Skip to main content
Log in

Stability study of Disperse Blue 79 under ionizing radiation

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Ionizing radiation is a promising method for dye degradation or textile coloration using commercial azo dyes and small molecular weight organic dyes. Thus, the stability of the molecular structure of an azo dye is important under ionizing radiation. Disperse Blue 79, as an example azo dyes, was irradiated with gamma rays or electron beam (EB) to investigate the radiation-induced effects on the molecular structure. Ultraviolet visible spectroscopy (UV–Vis), nuclear magnetic resonance (NMR) spectra analysis, and mass spectrometry (MS) studies indicated that acetoxy and methoxyl were easily cleaved on the irradiation of the aqueous dye solution but retained a stable structure on the irradiation of the powder form. Gamma rays and EB showed similar effects on the decomposition process. Chromaticity changes using the Lab* method showed that the dye turned to dark yellow and the value of b* of the irradiated dyes increased with the increasing absorbed dose, which indicated that Disperse Blue 79 could be partly decomposed in an aqueous solution with an absorbed dose of 10 kGy. Furthermore, the results demonstrated that the chemical stability of the Disperse Blue 79 under ionizing radiation are different in its powder form with the dye in the aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E.J. Weber, R.L. Adams, Chemical and sediment-mediated reduction of the Azo dye disperse blue 79. Environ. Sci. Technol. 29, 1163–1170 (1995). https://doi.org/10.1021/es00005a005

    Article  Google Scholar 

  2. F. Li, L. Lv, X. Wang et al., Constructhttps://doi.org/10.1021/acssuschemeng.8b03976ing of dyes suitable for eco-friendly dyeing wool fibers in supercritical carbon dioxide. ACS Sustain. Chem. Eng. 6, 16726–16733 (2018).

    Article  Google Scholar 

  3. A. Aboelnaga, S. Shaarawy, A.G. Hassabo, Polyaconitic acid/functional amine/azo dye composite as a novel hyper-branched polymer for cotton fabric functionalization. Colloids Surfaces B. Biointerfaces. 172, 545–554 (2018). https://doi.org/10.1016/j.colsurfb.2018.09.012

    Article  Google Scholar 

  4. J.-H. Park, U.-Y. Kim, B.-M. Kim et al., Molecular design strategy toward robust organic dyes in thin-film photoanodes. ACS Appl. Energy Mater. 2, 4674–4682 (2019). https://doi.org/10.1021/acsaem.8b02100

    Article  Google Scholar 

  5. A. Villela, M.S.A. van Vuuren, H.M. Willemen et al., Photo-stability of a flavonoid dye in presence of aluminium ions. Dyes Pigments. 162, 222–231 (2019). https://doi.org/10.1016/j.dyepig.2018.10.021

    Article  Google Scholar 

  6. P. Huang, D. Xia, A. Kazlauciunas et al., Dye-mediated interactions in chitosan-based polyelectrolyte/organoclay hybrids for enhanced adsorption of industrial dyes. ACS Appl. Mater. Interface. 11, 11961–11969 (2019). https://doi.org/10.1021/acsami.9b01648

    Article  Google Scholar 

  7. Z. Liu, L. Zhang, F. Dong et al., Preparation of ultrasmall goethite nanorods and their application as heterogeneous fenton reaction catalysts in the degradation of Azo dyes. ACS Appl. Nano Mater. 1, 4170–4178 (2018). https://doi.org/10.1021/acsanm.8b00930

    Article  Google Scholar 

  8. M. Vall, M. Strømme, O. Cheung, Amine-modified mesoporous magnesium carbonate as an effective adsorbent for Azo dyes. ACS Omega. 4, 2973–2979 (2019). https://doi.org/10.1021/acsomega.8b03493

    Article  Google Scholar 

  9. M. Chethana, L.G. Sorokhaibam, V.M. Bhandari et al., Green approach to dye wastewater treatment using biocoagulants. ACS Sustain. Chem. Eng. 4, 2495–2507 (2016). https://doi.org/10.1021/acssuschemeng.5b01553

    Article  Google Scholar 

  10. S.L. Shinde, K.K. Nanda, Photon-free degradation of dyes by Ge/GeO2 porous microstructures. ACS Sustain. Chem. Eng. 7, 6611–6618 (2019). https://doi.org/10.1021/acssuschemeng.8b05549

