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Abstract
The present study investigates the possible association between major air pollutants and COVID-19. We hypothesized that 
the post-lockdown surge in air pollution is the major cause of the increment in COVID-19 cases and deaths. The statistical 
results showed that pollutant concentrations of  PM2.5 (20%),  PM10(24%),  SO2 (12%), and  O3 (19%) were raised. So, we 
attempted to quantify the relative risk due to all major air pollutants by fitting generalized additive models. The results sug-
gest that the pollution concentration escalated the COVID-19 cases and deaths. The pooled study suggests that for every 
10 μg/m3 increment in pollutant concentration, an increment of COVID-19 cases is observed for  PM2.5 (3%),  PM10 (1%), 
 SO2 (7.7%), and  O3 (10%). Similarly, there is an increment in COVID-19 deaths for  PM2.5 (2.8%),  PM10 (1%),  SO2 (4.5%), 
and  O3 (7.2%). The spatial maps of relative risk revealed the most vulnerable regions due to each pollutant, thus steering the 
policymakers to implement region-specific mitigation strategies.

Keywords 20 Indian cities · Relative risk · GAM model · SARS-COV-2 · Meteorological variables · Post-lockdown · 
Pollution

1 Introduction

The SARS-COV-2 first emerged in Wuhan city China, and 
there was a rapid spread of corona disease to more than 200 
countries in six months. Then the pandemic swept differ-
ent countries and became the leading cause of death. As of 
October 2022, 6.56 million cumulative deaths are occur-
ring worldwide, and India alone has witnessed more than 
half a million deaths. The majority of deaths that occurred 
due to COVID-19 infection are due to suppurative pulmo-
nary infection, and a few cases with respiratory failure due 
to diffuse alveolar damage [1]. Since pulmonary infection 
and alveolar damage are directly associated with  PM2.5 [2] 
due to the small diameter of  PM2.5, inhaled virus-laden PM 
can directly transport the virus deep into alveolar and tra-
cheobronchial regions. So, there might be a high chance of 
mortality from air pollutants exposure. However, in earlier 
studies [3, 4] it was stated that exposure to air pollution and 

its association with increased COVID-19 incidences/mortal-
ity is mostly unknown. But later, a few studies such as [5–9] 
stated that there is a possible link between air pollution and 
COVID-19 incidence/ mortality. Here, in the case of India, a 
large number of studies [10–14] stated that there is a reduc-
tion in mean concentrations of air pollution. Still, arguably 
there is again an increment in pollution levels post-lockdown 
[15–18]. The statistical evidence suggests that most of the 
deaths occurred in the second wave of COVID-19, in which 
post-lockdown impacts are visible. Hence, there is a great 
need to quantify the pollutant effects on COVID-19 cases 
and mortality. Still, it is challenging to state that air pollu-
tion in India is really escalating the COVID-19 incidence/
mortality. The cause of mortality is highly dependent on 
various aspects [19] of human physiology. External inter-
ventions such as weather, and socioeconomic burdens also 
play an equal role in mortality. According to WHO, Every 
year, there are more than 4 million deaths due to chronic 
pulmonary and heart disorders all over the globe due to air 
pollution. The Asia–pacific region alone has 2.3 million 
deaths because of high pollution and dense population. The 
major cities in India have hazardous AQI (Air Quality Index) 
levels leading to fatal deaths across the country due to vari-
ous lung diseases along with the Covid-19 virus. According 

 * Subrahmanya Hari Prasad Peri 
 pshari19@gmail.com

1 Centre for Ocean, River, Atmosphere and Land 
Sciences, Indian Institute of Technology Kharagpur, 
Kharagpur 721 302, India

http://orcid.org/0000-0002-8182-7661
http://crossmark.crossref.org/dialog/?doi=10.1007/s41324-023-00512-6&domain=pdf


