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Abstract
Using nematode resistant varieties is one of effective and environmental sound strategies being adopted in the management 
of economically important Meloidogyne species. Wild cucumber (Cucumis africanus) has been reported to possess resistance 
to Meloidogyne species. Two mechanism of nematode resistance, pre- and post-penetration resistance, had been identified, 
with post-penetration mechanism being used in plant breeding programs and crop rotation systems. The objective of this 
study was to determine the mechanism of nematode resistance in C. africanus to M. incognita and M. javanica. 6 weeks 
old C. africanus seedlings were separately inoculated with 100 s-stage juveniles (J2) of M. incognita and M. javanica. For 
30 days, five seedlings were harvested from both M. incognita and M. javanica experiments every other day. Seedlings’ 
roots were examined for necrotic spots, rootlet interferences, giant cells and root gall numbers as indicators of successful or 
unsuccessful nematode penetration. Harvesting times were highly significant (P ≤ 0.01) on necrotic spot, rootlet interference 
and root gall numbers in both C. africanus—M. incognita and—M. javanica relations, but were not significant for giant cell 
number in C. africanus—M. incognita. The results suggested that C. africanus have post-penetration nematode resistance 
to both Meloidogyne species.
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Introduction

Global withdrawal of the highly effective synthetic chemical 
fumigant nematicides, which had been relied upon for over 
a century in the management of plant-parasitic nematodes 
(PPN), has had severe economic ramifications in crop pro-
duction systems (Caboni et al. 2015). Parasitism by root-knot 
nematodes (RKN), Meloidogyne species is considered one 
of the main biotic factors responsible for reduced productiv-
ity in various agricultural crops (Mhatre et al. 2019). RKN 
results in up to 30% yield decline by direct infestation and 
indirect losses owing to predisposing or breakdown of resist-
ance to other root diseases, such as bacterial wilt, attributing 

to quantity and quality losses (Muimba-Kankolongo 2018). 
Meloidogyne genus is a worldwide economically signifi-
cant pest, comprising over 100 species, (Karuri et al. 2017) 
including approximately 22 described from Africa (Onkendi 
et al. 2014) widely distributed on leguminous and flowering 
plants.

Two Meloidogyne species, M. incognita and M. javan-
ica, have been declared economically important to roughly 
4000 host plants, including field crops, ornamentals, medici-
nal, aromatics plants, and even weeds (Jones et al. 2013; 
Onkendi et al. 2014). Second-stage juveniles (J2) penetrate 
roots to establish a feeding site, called giant cell, usually 
within the pericycle and vascular tissues and form root galls 
soon after their infection (Mashela et al. 2015). In nematode-
susceptible hosts, infection by Meloidogyne species induces 
the formation of severe root galls, stunted growth, decreased 
water uptake, imbalances of essential nutrient elements, low 
evapotranspiration and increased root exudation of amino 
acids, which reduces soil pH (Saikia et al. 2013).

Up-to-date cultural management procedures are insuffi-
cient to fully manage RKN (Trudgill and Blok 2001), even 
more so with continued restrictions on synthetic chemical 
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use (Desaeger et al. 2017). As a result, it has become criti-
cal to develop additional PPN management strategies that 
are environmentally friendly. Currently, there are numer-
ous studies conducted on the subject all around the world 
(Baum et al. 2015; Brito et al. 2020; Damasceno et al. 2015; 
Gupta et al. 2017; Hussain et al. 2018; Laquale et al. 2015; 
Seo et al. 2019), including screening nematode-resistant 
genotypes (Chiamolera et al. 2018; Da Silva-Mattos et al. 
2019; Hajihassani et al. 2019). These studies are proving to 
be beneficial, providing additional insights that can lead to 
increased profits for farmers.

Nematode-resistant hosts may exhibit pre- or post-pen-
etration resistance (Thurau et al. 2010). Pre-penetration 
nematode resistance is the form of resistance that occurs 
prior to nematodes coming into contact with the root sys-
tems (Ferraz and Brown 2002). This form of resistance pre-
vents penetration of nematode J2 and is characterized by 
pre-existing morphological factors or the production of root 
exudates that either attract or repel J2 (Trudgill 2003). Root 
penetration by RKN has also been attributed to the lack of 
metabolites required for host identification, repellent host 
exudates, or the existence of a physical barrier over which 
the nematode cannot pass (Lee et al. 2017).