    Article  Google Scholar 

  11. S.K. Sen, S. Raut, P. Bandyopadhyay et al., Fungal decolouration and degradation of azo dyes: a review. Fungal Biol. Rev. 30, 112–133 (2016). https://doi.org/10.1016/j.fbr.2016.06.003

    Article  Google Scholar 

  12. S. Martínez-López, C. Lucas-Abellán, A. Serrano-Martínez et al., Pulsed light for a cleaner dyeing industry: Azo dye degradation by an advanced oxidation process driven by pulsed light. J. Clean. Prod. 217, 757–766 (2019). https://doi.org/10.1016/j.jclepro.2019.01.230

    Article  Google Scholar 

  13. I.I. Raffainer, P. Rudolf von Rohr, Promoted wet oxidation of the Azo dye orange II under mild conditions. Ind. Eng. Chem. Res. 40, 1083–1089 (2001). https://doi.org/10.1021/ie000629a

    Article  Google Scholar 

  14. L. Szpyrkowicz, C. Juzzolino, S.N. Kaul, S. Daniele et al., Electrochemical oxidation of dyeing baths bearing disperse dyes. Ind. Eng. Chem. Res. 39, 3241–3248 (2000). https://doi.org/10.1021/ie9908480

    Article  Google Scholar 

  15. H. Wang, W. Zhang, J. Zhao et al., Rapid decolorization of phenolic Azo dyes by immobilized laccase with Fe3O4/SiO2 nanoparticles as support. Ind. Eng. Chem. Res. 52, 4401–4407 (2013). https://doi.org/10.1021/ie302627c

    Article  Google Scholar 

  16. L. Szpyrkowicz, R. Cherbanski, G.H. Kelsall, Hydrodynamic effects on the performance of an electrochemical reactor for destruction of disperse dyes. Ind. Eng. Chem. Res. 44, 2058–2068 (2005). https://doi.org/10.1021/ie049444k

    Article  Google Scholar 

  17. X. Li, M. Ma, W. Shao et al., Molecular cloning and functional analysis of a UV-B photoreceptor gene, BpUVR8 (UV Resistance Locus 8), from birch and its role in ABA response. Plant Sci. 274, 294–308 (2018). https://doi.org/10.1016/j.plantsci.2018.06.006

    Article  Google Scholar 

  18. X.X. Feng, L.L. Zhang, J.Y. Chen et al., New insights into solar UV-protective properties of natural dye. J. Clean. Prod. 15, 366–372 (2007). https://doi.org/10.1016/j.jclepro.2005.11.003

    Article  Google Scholar 

  19. R. Miraftab, B. Ramezanzadeh, G. Bahlakeh, An advanced approach for fabricating a reduced graphene oxide-AZO dye/polyurethane composite with enhanced ultraviolet (UV) shielding properties Experimental and first-principles QM modeling. Chem. Eng. J. 321, 159–174 (2017). https://doi.org/10.1016/j.cej.2017.03.124

    Article  Google Scholar 

  20. I. Shahidul, F. Mohammad, High-energy radiation induced sustainable coloration and functional finishing of textile materials. Ind. Eng. Chem. Res. 54, 3727–3745 (2015). https://doi.org/10.1021/acs.iecr.5b00524

    Article  Google Scholar 

  21. M. Yu, W. Li, Z. Wang et al., Covalent immobilization of metal-organic frameworks onto the surface of nylon-a new approach to the functionalization and coloration of textiles. Sci Rep. 6, 22796 (2016). https://doi.org/10.1038/srep22796

    Article  Google Scholar 

  22. N.M. Mallikarjuna, J. Keshavayya, Synthesis, spectroscopic characterization and pharmacological studies on novel sulfamethaxazole based azo dyes. J. King Saud Univ. Sci. 32, 251–259 (2018). https://doi.org/10.1016/j.jksus.2018.04.033

    Article  Google Scholar 

  23. X. Ding, M. Yu, Z. Wang et al., A promising clean way to textile colouration: cotton fabric covalently-bonded with carbon black, cobalt blue, cobalt green, and iron oxide red nanoparticles. Green Chem. 21, 6611–6621 (2019). https://doi.org/10.1039/C9GC02084E