454 S. Hari Prasad Peri 

1 3

to previous studies [20], there were 1.6 million deaths in 
India due to air pollution in 20, contributing to 17% of total 
deaths. Most of these deaths are due to  PM2.5, with an aver-
age of 0·98 million, and deaths due to household pollut-
ants are 0.61 million. Thus, it suggests all major pollutants 
might have a significant contribution to COVID-19 deaths 
like it had with other respiratory diseases. Recent studies 
such as [21, 22] quantified the increase in death with the 
increase in pollutant concentration. Along with the pollut-
ants, the meteorological parameters also affect the COVID-
19 spread and mortality. In general, temperature decrement 
results in an increase in infection. Relative humidity also 
has a negative correlation, but wind speed [23–25] has a 
positive correlation with virus transmission. The mete-
orological variables always play an essential role in virus 
spread, but at the same time, mortality also may be affected 
by the weather conditions. In most developed countries, it 
is not difficult to afford cooling/heating systems, especially 
in hospitals when the person is deeply affected by a virus. 
But in developing countries, making amenities in hospitals 
is also difficult because any extreme weather condition may 
severely affect the patient. The common statistical models 
in the literature to find the relative risk are linear, log-linear, 

GLM (generalized linear model), and GAM (generalized 
additive model). In recent times GLM and GAM models 
have been widely used in epidemiology. The GAM models 
facilitate nonlinear terms by taking splines in the model. 
These are widely used in epidemiology in different diseases 
to find relative risk, and details of GAM uses are given in 
[26]. Here, we attempted to predict relative risk using the 
GAM algorithm with singel-pollutant model and meteoro-
logical parameters as confounding variables. The effects of 
the lockdown and post-lockdown (surge of air pollution in 
different parts of India) are addressed by taking temporal 
data on pollution and COVID-19 from starting of 1st wave 
to the end of 2nd wave.

2  Materials and methods

2.1  Study area and data

To study the Pollution exposure to COVID-19 cases and 
deaths (Fig. 1a and b), we have taken the 20 major cities 
across India shown in Table 1. Since urban areas are more 
vulnerable to Pollution extremes, population densities 

Fig. 1  Location of 20 cities and cumulative COVID-19 cases and deaths in each City as of 01-Nov-2021. a COVID-19 cases, b COVID-19 
deaths
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also have a major effect on COVID-19 spread. Highly 
air-polluted cities having daily measurements of pollu-
tion are chosen for analysis. Table 1 shows the temporal 
mean of maximum pollutant concentration of each city 
for the entire study period. The pollution and meteoro-
logical data were collected [27]. The data sets consist of 
daily maximum, minimum, and median values for pollu-
tion and meteorological variables. The maximum concen-
trations of pollutants are taken for the analysis. The data 
was pre-processed because some missing days occurred. 
The missing data were filled with the shape-preserving 
piecewise cubic spline interpolation. Here we proposed 
the hypothesis that even decrement in the pollution levels 
significantly in lockdown. Still, the post-lockdown surge 
in pollutant concentration leads to a positive association of 
escalated COVID-19 incidence/ mortality. Especially this 
surge will happen during peak traffic periods and holidays. 
So, we tried to analyze the relative risk with the maximum 
noticed pollutant concentrations in a day. For this purpose, 
we showed key statistics of pollutants. Every pollutant had 
more concentration in the post-locdown period (Fig. 2a). 
The shaded area is the lockdown period, the non-shaded 
area is the post-lockdown period. It is clearly visible that 
there is a surge in pollutant concentration post-lockdown 
period (Fig. 2b), and the pollutant concentrations of  PM2.5, 
 PM10,  SO2,  O3 raised by 20%, 24%, 12%, 19% respectively.

Table 1  The temporal mean daily observed pollutants and COVID-19 statistics for each city

