sharp (1956) which came with no corresponding

experimental uncertainties. On the other hand, the TENDL-

2019 evaluation is observed to have under predicted all the

experimental data from about 75 to 100 MeV but was seen

to be in agreement with data at the threshold energies. In

addition, the JENDL-4.0/HE evaluation fits satisfactorily

the experiments from Michel (1985) from threshold to

about 95 MeV but under predicts data at 98.2 MeV. With

reference to the 59Co(p,x)54Mn cross section, our evalua-

tion as well as the TENDL-2019 evaluation had difficulty

in reproducing experiments at the threshold energies.

However, our evaluation described the data from Michel

(1995) satisfactorily between about 30 and 35 MeV as well

as data between 50 and 70 MeV but was unable to fit the

experimental data from about 70 to 100 MeV for the
59Co(p,x)54Mn cross section. The JENDL/He-2007 evalu-

ation on the other hand, fitted well experiments from

Johnson (1984) between about 28 and 40 MeV but over

estimated data from 45 to 85 MeV. In the case of the
59Co(p,x)46Sc cross section, it can be seen that our evalu-

ation and that of the JENDL-4.0/HE library outperforms

the TENDL-2019 evaluation over the entire energy region.

Excitation functions against incident proton energies for

the following residual cross sections: 59Co(p,x)g58Co,

Fig. 7 (Color online) Excitation functions against incident proton

energies for the following residual cross sections: 59Co(p,x)51Mn,
59Co(p,x)54Mn, 59Co(p,x)48V and 59Co(p,x)46Sc. The evaluation from

this work is compared with the evaluations from TENDL-2019,

JENDL/He-2007 and JENDL-4.0/HE libraries, and experimental data

from EXFOR. The curves in violet represent random cross sections

from the 5th generation
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59Co(p,x)m58Co, 59Co(p,x)58Co and 59Co(p,x)57Co are

presented and compared with the TENDL-2019 evaluation

as wll as experimental data in Fig. 8. It can be observed

that our evaluations over predicted the 59Co(p,x)58Co and

the 59Co(p,x)57Co cross sections from 45 to 100 MeV. On

the other hand, the evaluations from this work as well as

from the TENDL-2019 library compares favorably with

experimental data for the 59Co(p,x)g58Co and
59Co(p,x)m58Co cross sections. For the purpose of testing

our evaluations, we used channels such as the
59Co(p,x)51Mn, 59Co(p,x)54Mn, 59Co(p,x)51Cr,
59Co(p,x)g58Co and 59Co(p,x)m58Co that were not used in

the optimization procedure. These cross sections are pro-

duced with each TALYS calculation. This was done in

order that the same channels used for adjustment were not

used for testing and validation purposes. It can be observed

from Figs. 6, 7 and 8 that the cross sections from this

evaluation compared relatively well compared with

experimental data as well as the TENDL-2019 evaluation.

In Fig. 9, cross section against angles (�) for selected

incident energies: (a) 11.0 MeV, (b) 7 MeV, (c) 7.4 MeV,

(d) 6.05 MeV, (e) 9.67 MeV and (f) 30.3 MeV, are pre-

sented for the elastic angular distributions of p?59Co from

this work and compared with the evaluation from the

TENDL-2019 library. No elastic angular distributions were

found in the TENDL-2019 evaluation of p?59Co therefore,

the TENDL-2019 elastic angular distributions presented in

the figure were obtained by running the TALYS code with

the model and parameter sets used to create the TENDL-

2019 p?59Co evaluation. In order to enable a good match

between our evaluations and experimental data, the

experimental incident energies at which the elastic angular

distribution were measured were given to the TALYS code

as input. From Fig. 9, it can be observed that our evalua-

tions fits satisfactorily the experimental data for all angles

except at high angles where some deviations were

observed. For example, it can be observed from the fig-

ure that the evaluation from this work under predicted the

experimental data from about 150� to 180� for the incident
energies En = 7.4, 9.67, 11.0, MeV. It can also be observed

that the evaluation from this work outperformed the

TENDL-2019 evaluation for all the incident energies pre-

sented except in the case of En = 9.67 MeV where it is

observed that the TENDL-2019 evaluation compared more

favorably with experiments from about 140� to 180�.

