Skip to main content
Log in

Effects of impurity elements on SiC grain boundary stability and corrosion

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Grain boundaries (GBs) have critical influences on the stability and properties of various materials. In this study, first-principles calculations were performed to determine the effects of four metallic impurities (Ni, Al, Bi, and Pb) and three nonmetallic impurities (H, O, and N) on the GBs of silicon carbide (SiC), using the Σ5(210) GBs as models. The GB energy and segregation energy (SE) were calculated to identify the effects of impurities on the GB stability. Electronic interactions considerably influenced the bonding effects of SiC. The formation of weak bonds resulted in the corrosion and embrittlement of GBs. The co-segregation of Bi, Pb, and O was also investigated in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig.17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. X. Shi, B. Li, H. Liu et al., The corrosion resistance mechanisms of the Cr-coated SiC in molten Na2SO4 salt: strengthened boundaries and protective scales. Corros. Sci. 185, 109421 (2021). https://doi.org/10.1016/j.corsci.2021.109421

    Article  Google Scholar 

  2. S.L. Chen, X.J. He, C.X. Yuan et al., Recent studies on potential accident-tolerant fuel-cladding systems in light water reactors. Nucl. Sci. Tech. 31, 32 (2020). https://doi.org/10.1007/s41365-020-0741-9

    Article  Google Scholar 

  3. C. Cluzel, E. Baranger, P. Ladevèze et al., Mechanical behavior and lifetime modelling of self-healing ceramic-matrix composites subjected to thermo-mechanical loading in air. Composites A 40, 976–984 (2009). https://doi.org/10.1016/j.compositesa.2008.10.020

    Article  Google Scholar 

  4. Z.X. Tan, J.J. Cai, Neutronic analysis of silicon carbide cladding accident-tolerant fuel assemblies in pressurized water reactors. Nucl. Sci. Tech. 30, 48 (2019). https://doi.org/10.1007/s41365-019-0575-5

    Article  Google Scholar 

  5. S. Kondo, M. Lee, T. Hinoki et al., Effect of irradiation damage on hydrothermal corrosion of SiC. J. Nucl. Mater. 464, 36–42 (2015). https://doi.org/10.1016/j.jnucmat.2015.04.034

    Article  ADS  Google Scholar 

  6. B. Wang, C. Zhang, X. Ma et al., Key problems on the mechanical behavior of nuclear materials and structures of pressured water reactors. Sci. Sin. Phys. Mech. Astron. 49, 114602 (2019). https://doi.org/10.1360/SSPMA-2019-0113

    Article  Google Scholar 

  7. S. Kondo, S. Mouri, Y. Hyodo et al., Role of irradiation-induced defects on SiC dissolution in hot water. Corros. Sci. 112, 402–407 (2016). https://doi.org/10.1016/j.corsci.2016.08.007

    Article  Google Scholar 

  8. S. Kondo, K. Seki, Y. Maeda et al., Contribution of dangling-bonds to polycrystalline SiC corrosion. Scr. Mater. 188, 6–9 (2020). https://doi.org/10.1016/j.scriptamat.2020.07.001

    Article  Google Scholar 

  9. C.M. Parish, K.A. Terrani, Y.J. Kim et al., Microstructure and hydrothermal corrosion behavior of NITE-SiC with various sintering additives in LWR coolant environments. J. Eur. Ceram. Soc. 37, 1261–1279 (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.11.033

    Article  Google Scholar 

  10. P.J. Doyle, S. Zinkle, S.S. Raiman, Hydrothermal corrosion behavior of CVD SiC in high temperature water. J. Nucl. Mater. 539, 152241 (2020). https://doi.org/10.1016/j.jnucmat.2020.152241

    Article  Google Scholar 

  11. S. Özkan, G. Hapç, G. Orhan et al., Electrodeposited Ni/SiC nanocomposite coatings and evaluation of wear and corrosion properties. Surf. Coat. Technol. 232, 734–741 (2013). https://doi.org/10.1016/j.surfcoat.2013.06.089

    Article  Google Scholar 

  12. V. Zarghami, M. Ghorbani, Alteration of corrosion and nano mechanical properties of pulse electrodeposited Ni/SiC nanocomposite coatings. J. Alloys Compd. 598, 236–242 (2014). https://doi.org/10.1016/j.jallcom.2014.01.220