City PM2.5 PM10 SO2 O3 Deaths Cases

‘Bengaluru Urban’-12.9716°N, 77.5946°E 199.0164 168.9512 14.23015 31.01552 16,276 1,251,743
‘Bhopal’-23.2599°N, 77.4126°E 149.704 148.8869 43.39969 39.13822 963 123,137
‘Chandigarh’-30.7333°N, 76.7794°E 198.5606 169.3311 54.50465 42.61082 820 65,315
‘Chennai’-13.0827°N, 80.2707°E 172.4437 163.5037 19.90243 32.58827 8534 554,144
‘Delhi’-28.7041°N, 77.1025°E 398.1312 514.2696 114.349 125.1899 25,037 1,436,952
‘Gandhinagar’-23.2156°N, 72.6369°E 202.297 274.8552 38.02095 51.84711 203 20,731
‘Ghaziabad’-28.6692°N, 77.4538°E 232.4296 261.1459 48.86499 49.55977 467 55,685
‘Hyderabad’-18.1124°N, 79.0193°E 152.2625 92.03119 90.37391 47.95097 3931 670,462
‘Hapur’-28.7306°N, 77.7759°E 224.0571 238.1677 39.34946 56.98698 223 12,641
‘Jaipur’-26.9124°N, 75.7873°E 205.1 167.7864 23.54846 39.88608 1949 186,996
‘Kolkata’-22.5726°N, 88.3639°E 209.899 230.9993 45.45987 84.49267 5152 322,357
‘Mumbai’-19.0760°N, 72.8777°E 579.8153 565.6658 47.31111 70.3163 16,437 810,064
‘Muzaffarnagar’-29.4727°N, 77.7085°E 237.5544 254.2052 46.31537 14.34088 279 30,995
‘Mysuru’-12.2958°N, 76.6394°E 121.1408 71.9613 13.08163 58.05 2416 179,080
‘Nashik’-19.9975°N, 73.7898°E 129.1018 63.24012 6.16861 28.87277 8707 410,666
‘Patna’-25.5941°N, 85.1376°E 306.7395 240.9536 40.57327 68.53708 2336 146,974
‘Shillong’-25.3682°N, 91.7539°E 170.6082 164.1894 12.23725 16.10176 994 41,015
‘Thiruvananthapuram’-8.5241°N, 76.9366°E 133.1115 63.71405 65.34598 18.89302 4995 463,962
‘Thrissur’-10.5276°N, 76.2144°E 168.3116 76.14015 12.85525 16.1995 3575 523,247
‘Visakhapatnam’-17.6868°N, 83.2185°E 144.0619 121.6193 69.81525 29.9708 1127 157,715

Fig. 2  Temporal plots of different pollutants in the study period and 
their mean magnitudes in lockdown and post-lockdown. a logarithm 
of daily maximum pollutant concentration, b mean concentration of 
daily maximum pollutant concentration (Lockdown vs Post-lock-
down)
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2.2  Methodology

In the present analysis, the generalized additive model 
(GAM) was applied. The dependent variable is daily 
COVID-19 incidence/ deaths, the independent variable is 
pollution concentration, and meteorological variables are 
taken as a smooth confounding variable with 20 splines and 
having a degree of 3. Since past studies such as those [28, 
29] considered meteorological variables such as Tempera-
ture  (Ta), Relative humidity (RH) and wind speed etc., as 
cofounding variables with splines to represent the season-
ality or trends, so we try to implement the same meteoro-
logical variables as confounding variables. Here, we include 
the daily observed maximum temperature  (Ta), and daily 
observed maximum Relative humidity. Non-meteorological 
cofounders such as demographic, social, and economic fac-
tors are previously analyzed [30] but in the present study, 
these parameters are not considered because of a lack of 
availability and inconsistency in daily level data. The mod-
eled equation is.

Model 1:

where X is the moving average of pollution of a ith city on 
tth day. The 14 day moving average was taken for analysis. 
S(.) is the smoothing spline with a degree of 3, and dow is 
the day of the week. Here  Ta, RH is the air temperature and 
relative humidity.

The above models were implemented for each pollutant 
with a lag ranging from 0 to 21 days.

The relative risk is estimated as follows

The confidence interval can be as follows

where SE is the standard error, before applying the model, 
the impact of each pollutant on COVID-19 is estimated by 
applying linear regression to each pollutant and COVID-19 
cases/deaths. The Pearson correlation was found between 
pollutants and COVID-19 incidence/deaths.

2.3  Model selection and validation

The choice of Basis dimension ‘k’ is a bit difficult and 
risky. If we increase the basis dimension, then the fit will 
be too wriggle (in general overfitting); at the same time, a 
lower number leads to a linear fit of the GAM model. So, 
in order to choose the best possible ‘k,’ there should be a 
trade-off between the ‘k’ and λ (it is the smoothing param-
eter). Again the choice of higher λ minimizes the overfitting 

(1)
log

(

deathsi,t
)

= β0 + β1Xi,t + s
(

Ta, d
)

+ s(RH, d) + dow

(2)RR = exp
(

β1
)