In post-penetration nematode resistance J2 are allowed to 
penetrate the root systems (Desmedt et al. 2020), with pas-
sive chemicals previously called elicitors, activated to form 
the phytoalexins, that have nematicidal properties (Desmedt 
et al. 2020, 2022). Some of the phytoalexins induce hyper-
sensitive response (HR), that appear as necrotic spots, where 
cells around the nematode wither (Huysmans et al. 2017), 
thereby preventing feeding, development of J2 and reproduc-
tion. According to Lopez-Gomez and Verdejo-Lucas (2017), 
post-penetration incompatibility in resistant crops is associ-
ated with failure of giant cells to develop further into root 
galls. Rootlet interference and small underdeveloped root 
galls are also characteristics of post-penetration nematode 
resistance (Benková and Bielach 2010). In sedentary RKN, 
this type of resistance is further subdivided into early and 
late resistance, wherein early resistance that occurs during 
migration or early site establishment, and late resistance that 
occurs after the establishment of a feeding site (Fuller et al. 
2007).

Between the two mechanisms of resistance, only post-
penetration nematode resistance can be introgressed (Thurau 
et al. 2010), dictating the need to establish the mechanism 
of nematode resistance in any nematode resistant plant spe-
cies in order for it to serve as a candidate of introgression. 
Among the available alternative techniques to methyl bro-
mide, plant resistance is one of the most investigated tech-
niques in PPN management (Onkendi et al. 2014). Most 
crops lack resistant genotypes to Meloidogyne species as 
observed in four commercial genera of Cucumis, Citrullus, 
Cucurbita and Lagenaria within the Cucurbitaceae family 

(Liu et al. 2016; Thies et al. 2016; Verdejo-Lucas and Tala-
vera 2019; Singh and Patel 2015). Cucumis africanus is 
highly resistant to Meloidogyne species (Pofu et al. 2012); 
however, the mechanism of nematode resistance in this crop 
has not been established.

Therefore, the objective of this study was to determine 
the mechanism of nematode resistance in C. africanus to M. 
incognita and M. javanica.

Materials and methods

Experimental procedures

Two separate experiments were conducted under greenhouse 
conditions at North-West University, South Africa. Green-
house temperature were set at 25 ± 2 °C, with temperatures 
and humidity controlled using thermostatically activated 
fans and wet-wall at opposite ends. Seeds of C. africanus 
were sown in seedling trays filled with pasteurized (300 ℃ 
for 1 hour) fine sand and raised for 6 weeks. Uniform seed-
lings were transplanted into 250 ml polystyrene cups, filled 
with 200 ml pasteurized fine sand and placed at 10-cm inter- 
and intra-row spacing. In each experiment, the treatments 
comprised of 15 harvesting times, experimentally done in a 
randomized complete block design (RCBD), with five repli-
cations. Isolates of M. incognita and M. javanica were each 
raised on nematode-susceptible tomato (Solanum lycoper-
sicum) cv. ‘Floradade’ seedlings and roots collected for egg 
masses when needed. Egg masses were hand-picked using 
a tooth pick and hatched in distilled water for 72 h (Powers 
et al. 1991). A day after transplanting, Cucumis seedlings 
were each inoculated by dispensing approximately 100 J2 
of M. incognita or M. javanica using a 20 ml plastic syringe 
into 5-cm-deep furrow around the seedling stem and covered 
with growing medium. Harvesting was done every other day, 
for a period of 30 days starting from 2-days after inocula-
tion. Seedlings were fertilized once with Super Phosphate 
(Efekto Care, Bryanston, South Africa) and NPK (2:3:2) and 
irrigated with 30 ml tap water every other day.

Data collection

At each harvest, seedling roots were severed and the shoots 
discarded. Roots were rinsed in tap water to remove soil 
particles, blotted dry using paper towel and stained (Bybd 
et al. 1983). The whole root system was soaked in 1.5% 
NaOCl solution for four minutes to remove any associated 
microbe, rinsed in tap water, followed by a 15 min immer-
sion in tap water to remove excess NaOCl. Root samples 
were each stained by covering with 30 ml tap water mixed 
with 1 ml acid fuchsin and boiled for 30 s. The solution was 
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cooled to room temperature and roots distained by putting in 
acidified glycerin with a few drops of 5 N HCl, which were 
heated to boiling, followed by cooling to room temperature. 
Root samples were each placed in a petri dish and closed 
with the top lid for assessment under the stereomicroscope 
at 45 × magnification for necrotic spots, rootlet interference, 
giant cells and root gall number.