Fig. 8 (Color online) Excitation functions against incident proton

energies for the following residual cross sections: 59Co(p,x)g58Co,
59Co(p,x)m58Co, 59Co(p,x)58Co and 59Co(p,x)57Co. The evaluation

from this work is compared with the evaluations from TENDL-2019

library and experimental data from EXFOR. The curves in violet

represent random cross sections from the 5th generation
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3.1 Final parameter uncertainties

To show the convergence of the posterior parameter

distributions of the 5th generation, we present a plot

example of the convergence of the posterior mean and

standard deviation for the vso2adjust (vpso2) parameter in

Fig. 10. It can be seen from the figure that even though

over a thousand samples were produced, the mean and the

standard deviation converges well after about 600 runs or

samples. The fluctuations observed after 600 samples were

found to be below 1%. Similar plots (not shown) have been

produced for the other model parameters and it was

observed that a large number of the parameters converged

after about 800 samples. For uncertainty propagation to

applications purposes, within the Total Monte Carlo

approach, it has been observed earlier that convergence

could be reached after 300 samples [60].

In Fig. 11, a distribution of the file weights computed

for p ? 59Co using Eq. 4, is presented. As expected, a large

number of files were assigned with low or insignificant file

weights and therefore contributed less to the final (or

posterior) uncertainties. This is consistent with earlier

results presented with respect to neutron induced reactions

in Refs. [10, 15]. The low and insignificant weights

obtained could be attributed to the following: (1) the

presence of outlier experiments as well as experiments with

unreported or under-reported uncertainties, (2) sampling

from a region of the parameter space where the likelihood

Fig. 9 (Color online) Cross sections against angles (�) for selected
incident energies: a. 11.0 MeV, b. 7 MeV, c. 7.4 MeV, d. 6.05 MeV,

e. 9.67 MeV and f. 30.3 MeV for elastic angular distributions of

p?59Co. The evaluation from this work (‘Best’ file (5th Gen.)) is

compared with the TENDL-2019 evaluation. The TENDL evaluation

was obtained by rerunning the TALYS code with the same model and

parameter set used to create the TENDL-2019 evaluation. The plots in

violet represent random cross sections from the 5th generation

Fig. 10 (Color online) Plot example showing the convergence of the

posterior mean and the standard deviation of the vso2adjust optical

model parameter distribution (for p ? 59Co). The parameter

distribution used here was obtained by re-sampling the parameters

around the ‘best’ file values obtained from the 5th generation
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is probably low, (3) the difficulty in optimizing our fits

simultaneously to three different experimental data types

considered, (4) the presence of model defects, and (5) not

considering experimental correlations in the computation

of the v2. In the case of (1), data considered as outlier were

assigned with a binary value of zero and therefore not

considered in the optimization. Even though outlier

experiments were discarded, it was still observed that our

models had difficulty in reproducing experimental data

especially at the threshold energies. It is observed in

Ref. [4] that, the nuclear model calculations can easily be

several factors off experimental data at the threshold

energies as well as at the high-energy tail of the excitation

function. Our solution here has been to exclude a few data

points at the threshold regions for cross sections. Further-

more, instead of rejecting outlier experiments, it is pro-

posed that approaches for the automatic correction of the

uncertainties of inconsistent experiments and the identifi-

cation of Unrecognized Sources of Uncertainties (USU) in

experiments proposed in Refs. [28] and [29], respectively,

be incorporated into the iBMC methodology in future

work.

To address (2), an accept/reject method could be used to

reject samples with insignificant file weights as carried out

in Ref. [15]. This approach could however introduce some

bias depending on the cutoff parameter. Therefore, instead

of rejecting samples, we instead, compute an Effective

Sample Size (ESS) using Eq. 12 in order to ensure that a

sufficient number of effective samples were available for

the computation of the final posterior moments. In the case

of (3), it was observed that optimizing our model calcu-

lations to three experimental data types simultaneously can

be difficult. A solution would be to optimize each experi-

mental data type or cross section individually and then

combine them into an evaluation. This would however,

lead to inconsistent evaluations as the sum rules must be

obeyed. With respect to (5), experimental correlations and

covariances are often not readily available and therefore

were not considered in this work. The inclusion of these

correlations is however recommended for future work.

Table 8 presents a comparison between the posterior

mean and the Maximum Likelihood Estimate (MLE) val-

ues for a selected number of model parameters in the case

of the 5th generation (p ? 59Co). The corresponding

updated uncertainties obtained from each posterior

parameter distribution are also presented. The mean values

were obtained by taking the weighted average of the pos-

terior distribution of each parameter using the computed

file weights while the MLE values are the parameter values

of the TALYS input file with the maximum likelihood

estimate (i.e., the final ‘best’ file). It was observed in this

work that the MAP estimate was the same as the MLE

values as expected and therefore, not included in Table 8.