(3)CI = exp
(

β1 ± 1.96 ∗ SE
)

and smoothens the curve. Here the condition to trade off 
the ‘k’ and λ is edof (effective degree of freedom). Though 
the choice k is arbitrary [31, 32] the condition to get the 
best possible fit is edof < k − 1. We iterated the model to 
satisfy the stated condition and chose k = 20 and λ=10, the 
estimated edof of every model is far less than k − 1. As we 
already trade-off the smoothing parameter λ , which mini-
mized the overfitting, a thorough check is needed in GAM 
models. The overfitting is estimated by dividing the pooled 
data into training and testing data. If the accuracy of the 
model in both the training and testing data set is similar, then 
the model is fitted correctly and this was done by sensitiv-
ity analysis and and maximizing λ . The other odd in GAM 
model is multi-collinearity, as all major pollutants will have 
a high correlation among them, so we chose a single pollut-
ant at a time, and the model is fitted with splines of tempera-
ture, relative humidity, and week of the day. Still, one should 
be aware of the collinearity among the confounding vari-
ables. For this purpose, we examined the multi-collinearity 
effects with the VIF factor. The details of the VIF factor 
are given in Table 2. The VIF of every model is less than 
10, which states that the models behave well when consid-
ering the above confounding variables. The model follows 
the normal distribution assumptions with the above-iterated 
parameters. The residual check plots for all four pollutant 
models are generated. The diagnostic plots are given as sup-
plementary, where the histogram plots for COVID-19 cases 
and plots for COVID-19 deaths show that residuals have a 
normal distribution and have mean, median, mode around 
zero. The probplots (similar to Q-Q plot) plots for COVID-
19 cases and plots show theoretical quantiles, and observed 
values have linear relation (slop of  45°) but, there exists a 
small deviation near zero within the acceptable range.

3  Results

In the present study, 20 major air-polluted cities are taken for 
the analysis and consecutive 553 days between April 2020 
and November 2021. The pollutant concentrations of dif-
ferent pollutants along with COVID-19 statistics are shown 
in Table. The GAM model was applied to non-cumulative 
cases and non-cummulative deaths. Before estimating the 

Table 2  The VIF factor of each pollutant model

Model Pollutant Temperature Relative 
humidity

wod

PM2.5 + T + RH + wod 2.56 1.35 2.12 2.69
PM10 + T + RH + wod 1.86 1.35 2.06 2.22
SO2 + T + RH + wod 2.17 1.36 2.07 2.36
O3 + T + RH + wod 2.28 1.34 2.09 2.50
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relative risk, the surge of pollutants post-lockdown is ana-
lyzed and quantified. In order to estimate the relative risk, 
the pooled data was taken for correlation. Even after consid-
ering large data sets, there is a positive correlation for every 
major pollutant. The non-correlated pollutant (R < 0.1) CO, 
 NO2 is omitted from the analysis. Unlike some past studies 
where cities and durations are less, this multiple-city analy-
sis showed that pollution has the ability to exacerbate the 
severe COVID-19 conditions and possibly cause an increase 
in the death rate. Though in the present study, correlations 
are weak compared to small-duration studies but having a 
significant impact on both incidence and mortality.

In correlation analysis (Fig. 3) the blue line indicates 
the single-variable regression line, and the shaded area is 
the confidence interval. The R value is the Pearson correla-
tion coefficient, suggesting how strong the relationships are 
between per day maximum concentration of pollutants and 
COVID-19 incidence and deaths, with p value representing 

the level of significance for the coefficient. All pollutants 
(Fig. 3a, c and d) have an upward regression line, suggesting 
a positive relationship. In addition, both R values are posi-
tive, and p values are smaller than the commonly accepted 
threshold of 0.01, confirming the significant positive asso-
ciation. For the analysis of COVID-19 cases (Fig. 3, a and b) 
 PM2.5,  PM10 has a minimum R value in regression analysis. 
The  SO2,  O3 (Fig. 3 c and d) showed the maximum R value 
with upward slop in COVID-19 incidence. The  PM2.5 and 
 PM10 (Fig. 4c and d) had minimal effects on deaths and the 
 SO2,  O3 (Fig. 4c and d) showed maximum upward slop for 
deaths. All pollutant concentrations are taken in µmg/m3.