    Article  Google Scholar 

  24. X. Xu, X.J. Ding, J.X. Ao et al., Preparation of amidoxime-based PE/PP fibers for extraction of uranium from aqueous solution. Nucl. Sci. Tech. 30, 20 (2019). https://doi.org/10.1007/s41365-019-0543-0

    Article  Google Scholar 

  25. R.G. Saratale, G.D. Saratale, J.S. Chang et al., Bacterial decolorization and degradation of azo dyes: a review. J. Taiwan Inst. Chem. Eng. 42, 138–157 (2011). https://doi.org/10.1016/j.jtice.2010.06.006

    Article  Google Scholar 

  26. T. Suzuki, S. Timofei, L. Kunrunczi et al., Correlation of aerobic biodegradability of sulfonated azo dyes with the chemical structure. Chemosphere 45, 1–9 (2001). https://doi.org/10.1016/s0045-6535(01)00074-1

    Article  Google Scholar 

  27. S.J. Porobić, A.D. Krstić, D.J. Jovanović et al., Synthesis and thermal properties of arylazo pyridone dyes. Dyes Pigments. 170, 107602 (2019). https://doi.org/10.1016/j.dyepig.2019.107602

    Article  Google Scholar 

  28. Z. Kiayi, T.B. Lotfabad, A. Heidarinasab et al., Microbial degradation of azo dye carmoisine in aqueous medium using Saccharomyces cerevisiae ATCC 9763. J. Hazard. Mater. 373, 608–619 (2019). https://doi.org/10.1016/j.jhazmat.2019.03.111

    Article  Google Scholar 

  29. Y. Mu, K. Rabaey, R.A. Rozendal et al., Decolorization of Azo dyes in bioelectrochemical systems. Environ. Sci. Technol. 43, 5137–5143 (2009). https://doi.org/10.1021/es900057f

    Article  Google Scholar 

  30. J. Qiu, J. Xiao, B. Tang et al., Facile synthesis of novel disperse azo dyes with aromatic hydroxyl group. Dyes Pigments. 160, 524–529 (2019). https://doi.org/10.1016/j.dyepig.2018.08.052

    Article  Google Scholar 

  31. A.D. Broadbent, Y. Mir, M. Lhachimi et al., Continuous dyeing of cotton/polyester and polyester fabrics with reactive and disperse dyes using infrared heat. Ind. Eng. Chem. Res. 46, 2710–2714 (2007). https://doi.org/10.1021/ie0700617

    Article  Google Scholar 

  32. A. Hou, J. Dai, The crystal morphology of C.I. Disperse Blue 79 in supercritical carbon dioxide. Dyes Pigments. 82, 71–75 (2009). https://doi.org/10.1016/j.dyepig.2008.11.004

    Article  Google Scholar 

  33. H. Wang, L. Li, J. Guan et al., Investigation on molecular structures of electron-beam-irradiated low-density polyethylene by rheology measurements. Ind. Eng. Chem. Res. 57, 4298–4310 (2013). https://doi.org/10.1021/acs.iecr.8b00062

    Article  Google Scholar 

  34. R.R. Mather, Aggregate structures of samples of the disperse dye, C.I. Disperse Blue 79. Colloids Surf 37, 131–140 (1989). https://doi.org/10.1016/0166-6622(89)80112-x

    Article  Google Scholar 

  35. K.-M. Park, I. Yoon, S. Lee et al., X-ray crystal structure of C.I. Disperse Blue 79. Dyes Pigments 54, 155–161 (2002). https://doi.org/10.1016/s0143-7208(02)00037-2

    Article  Google Scholar 

  36. M. Wang, R. Yang, W. Wang et al., Radiation-induced decomposition and decoloration of reactive dyes in the presence of H2O2. Radiat. Phys. Chem. 75, 286–291 (2006). https://doi.org/10.1016/j.radphyschem.2005.08.012

    Article  Google Scholar 

  37. J.T. Spadaro, L. Isabelle, V. Renganathan, Hydroxyl radical mediated degradation of Azo dyes evidence for benzene generation. Environ. Sci. Technol. 28, 1389–1393 (1994). https://doi.org/10.1021/es00056a031