Data analysis

Prior to analysis of variance (ANOVA), all data were trans-
formed through log10(x + 1) to normalize the variances. 
Data were subjected to ANOVA through the 2008 SAS 
software. The mean sum of squares were partitioned to 
provide the contribution of sources of variation in the total 
treatment variation (TTV) of variables (Gomez and Gomez 
1984). Treatment means were separated using Waller-Dun-
can Multiple Range test at 5% level of probability. Unless 
stated otherwise, all treatment effects were discussed at 5% 
level of probability.

Results

Harvesting times were highly significant (P ≤ 0.01) on 
necrotic spot number, rootlet interference number and 
root gall number contributing 59, 64 and 50% in TTV of 
the respective variables, but were not significant on giant 
cell number (Table 1). In the first 18 days after inocula-
tion, necrotic spots, rootlet interference and root galls were 
not noticeable. The first necrotic spots and root galls were 
observed after 20  days, whereas rootlets after 22  days 
(Table 2).

Harvesting time had highly significant effects on necrotic 
spot number, giant cell number, rootlet interference number 
and root gall number, contributing 55, 71, 63 and 59% in 
TTV of the respective variables (Table 1). HR was notice-
able 26 days after inoculation, giant cells and root galls 
after 18 days, whereas, rootlets were observed after 16 days 
(Table 2).

Discussion

According to Chitambar and Raski (1984), M. incognita 
is more pathogenic and becomes aggressive with time in 
comparison with M. javanica, which could explain why 
necrotic spots for C. africanus—M. javanica relations were 
observed 6 days after C. africanus—M. incognita relations. 
HR is known to be a common response to RKN infection in 
resistant crops (Chitambar and Raski 1984; Das et al. 2008; 
Freire et al. 2010; Lee et al. 2021), resulting in cell death and 
prevention of nematode feeding site formation and nema-
tode development, leading to subsequent nematode death 
(Postnikova et al. 2015). HR in nematode-infected cells rep-
resentatives of hyperactive responses in nematode resistant 
plants (Mashela et al. 2016). According to Nicholson and 
Hammerschmidt (2003), HR indicates the presence of phe-
nols that play a role in plant defense. When Abifarin et al. 
(2019) investigated phytochemical and antioxidant activi-
ties of C. africanus, they found that the plant has phenolic 
compounds in fruits, leaves and roots.

The presence of such phytochemicals could be respon-
sible for pathogen-associated molecular patterns (PAMP) 
in C. africanus. PAMP result in incompatible nematode-
host interactions that triggers the up-regulation of a net-
work of host genes and corresponding proteins involved in 
an innate response known as pathogen-triggered immunity 

Table 1   Total treatment 
variation (TTV) on necrotic 
spot, giant cell number, 
rootlet interference and root 
gall number in Cucumis 
africanus seedlings infected 
by Meloidogyne incognita 
and Meloidogyne javanica 
under greenhouse conditions 
at 30 days after inoculation 
(n = 75). Where DF is degrees 
of freedom and MS is mean 
sum of squares

ns Not significant at P ≤ 0.05,
**Significant at P ≤ 0.05
***Significant at P ≤ 0.01

Necrotic spot Giant cell number Rootlet interference Root gall number

Source DF MS TTV (%) MS TTV (%) MS TTV (%) MS TTV (%)

Meloidogyne incognita
Rep 4 0.02927 21 0.05015 42 0.01023 11 0.02477 32
Treatment 14 0.08161 59*** 0.04106 34 ns 0.05811 64*** 0.03799 50***

Error 56 0.02714 20 0.02963 24 0.02232 25 0.01355 18
Total 74 0.13802 100 0.12084 100 0.09066 100 0.07631 100
Meloidogyne javanica
Rep 4 0.02154 28 0.02091 16 0.02704 21 0.02719 24
Treatment 14 0.04213 55*** 0.09017 71*** 0.08175 63*** 0.06584 59***

Error 56 0.01294 17 0.01595 13 0.02028 16 0.01950 17
Total 74 0.07661 100 0.12703 100 0.12907 100 0.11253 100
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(PTI) (Melillo et al. 2006). Coffee (Coffea canephora cv. 
‘Apoata’), resistant to M. exigua exhibited HR, which fur-
ther inhibited formation of feeding site (Vieira et al. 2013). 
Moon et al. (2010) also observed necrotic spots in resistant 
C. annuum cultivars exposed to M. incognita. Two resist-
ant alyce clover (Alysicarpus ovalifolium hybrids, FL-1 and 
FL-3), showed attributes of HR to M. arenaria (Powers 
et al. 1991). Marini et al. (2016) observed similar results 
for resistant oats (Avena sativa cv. ‘IPR Afrodite’) when 
exposed to M. incognita at 15 days after inoculation.