Initially,  PM2.5 (Fig. 5a) showed a relative risk of RR 
(1.030) with CI 95% [1.028,1.031], and RR kept on decreas-
ing with a lag of up to 21 days. This RR indicates that  PM2.5 
was associated with only a 2.8 to 3.1% increase in COVID-
19 incidence with every 10 µmg/m3 increase. Similarly, for 
 PM10 (Fig. 5a), the relative risk of RR (1.0116) with CI 

Fig. 3  Correlation between pollutant concentrations and logarithm 
of non-cumulative confirmed incidences (cases). a regression line 
of  PM2.5 vs confirmed incidences, b regression line of  PM10 vs con-

firmed incidences, c regression line of  SO2 vs confirmed incidences, 
d regression line of  O3 vs confirmed inciden
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95% [1.011,1.020]. Like  PM2.5,  PM10 showed a decreasing 
trend of RR up to lag of 21 days. The  PM10 exhibited a 
1% increase in COVID-19 incidence with every 10 µmg/
m3 increase. Both  PM10 (Fig. 5a and b) and  PM2.5 exhibited 
a very low association of transmission of COVID-19. But 
 SO2,  O3 (Fig. 5 c and d) has the RR (1.079), CI 95% [1.076, 
1.083] and RR (1.101), CI 95% [1.100, 1.04], respectively, 
which shows a positive association of 7.9% and 10% respec-
tively with 10 µmg/m3 increment of pollutant concentration. 
It is observed that every pollutant has a decreasing trend 
except  O3.

Initially,  PM2.5 (Fig. 6a) showed a relative risk of RR 
(1.021) with CI 95% [1.019,1.029], and RR kept on decreas-
ing with a lag of up to 21 days. This RR indicates that  PM10 
was associated with only a 1.9 to 2.9% increase in COVID-
19 incidence with every 10 µmg/m3 increase. Similarly, for 
 PM10 (Fig. 6a), the relative risk of RR (1.010) with CI 95% 
[1.008,1.0105]. Unike  PM2.5,  PM10 showed an increasing 
trend of RR up to lag of 21 days. The  PM10 exhibited a 
1% increase in COVID-19 incidence with every 10 µmg/m3 

increase. Both  PM10 (Fig. 6 a and b) and  PM2.5 exhibited a 
very low association of transmission of COVID-19. But  SO2, 
 O3 (Fig. 6c and d) has the RR (1.045), CI 95% [1.040, 1.050] 
and RR (1.072), CI 95% [1.065, 1.075], respectively, which 
shows a positive association of 4.5% and 7.2% respectively 
with 10 µmg/m3 increment of pollutant concentration. It is 
observed that pollutants  PM2.5,  SO2, have a decreasing trend, 
 PM10, and  O3 have an increasing trend.

In order to analyze the sensitivity of the above-proposed 
model, we excluded Delhi city from the analysis. Delhi is the 
city with the most cumulative COVID-19 cases reported up 
to date and is also the most pollutant city. Even after exclud-
ing Delhi from the analysis, the relative risk of both COVID-
19 cases and deaths didn’t change much. The relative risk 
due to  SO2 (Fig. 7a and b) in COVID-19 cases and deaths 
decreased slightly, but  PM10 and  O3 (Fig. 7a and b) showed 
an increment in RR. The relative risk due to  PM2.5 neither 
increased nor decreased in both incidences and deaths.

The pooled studies will give a glance at the overall esti-
mation of the effects of the pollutants on COVID-19. Still, 

Fig. 4  Correlation between pollutant concentrations and logarithm of non-cumulative confirmed deaths. a regression line of  PM2.5 vs confirmed 
deaths, b regression line of  PM10 vs confirmed deaths, c regression line of  SO2 vs confirmed deaths, d regression line of  O3 vs confirmed deaths
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this analysis may not be a correct representation of each 
city and each region. For this purpose, we estimated the 
relative risk of each city during the same period of study. 
The city-wise relative risk is given in Table 3. From Table 3, 
the relative risk of each city was significantly changed. So, 
in order to understand the relative risk patterns throughout 
India, the nearest neighbor algorithm is used to generate the 
maps of the pollutions (Fig. 8a, b, c, and d) and RR of the 
entire India. Figure 9 shows the relative risk of each pollut-
ant of COVID-19 cases. The relative risk due to  O3 (Fig. 9a) 
is highly dominated in the north and central part of India 
and somewhat extended to northwestern regions such as 
Punjab, upper west such as Gujarat, and a slight pattern was 
observed in the east coast. The northeast is totally risk-free. 
Similarly, the relative risk due to  PM2.5 (Fig. 9b) is domi-
nant in the central part of India and showed a partial effect 
on southern India. The relative risk due to  PM10 (Fig. 9c) 
is in the central part of India and high risk in northwest-
ern regions such as Punjab, and lower south such as Kerala. 
Interestingly the relative risk due to  SO2 (Fig. 9d) is much 