    Article  Google Scholar 

  13. T.M. Kondo, M. Kondo, Corrosion resistance of ceramics SiC and Si3N4 in flowing lead-bismuth eutectic. Prog. Nucl. Energy 53, 1061–1065 (2011). https://doi.org/10.1016/j.pnucene.2011.04.023

    Article  Google Scholar 

  14. L.Y. He, G.C. Li, S.P. Xia et al., Effect of 37Cl enrichment on neutrons in a molten chloride salt fast reactor. Nucl. Sci. Tech. 31, 27 (2020). https://doi.org/10.1007/s41365-020-0740-x

    Article  Google Scholar 

  15. R. Tu, Q. Liu, Y. Li et al., First principles calculations for iodine atom diffusion in SiC with point defects. Comput. Mater. Sci. 142, 427–436 (2018). https://doi.org/10.1016/j.commatsci.2017.10.025

    Article  Google Scholar 

  16. D. Shrader, L. Szlufarska, D. Morgan, Cs diffusion in cubic silicon carbide. J. Nucl. Mater. 421, 89–96 (2012). https://doi.org/10.1016/j.jnucmat.2011.11.051

    Article  ADS  Google Scholar 

  17. D. Shrader, S.M. Khalil, T. Gerczak et al., Ag diffusion in cubic silicon carbide. J. Nucl. Mater. 408, 257–271 (2011). https://doi.org/10.1016/j.jnucmat.2010.10.088

    Article  ADS  Google Scholar 

  18. P.F. Zhang, Y.L. Zhang, W. Gai et al., Oxidation behaviour of SiC ceramic coating for C/C composites prepared by pressure-less reactive sintering in wet oxygen: Experiment and first-principle simulation. Ceram. Int. 47, 15337–15348 (2021). https://doi.org/10.1016/j.ceramint.2021.02.099

    Article  Google Scholar 

  19. P. Qing, N.J. Chen, W.F. Skerjanc et al., Reveal the fast and charge-insensitive lattice diffusion of silver in cubic silicon carbide via first-principles calculations. Comput. Mater. Sci. 170, 109190 (2019). https://doi.org/10.1016/j.commatsci.2019.109190

    Article  Google Scholar 

  20. T.M. Lillo, I.J. Rooyen, Influence of SiC GB character on fission product transport in irradiated TRISO fuel. J. Nucl. Mater. 473, 83–92 (2016). https://doi.org/10.1016/j.jnucmat.2016.01.040

    Article  ADS  Google Scholar 

  21. A. Lara, A. Muñoz, M. Castillo-Rodríguez et al., High-temperature compressive creep of spark-plasma sintered additive-free polycrystalline β-SiC. J. Eur. Ceram. Soc. 32, 3445–3451 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.04.041

    Article  Google Scholar 

  22. B. Wei, J. Zhou, Z. Yao et al., The effect of Ag nanoparticles content on dielectric and microwave absorption properties of β-SiC. Ceram. Int. 46, 5788–5798 (2020). https://doi.org/10.1016/j.ceramint.2019.11.029

    Article  Google Scholar 

  23. T. Koyanagi, Y. Katoh, T. Hinoki et al., Progress in development of SiC-based joints resistant to neutron irradiation. J. Eur. Ceram. Soc. 40, 1023–1034 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.10.055

    Article  Google Scholar 

  24. Z.F. Huang, F. Chen, Q. Shen et al., Combined effects of nonmetallic impurities and planned metallic dopants on GB energy and strength. Acta. Mater. 166, 113–125 (2019). https://doi.org/10.1016/j.actamat.2018.12.031

    Article  ADS  Google Scholar 

  25. Z.F. Huang, F. Chen, Q. Shen et al., Uncovering the influence of common nonmetallic impurities on the stability and strength of a Σ5 (310) GB in Cu. Acta. Mater. 148, 110–122 (2018). https://doi.org/10.1016/j.actamat.2018.01.058

    Article  ADS  Google Scholar 

  26. D. Scheiber, K. Prabitz, The influence of alloying on Zn liquid metal embrittlement in steels. Acta. Mater. 195, 750–760 (2020). https://doi.org/10.1016/j.actamat.2020.06.001