Similar to the prior parameter uncertainty values given

in Table 2, the updated (posterior) uncertainties are given

as a fraction (%) of the posterior mean values. It can be

seen from the table that the MLE and the posterior mean

values are close for most of the optical model parameters

presented as expected—a relative difference of less than

1% was obtained for most of the optical parameters. This is

not surprising, as mentioned earlier, under appropriate

regularity conditions, the posterior distribution should be

centered at or close to the MLE values. However, large

relative change between the MLE and the mean values of

more than 10% were recorded for example, in the case of

the spin cutoff parameter (e.g., r2ð56FeÞ) of the level

density model and the single-particle state densities

(gpð56FeÞ). For these parameters, it was observed that the

prior parameter distributions were not flat but were rather

skewed towards the right. This could be attributed to the

inability of our algorithm to sample the entire space of

these parameters and would therefore require a larger

number of samples.

From the table, a relatively significant reduction in the

prior uncertainty is observed for a number of parameters.

For example, a prior uncertainty of 5% was reduced to

3.5% for the avdadjust parameter and a 20% prior uncer-

tainty was reduced to 8.2% and 7.4% for the wso1adjust

and wso2adjust parameters, respectively. Also, a prior

uncertainty of 10% and 2% were reduced to 4.5% and

1.3%, respectively, for the rcadjust and the rvadjust

parameters. Small or negligible reductions were however

observed for parameters such as v1adjust: (from 2 to

1.8%), and in the case of v2adjust and v3adjust parameters,

from 3 to 2.7%. For the d1adjust, d2adjust and d3adjust

parameters, the prior uncertainties were reduced from 10%

for each parameter, to 7.6%, 7.7% and 8.4%, respectively.

A large reduction in posterior spread (uncertainties) gives

an indication that the parameter under consideration has a

Fig. 11 (Color online) Distribution of global file weights for p ?
59Co computed using Eq. 4. The weights have been normalized with

the maximum weight in order to relate them to 1
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Table 8 Comparison between the posterior mean (with corresponding updated parameter uncertainties) and the MLE for selected model

parameters using file weights computed with files from the 5th generation

Parameter TALYS Best file Posterior Updated

keyword (MLE) mean value uncertainty (%)

vp1 v1adjust 1.02510 1.02391 1.8

vp2 v2adjust 0.89216 0.89327 2.7

vp3 v3adjust 1.13632 1.12783 2.7

vp4 v4adjust 0.89769 0.89785 4.5

vpso1 vso1adjust 1.00331 1.01067 4.4

vpso2 vso2adjust 1.53394 1.52699 7.4

wp
1 w1adjust 1.08637 1.09709 8.3

wp
2 w2adjust 1.11233 1.11133 8.0

wp
3 w3adjust 0.58336 0.57296 9.0

wp
3 w3adjust 1.19582 1.19366 8

wp
so1 wso1adjust 0.82436 0.81858 8.2

wp
so2 wso2adjust 1.34872 1.33502 7.4

dp1 d1adjust 0.97107 0.97219 7.6

dp2 d2adjust 0.96131 0.95489 7.7

dp3 d3adjust 0.79442 0.79069 8.4

apV avadjust 1.00815 1.00860 1.8

apD avdadjust 1.09378 1.09326 3.5

apSO avsoadjust 1.27112 1.26841 8.0

rpV rvadjust 0.96157 0.95998 1.3

rpD rvdadjust 1.02131 1.02037 2.7

rpSO rvsoadjust 1.03155 1.04534 8.3

rpc rcadjust 0.99361 0.99618 4.5

Cbreak cbreak 0.11692 0.10211 31.50

cknock cknock 2.02041 1.98931 27.00

Cstrip cstrip 2.02041 1.98931 27.

Rc rgamma 2.78980 2.85539 8.74

M2 m2constant 0.86017 0.86708 9.7

að56FeÞ aadjust(56) 0.98910 0.92564 4.90

að57CoÞ aadjust(57) 1.06517 0.97446 4.43

að58CoÞ aadjust(58) 0.95692 1.08039 4.13

r2ð56FeÞ s2adjust(56) 1.20507 0.83752 13.72

r2ð57CoÞ s2adjust(57) 1.46696 0.91717 12.77

r2ð58CoÞ s2adjust(58) 1.33209 0.59288 12.55

gpð56FeÞ gpadjust(56) 0.77963 1.00282 4.65

gpð57CoÞ gpadjust(57) 1.13575 1.11342 4.40

gpð58CoÞ gpadjust(58) 1.06172 1.07437 3.85

gmð56FeÞ gnadjust(56) 0.99597 1.00282 4.65

gmð57CoÞ gnadjust(57) 1.05643 1.11342 4.40

gmð58CoÞ gnadjust(58) 0.99566 0.99048 4.20

Note that the posterior uncertainties are given as a fraction (%) of the posterior mean values and that the prior uncertainties have been given