higher in different parts such as the northeast, Indo-Gangetic 
plane (IGP), northwestern, western, and south.

The relative risk due to  O3 (Fig. 10a) is highly domi-
nated in the north and central part of India and extended to 
northwestern regions such as Punjab, upper west such as 
Gujarat, and the east coast. Similarly, the relative risk due 
to  PM2.5 (Fig. 10b) is dominant in the central part of India 
and showed a similar effect on northwestern India. The  PM10 
(Fig. 10c) has the highest effect on the northwestern part 
of India, along with a partial effect on the IGP plane. The 
relative risk due to  SO2 (Fig. 10d) is much higher in differ-
ent parts such as the northeast, Indo-Gangetic plane (IGP), 
northwestern, western, and south, and partial effect on Delhi.

4  Discussion

The main aim our study is to quantify the pollution effects 
on the COVID-19. For this purpose, firstly we did corre-
lation analysis on non-cummilative cases and deaths with 

Fig. 5  Relative risk due to different pollutants with lag 0–21 days for COVID-19 incidences (cases). a relative risk of  PM2.5, b relative risk of 
 PM10, c relative risk of  SO2, d relative risk of  O3
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major air pollutants. In past studie we observed a cor-
relation analysis of COVID-19 incidences/mortality with 
previous years mean pollutant concentrations and found 
that in 71 provinces of Italy with 2017–2019 correlations 
are 0.340, 0.267, 0.247, 0.264 for  PM2.5,  PM10,  NO2,  O3 
respectively [5] and we obsevered a little weak correlation 
because of high temporal data sets. As limited period stud-
ies such as [33], found that  PM2.5 and  PM10 are positively 
correlated with COVID-19 incidences. Later the long 
period study in Chile [34] from January 2020 up to June 
2021, found excess mortality compared to 2016–2019, 
using a generalized additive model. A recent study of mul-
tiple cities [29] in (Tehran, Mashhad, and Tabriz) from 
February 20th, 2020 to January 4th, 2021 concluded that 
significant association with pollutants is possible in short-
term exposure in longer period studies but there is no sug-
gested time period for study and from Table 3 the relative 
risk of different cities vary significantly. So, we chose 
the study period on basis of data availability. Recently a 

national wide study in US [28] with almost 800 counties 
are taken for analysis with 6 months time period. Results 
indicated a positive correlation for  PM2.5 and  O3 with both 
COVID-19 cases as well as deaths. The other such cases 
of pooled study in Korea [35] have more exacerbated risk 
observed. Thus by observing the high spatio-temporal 
studies from above stated researches, we attempted pooled 
data from 20 major pollutant cities in India. These are 
taken for analysis with a time span of 553 days.

The percentage associations of particulate matter and 
other pollutants are observed in the range of some early stud-
ies. The evidence from 126 cities in china [36] showed that 
2.24%, 1.76%, 6.94%, 4.76%, 7.79% percent of the increase 
in COVID-19 cases for pollutants  PM2.5,  PM10,  NO2,  O3, 
 SO2, respectively. Similarly, we observed the same ranges 
in present study such as 3%, 1%, 7.7%, 10% increases in 
COVID-19 cases attributed for  PM2.5,  PM10,  SO2,  O3. Here 
on O3 has significanly vary from past study and we notice 
that approximately 5% more contribution.