    Article  ADS  Google Scholar 

  27. M.H. Razmpoosh, C. DiGiovanni, Y.N. Zhou et al., Pathway to understand liquid metal embrittlement (LME) in Fe-Zn couple: From fundamentals toward application. Prog. Mater. Sci. 29, 100798 (2021). https://doi.org/10.1016/j.pmatsci.2021.100798

    Article  Google Scholar 

  28. H. Liang, X. Yao, J.X. Zhang et al., The effect of rare earth oxides on the pressureless liquid phase sintering of α-SiC. J. Euro. Ceram. Soc. 34, 2865–2874 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.03.029

    Article  Google Scholar 

  29. L. Tan, T.R. Allena, J.D. Hunn et al., EBSD for microstructure and property characterization of the SiC coating in TRISO fuel particles. J. Nucl. Mater. 372, 400–404 (2008). https://doi.org/10.1016/j.jnucmat.2007.04.048

    Article  ADS  Google Scholar 

  30. S. Xu, X. Li, Y. Zhao et al., Micromechanical properties and microstructural evolution of Amosic-3 SiC/SiC composites irradiated by silicon ions. J. Eur. Ceram. Soc. 8, 2811–2820 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.02.023

    Article  Google Scholar 

  31. B. Li, H. Liu, T. Shen et al., Irradiation induced microstructure damage in He-irradiated 3C-SiC at 1000. J. Eur. Ceram. Soc. 40, 1014–1022 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.11.026

    Article  Google Scholar 

  32. K. Jina, C. Lu, L.M. Wang et al., Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys. Scr. Mater. 119, 65–70 (2016). https://doi.org/10.1016/j.scriptamat.2016.03.030

    Article  Google Scholar 

  33. F.A. Garner, M.B. Toloczko, B.H. Sencer, Comparison of swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure. J. Nucl. Mater. 276, 123–142 (2000). https://doi.org/10.1016/S0022-3115(99)00225-1

    Article  ADS  Google Scholar 

  34. L.M. Wang, R.A. Dodd, G.L. Kulcinski et al., Effects of 14 MeV nickel ion irradiation on nickel-copper alloys observed in cross-section. J. Nucl. Mater. 155–157, 1241–1248 (1988). https://doi.org/10.1016/0022-3115(88)90504-1

    Article  ADS  Google Scholar 

  35. G. Chen, Y. Lei, Q. Zhu et al., Corrosion behavior of CLAM steel weld bead in flowing Pb-Bi at 550 °C. J. Nucl. Mater. 515, 187–198 (2018). https://doi.org/10.1016/j.jnucmat.2018.12.038

    Article  ADS  Google Scholar 

  36. P.G. Baranov, A.P. Bundakova, A.A. Soltamova et al., Silicon vacancy in SiC as a promising quantum system for single-defect and single-photon spectroscopy. Phys. Rev. B 83, 125203 (2011). https://doi.org/10.1103/PhysRevB.83.125203

    Article  ADS  Google Scholar 

  37. J.R. Weber, W.F. Koehl, J.B. Varley et al., Quantum computing with defects. Proc. Natl. Acad. Sci. USA 107, 8513–8518 (2010). https://doi.org/10.1073/pnas.1003052107

    Article  ADS  Google Scholar 

  38. E.P. Loewen, A.T. Tokuhiro, Status of research and development of the lead alloy cooled fast reactor. J. Nucl. Sci. Technol. 40, 614–627 (2003). https://doi.org/10.1080/18811248.2003.9715398

    Article  Google Scholar 

  39. B.S. Lou, C.A. Yen, Y. Chen et al., Effects of processing parameters on the adhesion and corrosion resistance of oxide coatings grown by plasma electrolytic oxidation on AZ31 magnesium alloys. J. Mater. Sci. Technol. 10, 1355–1371 (2021). https://doi.org/10.1016/j.jmrt.2020.12.108

    Article  Google Scholar 

  40. L. Lin, Y. Chen, L. Hua et al., Electronic structures and ferromagnetism of 3C-SiC doped with (Fe, Co) double-impurities by first-principles calculations. Mater. Sci. Semicon. Proc. 129, 105779 (2021). https://doi.org/10.1016/j.mssp.2021.105779

    Article  Google Scholar 

  41. P. Zhang, Y. Zhang, Initial oxidation of 3C-SiC (111) in oxidizing atmosphere containing water vapor: H2O adsorption from first-principles calculation. Mater. Today. Commun. 26, 102072 (2021). https://doi.org/10.1016/j.mtcomm.2021.102072

