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cases in 2022 and validates the findings of the current study. 
It promises to corroborate the study into the geographic rela-
tion and spread of CoVID-19. By examining such spatial 
distribution patterns, the government might be able to track 
and predict the transmission of the infection in neighbor-
hoods of blocks.
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1 Introduction

The globe is grappling with the development of novel coro-
navirus illnesses (nCoV) and subsequently (CoVID-19), 
which is thought to be caused by the virus strain SARS-
CoV-2 and has been ravaging China since early December 
2019. As the globe tries to find a treatment for the disease 
through vaccine research, the transmission, direction, and 
rate at which the disease spreads have become a criti-
cal information gap [1]. The pattern and trajectory of the 
COVID-19 outbreak are still unknown, and the specific vari-
ables influencing the disease’s geographical distribution as 
well as the initiation of transmission from nation to nation 
are yet to be fully explored.

CoVID-19 has spread fast around the planet, posing 
significant health, economic, environmental, and social 
risks to the whole human population [2]. Major outbreaks 
pose an immediate threat to all human beings’ economic 
and social growth. In geography and spatial epidemiology, 
summarizing and assessing the geographical temporal dis-
tribution patterns and regularities of infectious illnesses 
[3], dissemination patterns [4], spatial consequences [5], 
geographic influence [6], and public health relevance are 

Abstract Many scholars and researchers have studied 
the CoVID-19 epidemic’s spread using GIS technologies 
since it first appeared. The CoVID-19 pandemic is thought 
to be rife with unknowns, and many of them have a spa-
tial component that makes the phenomenon understood as 
being spatially and possibly mappable. The majority of these 
efforts, though, have been made at the national, state, or 
district, levels. Very few studies primarily concentrate on 
the display of the CoVID-19 cluster at a local or neighbor-
hood scale. From the perspective of micro-planning, analyz-
ing the clustering, geographical direction, and heterogeneity 
of the CoVID-19 hotspots’ spatial pattern is crucial specially 
when mass has returned to new normal living style. Using a 
case study on the North 24 Parganas of West Bengal, India, 
the most vulnerable district in West Bengal, we attempt to 
analyze the CoVID-19 diffusion at the block level in post-
lockdown period. We assess the spatiotemporal distribution 
of CoVID-19 and map its hotspots based on the containment 
zones. This study demonstrates the patterns of geographical 
dispersion and the CoVID-19 pandemic spread in North 24 
Parganas which is highly concentrated along the western 
boundaries of the state. We observed that the containment 
clusters of 2020 once more noted a higher density of CoVID 
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key research areas. Several studies have highlighted the rel-
evance of using GIS in health geography investigations and 
epidemiology and the usefulness of its implementation in 
addressing spatial challenges. GIS and strategies in health 
geographies have previously included digital real-time or 
near-real-time machinations of disease cases, their distribu-
tion, and forecasting of risk or vulnerability mapping, along 
with coding and appearance of social media interactions, 
population travel data, and interaction trajectories tracking 
across space and time [7, 8].

Since the COVID-19 epidemic’s onset, a number of aca-
demics and researchers have used GIS technology to exam-
ine the pandemic’s spread. It is believed that the CoVID-19 
pandemic is rife with unknowns, and many of them have a 
spatial component that makes the phenomenon understand-
able as being geographical and possibly mappable [9]. The 
spatio-temporal dynamics of the CoVID-19 pandemic in the 
State of Kuwait are the basis for Alkhamis and colleagues’ 
(2020) investigation. Using daily confirmed cases, they cre-
ated an exploratory study on the temporal and spatiotem-
poral dynamics of the CoVID-19 pandemic in Kuwait [10]. 
The in-depth examination of CoVID-19 in Iran includes 
mapping of risks, change detection, geographic modelling 
of disease dissemination, and trend analysis of outbreaks. 
Researchers compared Iranian coronavirus data with global 
trends, used regression modelling to forecast death trends, 
used spatial modelling, risk mapping, and change detection 
using the random forest (RF) machine learning approach 
(MLT), and verified the risk map they had predicted [11]. A 
different study seeks to identify the CoVID hotspot region 
in India using data on the total population density, foreign 
visitors, and confirmed CoVID cases. By using geospatial 
technology, another study deduces the spatiotemporal pat-
tern of CoVID clustering for India [12]. Few others made an 
effort to comprehend the CoVID-19 hotspot spatial pattern, 
clustering, spatial direction, and heterogeneity [13, 14].