Fig. 6  Relative risk due to different pollutants with the lag ranging 0–21 days for COVID-19 deaths. a relative risk of  PM2.5, b relative risk of 
 PM10, c relative risk of  SO2, d relative risk of  O3
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These kinds of studies are rare in India compared to other 
developing countries as well as highly developed countries. 
But recently, a study on India [37] showed a significant 
impact on short-term exposure to major pollutants. The 
association is as follows,  PM2.5,  PM10, and  NO2 are associ-
ated with 2.21%, 2.67%, and 4.56% increase in daily counts 
of COVID-19-infected cases, respectively. The similar long 
period (from 1 April 2020 to 31 December 2020 in the 
National Capital Territory (NCT) of Delhi) study [38] sug-
gest that at a moving average of 14 days of PM2.5, PM10, 
and NO2  were significantly associated with increased 
risk of COVID-19 daily new incidence, and pollutants 
PM2.5, PM10, SO2, NO2, O3, and CO were significantly 
associated with COVID-19 daily new deaths.

The present results are in accordance with a few above-
stated previous studies. However, these statistical analyses 
alone may not be sufficient to establish a strict relation that 
COVID-19 is escalated by air pollution. But previously, 
some studies [39–41] established a possible mechanism 
between air pollution and COVID-19. The evidence from 
thirty five observational studies [30] showed a significant 
positive association of all major pollutants. The exact quan-
tification of the increment of COVID-19 incidence/ mortal-
ity from every single individual pollutant is questionable. 
So, sptial maping may be more appropriate representation 
of the present study. From our study the spatial variability 

Fig. 7  Percentage associated COVID-19 incidences(cases) for pol-
lutants with the full model and without Delhi. a COVID-19 cases, b 
COVID-19 deaths

Table 3  Relative risk of COVID-19 cases/mortality of individual city

City PM2.5 cases PM10 cases SO2 cases O3 cases PM2.5 deaths PM10 deaths SO2 deaths O3 deaths

‘Bengaluru-Urban’-12.9716°N, 
77.5946°E

1.003 0.997 1.041 1.009 0.996 0.994 1.022 0.989

‘Bhopal’-23.2599°N, 77.4126°E 1.019 1.007 0.990 1.119 1.003 1.001 0.999 1.018
‘Chandigarh’-30.7333°N, 76.7794°E 1.001 1.003 0.986 1.007 1.001 1.001 0.995 1.004
‘Chennai’-13.0827°N, 80.2707°E 1.000 0.998 1.017 1.016 0.998 0.997 1.027 1.010
‘Delhi’-28.7041°N, 77.1025°E 1.007 1.003 1.026 1.035 1.005 1.003 1.021 1.030
‘Gandhinagar’-23.2156°N, 72.6369°E 0.997 0.999 1.008 1.047 0.999 1.000 1.001 1.009
‘Ghaziabad’-28.6692°N, 77.4538°E 1.002 1.001 1.059 1.033 1.000 1.000 1.009 1.001
‘Hyderabad’-18.1124°N, 79.0193°E 0.992 0.980 0.996 1.014 0.994 0.990 0.995 1.006
‘Hapur’-28.7306°N, 77.7759°E 1.002 1.001 1.000 1.026 1.000 1.000 0.998 1.003
‘Jaipur’-26.9124°N, 75.7873°E 1.011 1.011 1.116 1.066 1.001 1.002 1.002 1.010
‘Kolkata’-22.5726°N, 88.3639°E 1.000 1.000 1.024 1.007 0.997 0.998 0.994 0.994
‘Mumbai’-19.0760°N, 72.8777°E 1.000 1.000 1.001 0.994 0.999 0.999 0.988 0.984
‘Muzaffarnagar’—29.4727° N, 77.7085° 

E
1.005 1.002 0.988 0.938 1.000 1.000 0.997 0.993

‘Mysuru’-12.2958°N, 76.6394°E 1.003 1.001 0.939 0.968 1.000 1.001 1.009 0.998
‘Nashik’-19.9975°N, 73.7898°E 1.013 1.008 1.070 1.013 1.002 0.992 0.972 0.990
‘Patna’-25.5941°N, 85.1376°E 1.003 1.004 1.052 0.992 1.000 1.001 1.019 1.001
‘Shillong’-25.3682°N, 91.7539°E 0.989 0.995 1.321 0.833 0.993 0.997 1.106 0.955
‘Thiruvananthapuram’-8.5241°N, 