    Article  Google Scholar 

  38. J.E. Silveira, A.L. Garcia-Costa, T.O. Cardoso et al., Indirect decolorization of azo dye Disperse Blue 3 by electro-activated persulfate. Electrochim. Acta. 258, 927–932 (2017). https://doi.org/10.1016/j.electacta.2017.11.143

    Article  Google Scholar 

  39. J. Wu, W. Wen, Catalyzed degradation of Azo dyes under ambient conditions. Environ. Sci. Technol. 44, 9123–9127 (2010). https://doi.org/10.1021/es1027234

    Article  Google Scholar 

  40. A. Jabbar, A. Ambreen, S. Riaz et al., A series of new acid dyes; study of solvatochromism, spectroscopy and their application on wool fabric. J. Mol. Struct. 1195, 161–167 (2019). https://doi.org/10.1016/j.molstruc.2019.05.019

    Article  Google Scholar 

  41. L.C. Abbott, S.N. Batchelor, J.N. Moore, Structure and reactivity of thiazolium azo dyes: UV–visible, resonance Raman, NMR, and computational studies of the reaction mechanism in alkaline solution. J. Phys. Chem. A 117, 1853–1871 (2013). https://doi.org/10.1021/jp309536h

    Article  Google Scholar 

  42. C.C. Hsueh, B.Y. Chen, Exploring effects of chemical structure on azo dye decolorization characteristics by Pseudomonas luteola. J. Hazard. Mater. 154, 703–710 (2008). https://doi.org/10.1016/j.jhazmat.2007.10.083

    Article  Google Scholar 

  43. A.S. Ozen, V. Aviyente, Modeling the substituent effect on the oxidative degradation of Azo dyes. J. Phys. Chem. A. 108, 5990–6000 (2004). https://doi.org/10.1021/jp037138z

    Article  Google Scholar 

  44. E. Guerra, F. Gosetti, E. Marengo et al., Study of photostability of three synthetic dyes commonly used in mouthwashes. Microchem. J. 146, 776–781 (2019). https://doi.org/10.1016/j.microc.2019.02.002

    Article  Google Scholar 

  45. H.T. Wang, H.Q. Jiang, R.F. Shen et al., Electron-beam radiation effects on the structure and properties of polypropylene at low dose rates. Nucl. Sci. Tech. 29, 87 (2018). https://doi.org/10.1007/s41365-018-0424-y

    Article  Google Scholar 

  46. H.R. Tan, Z. Xing, W.H. Liu et al., Oxidation effects of poly (ether-ether-ketone) induced by electron-beam irradiation. J. Radiat. Res. Radiat. Process. 37, 020201 (2019) (in Chinese). https://doi.org/10.11889/j.1000-3436.2019.rrj.37.020201

    Article  Google Scholar 

  47. A.Y.L. Tang, C.H. Lee, Y.M. Wang et al., Reverse micellar dyeing of cotton fiber with reactive dyes: A study of the effect of water pH and hardness. ACS Omega. 4, 11808–11814 (2019). https://doi.org/10.1021/acsomega.9b00597

    Article  Google Scholar 

  48. W. Zheng, J. Zou, Synthesis and characterization of blue TiO2/CoAl2O4 complex pigments with good colour and enhanced near-infrared reflectance properties. RSC Adv. 5, 87932–87939 (2015). https://doi.org/10.1039/c5ra17418j

    Article  Google Scholar 

  49. Y.Y. Xie, Z.L. Chen, Z.L. Li et al, Effect of electron-beam irradiation on colority of printing-dyeing wastewater. J. Radiat. Res. Radiat. Process. 36, 060401 (2018) (in Chinese). https://doi.org/10.11889/j.1000-3436.2018.rrj.36.060401.

Download references

Acknowledgements

The authors thank Zhejiang Greenland Textile Technology Co., Ltd. for the kind supply of Commercial Disperse Blue 79.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Ye Li.

Additional information

This work was financially supported by the National Natural Science Foundation of China (Nos. 11875313, 11605274, and 11575277).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, XJ., Yu, M., Zheng, X. et al. Stability study of Disperse Blue 79 under ionizing radiation. NUCL SCI TECH 31, 21 (2020). https://doi.org/10.1007/s41365-020-0724-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-020-0724-x

Keywords

Navigation