Delay in giant cells response had been previously 
reported in nematode resistant trials using molecular 
approaches (Escobar and Fenoll 2021). The giant cells 
appeared as deeper stained spots with multiple nuclei that 
failed to develop beyond the zygote-like size. In nematode-
susceptible plant species, giant cells are formed as multi-
nucleate structures formed when the feeding cell and those 
around it responds to RKN infection by undergoing repeated 
mitosis without cytokinesis (Huang et al. 2003). The suc-
cessful establishment of giant cells is essential for nematode 
development. Meloidogyne species evolved strategies that 
enable them to induce giant cell formation on thousands of 
plant species by manipulating important factors of plant cell 
development (Caillaud et al. 2008). This group of notorious 
pathogens secrete chemical compounds called gene products 

through the sub-ventral and dorsal gland cells during migra-
tion and sedentary phases, respectively (Gheysen and Fenoll 
2002; Tripathi et al. 2015). The release of gene products 
is important during RKN migration and feeding site estab-
lishment because it enables nematode growth to subsequent 
stages (Curtis 2008; Siddique et al. 2022). Anti-plant gene, 
on the other hand, is a strategy by host plants when plant 
genes that respond to nematode feeding and secretions to 
allow for successful partnerships between PPN and plants 
are silenced (Mashela et al. 2016). Thus, the phytotoxic 
chemical compounds that destroy the feeding structures, 
giant cells, are upregulated.

Marini et  al. (2016) also noticed that M. incognita 
gradually initiated giant cells that failed to develop into 
root galls in resistant roots of A. sativa 18  days after 
inoculation. Similarly, Wehner et  al. (1991) observed 
small, poorly formed giant cells in resistant cucumber (C. 
sativus) and African horned cucumber (C. metuliferus) 
exposed to M. hapla. Observation of the under-developed 
giant cells also agreed with observations in resistant 
soybean (Glycine max cvs. ‘Jackson’ and ‘PI 200,538’) 
exposed to M. arenaria (Pedrosa et al. 1996) and in resist-
ant cayenne pepper (Capsicum annuum cvs. ‘02G132’ and 
‘03G53’) (Moon et al. 2010). Pedrosa et al. (1996) indi-
cated that resistance to M. arenaria was expressed in G. 

Table 2   Mean separation for necrotic spot, giant cell number, rootlet interference and root gall number in Cucumis africanus infected by Meloi-
dogyne incognita and Meloidogyne javanica under greenhouse conditions at 30 days after inoculation (n = 75)

z Column means followed by the same letter were not different (P ≤ 0.005) according to Waller–Duncan Multiple Range test

Meloidogyne incognita Meloidogyne javanica

Days Necrotic spotz Rootlet interferencez Root gall numberz Necrotic spotz Giant cell numberz Rootlet 
interferencez