Spatial cluster analysis is dependent on the geography 
of the activities and necessitates accurate and meaningful 
handling of space and spatial linkages together with the 
observed location and event data. It has so far necessitated 
the application of particular structural and accounting pro-
cedures and approaches for distance, outliers, contiguity, 
geographical irregularity, and so on [14]. However, most 
of these efforts have been made at a national, state, or dis-
trict level. Very few studies specifically focus on develop-
ing nations in Asia and show the CoVID-19 clustering at a 
local or neighborhood scale [15]. Assessing the spatial pat-
tern of the CoVID-19 hotspots, which comprises clustering, 
spatial direction, and heterogeneity, may be essential from 
the standpoint of micro-planning. We seek to examine the 
CoVID-19 spread at the block level by using a case study 
on the North 24 Parganas of West Bengal, India, the most 
vulnerable district in West Bengal. The specific goal of this 

study is to apply the spatial auto-correlation technique to 
assess the CoVID spatial pattern and find clusters with sta-
tistically significant disease hotspots at the neighborhood 
scale. Based on the containment zones, we evaluate the spa-
tiotemporal distribution of CoVID-19 and map its hotspots. 
Containment zones are areas with a high concentration of 
CoVID-19-positive cases demarcated during nationwide 
unlock.1 In order to map and stop local transmission, these 
zones were constructed by the Rapid Response Team, Union 
Ministry for Health and Family Welfare, Government of 
India.

2  Method

North 24 Parganas, the most populous district in West 
Bengal, is bordered to the north by Nadia district, to the 
south by South 24-Parganas, and to the east by Bangladesh 
(Fig. 1). The new alluvium sub-region (Zone-III) of the 
lower Gangetic Plain, which is considered to be the most 
productive for agricultural production, is where the district 
of North 24-Parganas is situated. The district has mostly flat 
topography. The North 24-Parganas district is traversed by 
numerous rivers, including the Ichhamati, Kalindi, Raiman-
gal, Dansa, Borokalagachi, Benti, Haribhanga, Gourchrar, 
Bidyadhari, and Hooghly. It experiences tropical weather, 
just like the rest of Gangetic West Bengal. Another charac-
teristic of the area is the monsoon, which occurs from early 
June to mid-September and sporadically into October. The 
weather is dry from late November to mid-February during 
the winter, while it is very humid during the summer. North 
24 Parganas has a population of 10,009,781 people, with 
5,119,389 men and 4,890,392 women, according to the 2011 
Indian census. The district covers 4094 square kilometers. 
A population density of 2445 person per square kilometer 
was recorded in the North Twenty-four Parganas district in 
2011. However, the population density varies over urban to 
rural block from 655 to 3899 persons per square kilometers 
(Fig. 2). The average literacy rate in North Twenty-four Par-
ganas was 84.06 in 2011, up from 78.07 in 2001. The sex 
ratio was 955 for every 1000 men as per 2011 Census.

Since the breakout of the covid, the district has been 
significantly impacted by the tantrum of coronavirus. Over 

1 As a precaution against the COVID-19 pandemic in India, on the 
evening of March 24, 2020, the Indian government issued a statewide 
lockdown for 21 days (later extended in three phases up to 68 days), 
restricting movement for the whole 1.38 billion (138 crore) popula-
tion of India. It was announced on May 30 that the lockdown limita-
tions would be relaxed as of that date and that the containment zones 
would continue to be under lockdown through June 30. Services 
would have been gradually reestablished beginning on June 8. Its offi-
cial name was "Unlock 1.0." (Further extended in phases till March 
31, 2022 as "Unlock 22.0").
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1000 new CoVID cases are reported each day in North 
24 Parganas during the study period of unlock (May 
2020–October 2020). Most researchers concur that the 
actual number of affected individuals in the state should 
be at least five times higher than the reported number 
because many patients have not been examined. The West 
Bengal Health Bulletin of North 24 Parganas reports that 
CoVID-19 incidences peaked between March 17 and May 
14, 2020. The number of CoVID-19 cases in North 24 

Parganas has reportedly almost reached its peak during 
this period, but starting at the end of October 2020, the 
cases have started to decline. This suggests that either the 
curfew or total lockdown has helped to slow the uptick. 
It was anticipated that COVID-19 cases would decrease 
further. Based on the aforementioned discussion, the pre-
sent study method utilizes the data available on contain-
ment zone demarcation from May 2020 to October 2020 to 
illustrate the geographic distribution and cluster patterns 