    Article  Google Scholar 

  42. B. Li, H. Liu, T. Shen et al., Irradiation-induced microstructure damage in He-irradiated 3C-SiC at 1000°C. J. Eur. Ceram. Soc. 40, 1014–1022 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.11.026

    Article  Google Scholar 

  43. J. Hui, W. Liu, B. Wang, Theoretical study of the effects of alloying elements on Cu nanotwins. Sci. China-Phys. Mech. Astron. 63, 104612 (2020)

    Article  ADS  Google Scholar 

  44. J. Hui, X.Y. Zhang, W. Liu et al., First-principles study of de-twinning in a FCC alloy. J. Sol. State Chem. 293, 121765 (2021). https://doi.org/10.1016/j.jssc.2020.121765

    Article  Google Scholar 

  45. G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169–11186 (1996)

    Article  ADS  Google Scholar 

  46. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. B. 140, A1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  47. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994)

    Article  ADS  Google Scholar 

  48. W. Gordy, W.J.O. Thomas, Electronegativities of the elements. J. Chem. Phys. 24, 439–444 (1956). https://doi.org/10.1063/1.1742493

    Article  ADS  Google Scholar 

  49. T.W. Fan, Z.P. Wang, J.J. Lin et al., First-principles predictions for stabilizations of multilayer nanotwins in Al alloys at finite temperatures. J. Alloys Compd. 783, 765–771 (2019). https://doi.org/10.1016/j.jallcom.2018.12.314

    Article  Google Scholar 

  50. A. Kumar, J. Wang, C.N. Tomé et al., First-principles study of energy and atomic solubility of twinning-associated boundaries in hexagonal metals. Acta. Mater. 85, 144–154 (2015). https://doi.org/10.1016/j.actamat.2014.11.015

    Article  Google Scholar 

  51. Q.Y. Wang, C. Wang, Molecular dynamics analysis of the thermal conductivity of SiC grain boundaries under irradiation conditions. J. Mater. Sci. Eng. 34, 133–136 (2016). https://doi.org/10.14136/j.cnki.issn1673-2812.2016.01.025

    Article  Google Scholar 

  52. S. Dinda, W.R. Warke, The effect of grain boundary segregation on liquid metal induced embrittlement of steel. Mater. Sci. Eng. 24, 199–208 (1976). https://doi.org/10.1016/0025-5416(76)90113-0

    Article  Google Scholar 

  53. M. Vsianska, M. Šob, The effect of segregated sp-impurities on grain-boundary and surface structure, magnetism and embrittlement in nickel. Prog. Mater. Sci. 56, 817–840 (2011). https://doi.org/10.1016/j.pmatsci.2011.01.008

    Article  Google Scholar 

  54. C. He, Z. Li, H. Chen et al., Unusual solute segregation phenomenon in coherent twin boundaries. Nat. Commun. 12, 722 (2021). https://doi.org/10.1038/s41467-021-21104-8

    Article  ADS  Google Scholar 

  55. X.J. Zhao, H.W. Chen, N. Wilson et al., Direct observation and impact of cosegregated atoms in magnesium having multiple alloying elements. Nat. Commun. 10, 3243 (2019)

    Article  ADS  Google Scholar 

  56. Y.M. Zhu, S.W. Xu, J.F. Nie et al., 1011 Twin boundary structures in a Mg–Gd alloy. Acta Mater 143, 1–12 (2018). https://doi.org/10.1016/j.actamat.2017.09.067

    Article  ADS  Google Scholar 

  57. H. Zhou, G.M. Cheng, X.L. Ma et al., Effect of Ag on interfacial segregation in MgGdYAgZr alloy. Acta Mater. 95, 20–29 (2015). https://doi.org/10.1016/j.actamat.2015.05.020

    Article  ADS  Google Scholar 

  58. X.F. Chen, L.R. Xiao, Z.G. Ding et al., Atomic segregation at twin boundaries in a MgAg alloy. Scr. Mater. 178, 193–197 (2020). https://doi.org/10.1016/j.scriptamat.2019.11.025

