Skip to main content
Log in

Evaluation of neutron beam characteristics for D-BNCT01 facility

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

An accelerator-based Boron Neutron Capture Therapy (AB-BNCT) experimental facility called D-BNCT01 has been recently completed and is currently able to generate a high-intensity neutron beam for BNCT-related research. In this study, we perform several experiments involving water phantoms to validate the Monte Carlo simulation results and analyze the neutron beam characteristics. According to our measurements, D-BNCT01 can generate a neutron flux about 1.2 × 108 n/cm2/s at the beam port using a 5 kW proton beam. Our results also show that the thermal neutron flux depth distribution inside the water phantom is in good agreement with simulations. We conclude that D-BNCT01 may be effectively employed for BNCT research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Wang, Y. Tong, Q. Luo et al., Study of ATP borate ester effects on cell sensitization to radiation emitted by a nuclear reactor. Nucl. Sci. Tech. 31, 2 (2020). https://doi.org/10.1007/s41365-019-0713-0

    Article  Google Scholar 

  2. R.F. Barth, J.A. Coderre, M.G.H. Vicente et al., Boron neutron capture therapy of cancer: Current status and future prospects. Clin. Cancer Res. 11, 3987 (2005). https://doi.org/10.1158/1078-0432.Ccr-05-0035

    Article  Google Scholar 

  3. H. Hatanaka, Clinical results of boron neutron capture therapy. Basic Life Sci. 54, 15 (1990)

    Google Scholar 

  4. D.A. Allen, T.D. Beynon, S. Green, Design for an accelerator-based orthogonal epithermal neutron beam for boron neutron capture therapy. Med. Phys. 26, 71 (1999). https://doi.org/10.1118/1.598479

    Article  Google Scholar 

  5. D. Cartelli, M.E. Capoulat, T.J. Bergueiro et al., Present status of accelerator-based BNCT: Focus on developments in Argentina. Appl. Radiat. Isot. 106, 18 (2015). https://doi.org/10.1016/j.apradiso.2015.07.031

    Article  Google Scholar 

  6. C. Ceballos, J. Esposito, S. Agosteo et al., Towards the final BSA modeling for the accelerator-driven BNCT facility at INFN LNL. Appl. Radiat. Isot. 69, 1660 (2011). https://doi.org/10.1016/j.apradiso.2011.01.032

    Article  Google Scholar 

  7. T.A. Bykov, D.A. Kasatov, A.M. Koshkarev et al., A multichannel neutron flux monitoring system for a boron neutron capture therapy facility. J. Instrum. 14, P12002 (2019). https://doi.org/10.1088/1748-0221/14/12/p12002

    Article  Google Scholar 

  8. M. Kim, B.H. Hong, I. Cho et al., Design of a scintillator-based prompt gamma camera for boron-neutron capture therapy: Comparison of SrI2 and GAGG using Monte-Carlo simulation. Nucl. Eng. Technol. 53, 626 (2021). https://doi.org/10.1016/j.net.2020.07.010

    Article  Google Scholar 

  9. H. Kumada, K. Takada, S. Tanaka et al., Evaluation of the characteristics of the neutron beam of a linac-based neutron source for boron neutron capture therapy. Appl. Radiat. Isot. 165, 109246 (2020). https://doi.org/10.1016/j.apradiso.2020.109246

    Article  Google Scholar 

  10. P.E. Tsai, Y.H. Liu, H.M. Liu et al., Characterization of a BNCT beam using neutron activation and indirect neutron radiography. Radiat. Meas. 45, 1167 (2010). https://doi.org/10.1016/j.radmeas.2010.07.008

    Article  Google Scholar 

  11. A. Ishikawa, A. Yamazaki, K. Watanabe et al., A comparison between simulation and experimental results for depth profile of Li-6 reaction rate in a water phantom of BNCT using a small Li-6-based scintillator neutron detector with an optical fiber. Radiat. Meas. 133, 106270 (2020). https://doi.org/10.1016/j.radmeas.2020.106270

    Article  Google Scholar 

  12. L.S. Waters, G.W. McKinney, J.W. Durkee et al., The MCNPX Monte Carol radiation transport code, Paper presented at the Hadronic Shower Simulation Workshop (Batavia, IL, 6–8 Sep. 2007)

  13. H. Liskien, A. Paulsen, Neutron production cross sections and energies for the reactions 7Li (p, n) 7Be and 7Li (p, n) 7Be. At. Data Nucl. Data Tables. 15, 57 (1975). https://doi.org/10.1016/0092-640X(75)90004-2

    Article  ADS  Google Scholar 

  14. G.F. Knoll, Radiation detection and measurement, 4th edn. (John Wiley and Sons Inc., New Jersey, 2010), pp. 767–774

    Google Scholar 

  15. M.B. Chadwick, M. Herman, P. Oblozinsky et al., ENDF/B-VII.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nucl. Data Sheets 112, 2887 (2011). https://doi.org/10.1016/j.nds.2011.11.002

    Article  ADS  Google Scholar 

  16. A. Trkov, P.J. Griffin, S.P. Simakov et al., IRDFF-II: A new neutron metrology library. Nucl. Data Sheets 163, 1 (2020). https://doi.org/10.1016/j.nds.2019.12.001

    Article  ADS  Google Scholar 

  17. Y.H. Liu, C.K. Huang, P.E. Tsai et al., BNCT epithermal neutron beam mapping by using indirect neutron radiography. Nucl. Technol. 168, 354 (2009). https://doi.org/10.13182/nt09-a9208

    Article  Google Scholar 

  18. F. Acerbi, S. Gundacker, Understanding and simulating SiPMs. Nucl. Instrum. Methods Phys. Res. A 926, 16 (2019). https://doi.org/10.1016/j.nima.2018.11.118

    Article  ADS  Google Scholar 

  19. P.P. Calo, F. Ciciriello, S. Petrignani et al., SiPM readout electronics. Nucl. Instrum. Methods Phys. Res. A 926, 57 (2019). https://doi.org/10.1016/j.nima.2018.09.030

    Article  ADS  Google Scholar 

  20. S. Nakamura, H. Igaki, M. Ito et al., Neutron flux evaluation model provided in the accelerator-based boron neutron capture therapy system employing a solid-state lithium target. Sci. Rep. 11, 8090 (2021). https://doi.org/10.1038/s41598-021-87627-8

    Article  ADS  Google Scholar 

  21. S. Nakamura, H. Igaki, M. Ito et al., Characterization of the relationship between neutron production and thermal load on a target material in an accelerator-based boron neutron capture therapy system employing a solid-state Li target. PLoS ONE 14, e0225587 (2019). https://doi.org/10.1371/journal.pone.0225587

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Jun-Yang Chen, Jian-Fei Tong, Zhi-Liang Hu, Xue-Fen Han, Bin Tang, Qian Yu, Rui-Qiang Zhang, Chong-Guang Zhao, Jun Xu, Shi-Nian Fu, Bin Zhou and Tian-Jiao Liang. The first draft of the manuscript was written by Jun-Yang Chen and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Bin Zhou or Tian-Jiao Liang.

Additional information

This work was supported by the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (No. 2017ZT07S225), the Institute of High Energy Physics Xie-Jialin Foundation (No. Y95461F), and the National Natural Science Foundation of China (No. U1932219).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JY., Tong, JF., Hu, ZL. et al. Evaluation of neutron beam characteristics for D-BNCT01 facility. NUCL SCI TECH 33, 12 (2022). https://doi.org/10.1007/s41365-022-00996-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-022-00996-1

Keywords

Navigation