Root gall numberz

2 0.0000c 0.0000c 0.0000c 0.0000b 0.0000b 0.0000b 0.0000b

4 0.0000c 0.0000c 0.0000c 0.0000b 0.0000b 0.0000b 0.0000b

6 0.0000c 0.0000c 0.0000c 0.0000b 0.0000b 0.0000b 0.0000b

8 0.0000c 0.0000c 0.0000c 0.0000b 0.0000b 0.0000b 0.0000b

10 0.0000c 0.0000c 0.0000c 0.0000b 0.0000b 0.0000b 0.0000b

12 0.0000c 0.0000c 0.0000c 0.0000b 0.0000b 0.0000b 0.0000b

14 0.0000c 0.0000c 0.0000c 0.0000b 0.0000b 0.0000b 0.0000b

16 0.0000c 0.0000c 0.0000c 0.0000b 0.0000b 0.0954b 0.0000b

18 0.0000c 0.0000c 0.0000c 0.0000b 0.1204b 0.0954b 0.1556b

20 0.0954bc 0.0000c 0.0954bc 0.0000b 0.0000b 0.0000b 0.0000b

22 0.3908a 0.1806abc 0.1556b 0.0000b 0.0000b 0.0000b 0.0000b

24 0.1398bc 0.0602bc 0.0602bc 0.0000b 0.0000b 0.0000b 0.0000b

26 0.2760ab 0.3362a 0.3113a 0.0954b 0.0602b 0.0000b 0.0602b

28 0.2408ab 0.2408ab 0.0602bc 0.3496a 0.5169a 0.4919a 0.4292a

30 0.0000c 0.0000c 0.0000c 0.0602b 0.0954b 0.0954b 0.000b

P ≤  0.01 0.01 0.01 0.01 0.01 0.01 0.01
Standarad 

devia-
tion

0.8116 1.0340 1.2731 0.8062 1.0271 1.2646 1.0468
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max as small, poorly formed giant cells. In all the cited 
examples, the cultivars had post-penetration nematode 
resistance. The giant cell serves as a source of nutrients 
for the developing nematode (Bartlem et al. 2014). The 
post-penetration compatibility in susceptible crops is usu-
ally associated with optimal development of giant cells 
that form a large multinucleate structure which, however, 
fail to develop in nematode resistant crops (Ortiz 2011).

Compensatory rootlet growth was observed originating 
adjacent to the under-developed giant cells. Mechanisms 
behind compensatory rootlet development in RKN-infected 
resistant hosts have not been investigated. However, con-
sidering the tactics RKN implement throughout migratory 
phases, it is possible that resistant hosts develop lateral 
rootlets to supplement for roots that can no longer transport 
nutrients and water from soil to aboveground parts. After 
root penetration, RKN seek for a suitable feeding site and 
position themselves strategically in the vascular bundles. 
While host feeder roots absorb nutrients and water, which 
move in the plant's vascular system to aboveground plant 
parts, these nutrients are channeled into RKN throughout 
their development (Bartlem et al. 2014). Villordon and Clark 
(2018) noted an increase in lateral root growth on sweet 
potato resistant (cv. ‘Bayou Belle’) compared to susceptible 
variety (cv. ‘Beauregard’) hosts. The observations supported 
those in nematode-resistant G. max that was exposed to M. 
javanica (Doyle and Lambert 2003) and on nematode-resist-
ant Trifolium repens that was exposed to M. trifoliophila 
(Mercer et al. 2004).

Generally, in nematode-susceptible plant species, when 
Meloidogyne J2 develop through J3, J4 and adult female 
stages, the adjacent root cells bulge to form a root gall. Of 
39 cultivars of C. annuum screened for nematode resistance, 
six (‘02G132’, ‘03G62’, ‘04G8’, ‘99G198’, ‘03G53’ and 
‘CM334’) were resistant to M. incognita, with few undevel-
oped root galls (Moon et al. 2010). Pedrosa et al. (1996) and 
Herman et al. (1991) noticed fewer J2 advancing to subse-
quent stages of Meloidogyne species.

In a host-parasitic interaction study, tomato host reactions 
to Meloidogyne species parasitism were initiated during the 
first 12 h after infection (Siddique et al. 2014). However, in 
the two Cucumis species against the Meloidogyne species in 
the current study, there was no evidence of rapid host reac-
tions. Findings by Ramatsitsi and Dube (2020) explained 
and supported the findings in the current study wherein there 
were no detectable nematode juveniles in roots at 30 days 
after inoculation even though they were observed earlier 
after inoculation. At 30 days after inoculation, Marini et al. 
(2016) also found a decrease in nematode numbers inside 
the roots of a resistant A. sativa cv. ‘IPR Afrodite’ that was 
exposed to M. incognita. At the onset of feeding, the nema-
tode becomes sedentary, going through three molts before 
becoming a mature adult female, with males migrating out 

of the plant without playing any role in reproduction (Cail-
laud et al. 2008).

The results showed similar mechanisms of resistance 
in the roots of nematode resistant C. africanus for both M. 
incognita and M. javanica. The discovery of post-penetra-
tion nematode resistance to Meloidogyne species would very 
certainly increase the use of C. africanus in plant breeding 
and crop rotation systems, hence extending the applications 
and economic relevance of C. africanus. For future research, 
efforts could be made to investigate whether C. africanus is 
predisposed to other soil-borne pathogens through puncture 
wounds from penetration of the nematodes.
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