    Article  ADS  Google Scholar 

  59. L. Pauling, Atomic radii and interatomic distances in metals. J. Am. Chem. Soc. 69, 542–553 (1947)

    Article  Google Scholar 

  60. A.M. Kueck, D.J. He, Two-stage sintering inhibits abnormal grain growth during beta to alpha transformation in SiC. J. Eur. Ceram. Soc. 28, 2259–2264 (2008). https://doi.org/10.1016/j.jeurceramsoc.2008.01.026

    Article  Google Scholar 

  61. Q.Q. Shao, L.H. Liu, T.W. Fan et al., Effects of solute concentration on the stacking fault energy in copper alloys at finite temperatures. J. Alloys Compd. 726, 601–607 (2017). https://doi.org/10.1016/j.jallcom.2017.07.332

    Article  Google Scholar 

  62. L. Huber, J. Rottler, M. Militzer, Atomistic simulations of the interaction of alloying elements with grain boundaries in Mg. Acta Mater. 80, 194–204 (2014). https://doi.org/10.1016/j.actamat.2014.07.047

    Article  Google Scholar 

  63. P. Garg, I. Adlakha, K.N. Solanki, Effect of solutes on ideal shear resistance and electronic properties of magnesium: a first-principles study. Acta. Mater. 153, 327–335 (2018). https://doi.org/10.1016/j.actamat.2018.05.014

    Article  ADS  Google Scholar 

  64. C.L. White, W.A. Coghlan, The spectrum of binding energies approach to GB segregation. Metall. Trans. A 8, 1403–1412 (1977)

    Article  Google Scholar 

  65. J. Hui, W. Liu, B. Wang, Quasi-gradient variation of microstructures and properties of Cu–Sn alloy along the thickness direction under cold spinning. J. Alloys Compd. 831, 154701 (2020). https://doi.org/10.1016/j.jallcom.2020.154701

    Article  Google Scholar 

  66. R. Janisch, C. Elsässer, Segregated light elements at grain boundaries in niobium and molybdenum. Phys. Rev. B. 67, 2209–2219 (2003)

    Article  Google Scholar 

  67. C.T. Ser, A.M. Mak, T. Wejrzanowski et al., Designing piezoresistive materials from first-principles: dopant effects on 3C-SiC. Comp. Mater. Sci. 186, 110040 (2021). https://doi.org/10.1016/j.commatsci.2020.110040

    Article  Google Scholar 

  68. M. Luo, Y.E. Xu, Y.X. Song et al., Impact of isotropic strain on electronic and magnetic properties of O-adsorbed SiC monolayer. Mater. Sci. Semicond. Process. 83, 27–32 (2018). https://doi.org/10.1016/j.mssp.2018.04.005

    Article  Google Scholar 

  69. P. Lejcek, Grain boundary segregation in metals. Springer Ser. Mater. Sci. 136, 1–239 (2010). https://doi.org/10.1007/978-3-642-12505-8

    Article  ADS  Google Scholar 

  70. D. Scheiber, L. Romaner, R. Pippan et al., Impact of solute-solute interactions on grain boundary segregation and cohesion in molybdenum. Phys. Rev. Mater. 2, 93609 (2018)

    Article  Google Scholar 

  71. J. Hui, G. Yang, M. Liu et al., Effects of alloy compositions on hydrogen behaviors at a nickel grain boundary and a coherent twin boundary. Inter. J. Hydr. Energy 45, 10951–10961 (2020). https://doi.org/10.1016/j.ijhydene.2020.02.008

    Article  Google Scholar 

  72. G.C. Li, Z. Yang, C.G. Yu et al., Influences of 7Li enrichment on Th-U fuel breeding for an improved molten salt fast reactor (IMSFR). Nucl. Sci. Technol. 28, 97 (2017). https://doi.org/10.1007/s41365-017-0250-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Jun Hui, Wen-Guan Liu, Bao-Liang Zhang, Tao Liu, and Min Liu. The first draft of the manuscript was written by Jun Hui and Wen-Guan Liu, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wen-Guan Liu.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11832019, 11472313, 11572355, and 11705264), the Science and Technology Plan Project of Guangdong Province (No. 2020A0505020005), the Fundamental Research Funds for the Central Universities (No. 19lgpy298), and the State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, J., Zhang, BL., Liu, T. et al. Effects of impurity elements on SiC grain boundary stability and corrosion. NUCL SCI TECH 32, 125 (2021). https://doi.org/10.1007/s41365-021-00963-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-021-00963-2

Keywords

Navigation