earlier in Table 2. It was observed that the MLE values were the same as the MAP estimates as expected and therefore, not presented
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large sensitivity to the channels used in computing the

global likelihood function. On the other hand, small or no

reduction in the posterior uncertainty implies that the file

weights do not have impact on the posterior parameter

distribution of interest, signifying no sensitivity of the

parameter under consideration to the channels used in the

computation of the weights. This is because, by using a

uniform or relatively flat priors (as was in this case), the

posterior distribution is determined solely (or almost) by

the experimental data through the likelihood function.

In Fig. 12, prior and posterior distributions for selected

optical model parameters in the case of the 5th generation:

avadjust (apV ), avdadjust (a
p
D), v1adjust (v

p
1), w1adjust (w

p
1)

are presented. As can be seen from the figure, the prior

samples were drawn from uniform parameter distributions.

The posterior distributions describes the updated informa-

tion for the considered parameters after experimental data

were taken into account. In general, it can be seen that the

priors are relatively flat as expected. However, the poste-

rior distribution peaks sharply at the mean value which

incidentally is very close to the MLE and the MAP values

as expected. The posterior (or updated) uncertainties for the

parameters in Fig. 12 are as follows: apV—1.8% (reduced

from 2%), apD—3.5% (reduced from 4%), vp1—1.8% (re-

duced from 2%), rpV—1.3% (reduced from 2%). An

Effective Sample Size (ESS) of 110 which represents

10.8% of the total sample size, was obtained. Our inability

to significantly reduce the posterior uncertainties for some

of the parameters can be attributed to the insensitivity of

these parameters to the cross sections and the elastic

angular distributions used in computing the file weights.

As a natural consequence of the Monte Carlo method

used, correlations and other statistical information such as

mean and variances can be extracted from both the prior

and posterior distributions. In Fig. 13, prior and posterior

(weighted) correlation matrices for a selected number of

optical model parameters are presented. The correlation

matrices presented are symmetric and give a measure of the

strength of the linear dependence between two parameters

and vary from � 1 (perfect negative correlation) to þ 1

(perfect positive correlation). It can be seen from the fig-

ure that the prior correlation values are generally relatively

Fig. 12 (Color online) Prior and posterior parameter distributions for

selected optical model parameters: avadjust (apV ), avdadjust (apD),

v1adjust (vp1), rvadjust (r
p
V ) in the case of the p ? 59Co (Gen. 5). An

Effective Sample Size (ESS) of 110 (representing 10.8% of the total

sample size) was obtained
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low. This is expected since the parameters were sampled in

an uncorrelated manner. Additional correlations were then

introduced through the use of the same experimental data

used in the computation of the file weights as can be seen

in the weighted (posterior) correlation matrix in Fig. 13. A

negative correlation was observed between the rvadjust

(rpV ) and v1adjust (vp1) parameters for example. This is

expected as there is a well-known inverse relationship

Fig. 13 (Color online) Prior and posterior (weighted) correlation matrices for a selected number of optical model parameters for p ? 59Co (Gen.

5)

Fig. 14 (Color online) Evaluated posterior correlation matrix for selected proton induced cross sections of p ? 59Co (Gen. 5). The incident

energy used corresponds to the incident energies of the experimental data used in the computation of the file weights
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between the rpV and vp1 parameters which can be given as

follows: vp1 � r
p
V ¼ constant [61]. It must also be noted that

most of the optical models showed similar behavior as can

be seen in Fig. 13. Similar negative correlations were also

observed in Ref. [61]. We note here that these parameter

correlations were however, automatically taken into

account in the simultaneous variations of the model

parameters. Similarly, energy–energy correlations for each

cross section can be obtained. As proof of principle,

evaluated posterior correlation matrices for selected proton

induced reaction cross sections ((p,nonel), (p,n), Co(p,c)
and (p,4n)) of p ? 59Co are presented in Fig. 14. Similar

matrices (not shown) were obtained for the residual pro-

duction cross sections and the elastic angular distributions.