76.9366°E
1.009 1.020 1.004 0.931 0.998 1.000 0.997 0.976

‘Thrissur’-10.5276°N, 76.2144°E 1.009 1.003 1.042 1.063 1.006 0.991 1.050 1.038
‘Visakhapatnam’-17.6868°N, 83.2185°E 0.999 0.990 0.988 1.023 0.999 0.996 0.993 1.008
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is very high, the probable cause for this is number of cities. 
However, the spatial variability of pollutant concentration 
is also high. From cross comparing pollutant (Fig. 8) con-
centration of one region with relative risk (Figs. 9 and 10) 
at that region. The relative risk is not exbhiting a high value 
where exactly the pollutant concentration is high. Thus, it is 
strongly evident that the high mean concentration alone not 

sufficient to tell that relative risk will be high where high 
mean pollutant concentration exists. So, temporal dynamics 
play a vital role along with human physiology and virual 
dynamics. Also the nearest neighbour algorithem along with 
resampling smoothens the plots from point source (in our 
case relative risk of a city), so, these map shows a probable 
and causal relationship between pollutants and COVID-19. 

Fig. 8  Spatial map of pollutant concentration. a mean of daily max of O3, b mean of daily max of  PM2.5, c mean of daily max of  PM10, d mean 
of daily max of  SO2
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Thus pollution effects on specifically COVID-19 are limited 
study.

However, the air pollution effects on lung diseases are 
well studied. The  PM2.5 is the major cause of the lower 
respiratory disease [42, 43] and the systematic review [44] 
showed alterations in miRNA expression when exposed to 
different size of PM and their potential functions in cardi-
orespiratory toxicity. Similarly,  SO2,  O3 also cause severe 
lung diseases. The chronic inhalation of  SO2 results in 

difficulty in breathing and asthma. Negative impacts of  SO2 
gas on humans include irritation of the skin, tissues, and 
mucus membranes of the eyes, nose, and throat. Accord-
ing to WHO, acute  O3 in the atmosphere results in breath-
ing problems causes, asthma, and reduced lung function. 
According to this evidence, it can be hypothesized that pol-
lutants escalate COVID-19. But this study had several limi-
tations, such as the availability of data and the consistency of 
data. More Spatio-temporal data is required to establish the 

Fig. 9  Spatial map of relative risk due to pollutants for COVID-19 cases. a relative risk of O3, b relative risk of  PM2.5, c relative risk of  PM10, d 
relative risk of  SO2
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firm relation, and any ecological relation is sensitive to age, 
sex, and past medical history. The incidence or death of any 
disease will depend on several other factors, and every sin-
gle individual exposure to pollution will vary significantly. 
Indoor pollution also plays a major role in short-term expo-
sure to pollution. Not only short-term effects but there is 

also a great need to consider long-term pollution effects. 
This consideration is especially required in countries like 
India, where urban population density is very high. Most 
of the cities in India fall under non-attainment zones where 
chronic inhalation of toxic pollution is common and should 
be addressed.

Fig. 10  Spatial map of relative risk due to pollutants for COVID-19 deaths. a relative risk of O3, b relative risk of  PM2.5, c relative risk of  PM10, 
d relative risk of  SO2
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5  Conclusions

Indian cities always come under non-attainment zones 
because of poor air quality. Moreover, the lifting of the 
lockdown caused an increase in activities like traffic and 
tourism. These daily level resumed activities caused high 
concentrations of pollution. All pollutants showed an 
increment in the post-lockdown scenario. The questionable 
thing is whether this surged pollution is really a threat to 
COVID-19. Thus our results are a primary assessment to 
policymakers of how statistically significant pollution rise 
in increment of relative risk?. The pooled results showed 
that the highest attribution went to O3, followed by  SO2, 
 PM2.5, and  PM10. Spatial analysis showed that COVID-
19 escalation highly depends on demographic features 
and population densities. The spatial maps revealed that 
north India, IGP, and somewhat western India are the most 
vulnerable zones due to different pollutants. So, proper 
mitigation strategies should implement based on the type 
of pollutant observed in the region. Since the type of pol-
lutant is region-specific, different aspects like population 
density, tourism levels, traffic, and industries change from 
region to region. Properly implementing region-specific 
mitigation strategies is highly helpful in the smooth func-
tioning of cities and results in better economic growth dur-
ing the pandemic. This research also gives the vision to 
tackle future pandemics from pollution escalated infection.
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