These matrices were obtained by combining the global file

weights with the cross sections. The high correlations as

seen in the figure can be attributed largely to the energy–

energy correlations that come from the use of the same

theoretical models in the production of the random cross

sections. A similar observation was made in Ref. [60].

Additional correlations come from the use of the same

experimental data in the computation of the file weights.

This however, has less impact since the correlations were

introduced through the global likelihood function which

also took into account, experimental residual cross-section

data as well as the elastic angular distributions. These

weighted correlations and covariance information can be

used for uncertainty propagation to applications. It must be

stated here that even though these parameter correlations

and covariances are available, the final cross sections were

produced from the direct variation of model parameters and

not from perturbing the cross sections.

4 Conclusion

In this work, we explored the use of an Iterative Baye-

sian Monte Carlo (iBMC) procedure for the evaluation of

nuclear data in the fast energy region. The goal of the

iterative procedure has been to minimize the difference

between selected experimental observables and the corre-

sponding nuclear reaction model outputs in an iterative

fashion. This was done by exploring both the model and

parameter space in order to identify the ‘best’ model

combination and corresponding parameter set, that make

our experimental data most probable within a Bayesian

Monte Carlo framework. The associated uncertainties of

the final evaluation were obtained by re-sampling model

parameters around the final ‘best’ file. The proposed iBMC

method has been applied to the evaluation of proton

induced reactions on 59Co between 1 and 100 MeV energy

region. The study showed that there is a potential for the

improvement of nuclear data evaluations within the limit of

the available models, through an iterative process. Since

the selected models were still observed to be deficient in

their ability to reproduce the experimental data available,

we propose the integration and inclusion of model defects

into the iBMC methodology. Furthermore, since it was

difficult to cover the entire model and parameter space, it is

further recommended that more efficient sampling methods

be explored in future work.
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61. J. Duan, S. Pomp, H. Sjöstrand et al., Uncertainty study of

nuclear model parameters for the n?56Fe reactions in the fast

neutron region below 20 MeV. Nucl. Data Sheets 118, 346–348
(2014). https://doi.org/10.1016/j.nds.2014.04.076

123

Iterative Bayesian Monte Carlo for nuclear data evaluation Page 31 of 31 50

https://core.ac.uk/download/pdf/70617776.pdf
https://core.ac.uk/download/pdf/70617776.pdf
https://doi.org/10.1007/978-0-387-21736-9
https://doi.org/10.1007/978-0-387-21736-9
https://doi.org/10.1016/j.nds.2021.04.007
https://doi.org/10.1016/j.nds.2021.04.007
https://doi.org/10.1007/978-3-642-04898-2_612
https://doi.org/10.1016/j.nuclphysa.2004.08.013
https://doi.org/10.1016/j.nuclphysa.2004.08.013
https://doi.org/10.1016/j.nuclphysa.2008.06.005
https://doi.org/10.1016/j.nuclphysa.2008.06.005
https://doi.org/10.1016/S0003-4916(03)00076-9
https://doi.org/10.1016/S0003-4916(03)00076-9
https://doi.org/10.1103/PhysRevC.98.014327
https://doi.org/10.1103/PhysRevC.98.014327
https://doi.org/10.1103/PhysRevC.41.1941
https://doi.org/10.1103/PhysRev.126.671
https://doi.org/10.1016/j.nds.2009.10.004
https://doi.org/10.1016/0375-9474(92)90278-R
https://doi.org/10.1016/0375-9474(92)90278-R
http://hdl.handle.net/11394/5321
http://hdl.handle.net/11394/5321
https://doi.org/10.1016/0375-9474(87)90518-5
https://doi.org/10.1016/S0375-9474(02)00860-6
https://doi.org/10.1016/S0375-9474(02)00860-6
https://doi.org/10.1103/PhysRevC.98.014327
https://doi.org/10.1103/PhysRevC.98.014327
https://doi.org/10.1103/PhysRevC.94.014308
https://doi.org/10.1103/PhysRevC.94.014308
https://doi.org/10.1103/PhysRevC.100.024330
https://doi.org/10.1016/j.anucene.2014.07.043
https://doi.org/10.1016/j.anucene.2014.07.043
https://doi.org/10.1016/j.nds.2014.04.076

	Iterative Bayesian Monte Carlo for nuclear data evaluation
	Abstract
	Introduction
	Methods
	Selection of experimental data
	Model calculations
	Bayesian calibration and selecting the winning model
	Iterative Bayes procedure
	Updating model parameter uncertainties
	Updating the cross sections

	Results
	Final parameter uncertainties

	Conclusion
	Author Contributions
	Open Access
	References