Fig. 1  Location map of study 
area (a). India—1. Anda-
man and Nicobar; 2. Andhra 
Pradesh; 3. Arunachal Pradesh; 
4. Assam; 5. Bihar; 6. Chan-
digarh; 7. Chhattisgarh. 8. 
Dadra and Nagar Haveli; 9. 
Daman and Diu; 10. Goa; 
11. Gujarat; 12. Haryana; 13. 
Himachal Pradesh; 14. Jammu 
and Kashmir; 15. Jharkhand; 
16. Karnataka; 17. Kerala; 18. 
Lakshadweep; 19. Madhya 
Pradesh; 20. Maharashtra; 21. 
Manipur; 22. Meghalaya; 23. 
Mizoram; 24. Nagaland; 25. 
NCT of Delhi; 26. Odisha; 
27. Puducherry; 28. Punjab; 
29. Rajasthan; 30. Sikkim; 31. 
Tamil Nadu; 32. Telangana; 33. 
Tripura; 34. Uttar Pradesh; 35. 
Uttarakhand; 36. West Bengal. 
(b). West Bengal—1. Alipur-
duar; 2. Bankura; 3. Barddha-
man; 4. Birbhum; 5. Dakshin 
Dinajpur; 6. Darjiling; 7. Haora; 
8. Hugli; 9. Jalpaiguri; 10. 
Koch Bihar; 11. Kolkata; 12. 
Maldah; 13. Murshidabad; 14. 
Nadia; 15. North 24 Parganas; 
16. Pashchim Medinipur; 17. 
Purba Medinipur; 18. Puruliya; 
19. South 24 Parganas; 20. 
Uttar Dinajpur. (c). North 24 
Parganas—1. Bagda; 2. Bon-
gaon; 3. Gaighata; 4. Habra—I; 
5. Swarupnagar; 6. Baduria; 7. 
Bashirhat- I; 8. Bashirhat- II; 
9. Deganga; 10. Hasnabad; 
11. Haroa; 12. Minakhan; 13. 
Sandeshkhali—I; 14. Sand-
eshkhali—II; 15. Hingalganj; 
16. Habra- II; 17. Barasat- I; 18. 
Barasat- II; 19. Rajarhat; 20. 
Barrackpore—II; 21. Amdanga; 
22. Barrackpore—I
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of CoVID-19 at the micro-level in the North 24 Parganas 
of West Bengal, India. This information would be helpful 
for future effective control of the epidemic outbreak.

The study was conducted in two stages: first, we col-
lected data on all confirmed CoVID-19 cases and con-
tainment zones in the North 24 Parganas region of West 
Bengal, India. Next, we created a spatial database using a 
Geographic Information Systems (GIS) strategy, and last, 
we utilised the ArcGIS 10.0 geostatistical analysis module 
to investigate the geographic distribution of these cases.

2.1  Data acquisition

To assess the spatio-temporal CoVID-19 spread based 
on containment point, firstly the containment zones data 
has been collected from the official website from May to 
October 2020 [16]. In this study, the data has been col-
lected during specific time for each month when the maxi-
mum number of containment zone was demarcated in the 
study area. Referring to Fig. 3, we observe that on 13th 
May 2020, 118 containment zones were addressed in the 
study area. On 30th June 2020, 715 containment zones 
were demarcated in the North 24 Parganas Municipalities 
or Urban center wise. On 5th July 2020, 921 locations 
were addressed under containment zones. In August, 

September, and October 94, 31, and 10 containment zones 
were recorded respectively.

2.2  Database creation, centroid identification 
and distribution mapping

As far as the creation of centroid points is extremely difficult 
to capture the containment zone’s boundaries because the 
entire address, Zipcode, or Ward is not available for every 
single data point, so we used point data based on zip code for 
further research. A point layer was created through geoco-
ding by considering the Zip code for each respective address 
of each block with its ward number. For each month, the 
directional pattern and compactness and orientation details 
on the dispersion of the covid cases were determined using 
the directional distribution, specifically the standard devia-
tion ellipse (SDE). One can use the ellipse to determine if 
the distribution of features is elongated and, as a result, has 
a specific orientation [14].

2.3  Spatial statistical analysis

NNA, Global Moran’s I [17], and Local Moran’s I [18] were 
employed to investigate spatial autocorrelation, while Getis-
Ord General G and Gi [19] were utilised for cluster and 
hotspot analysis. Statistical significance was defined as a 
p-value of less than 0.05.

The average distance between each feature’s centroid and 
its nearest neighbours’ centroid location is calculated in the 
NNA, which is evidence of clustering, random, or regular 
point patterns [20]. The recorded average distance divided 
by the expected average distance returns the average NNR, 
which can be calculated as:

where D
0
 is the observed mean distance between each fea-

ture and its nearest neighbour

where di equals the distance between feature ‘i’ and its near-
est neighbouring feature,‘n’ corresponds to the total number 
of features, DE is the expected mean distance for the features 
given in a random pattern

‘A’ is the area of a minimum enclosing rectangle around all 
features or it’s a user-specified area value.

(1)ANN =
D

0

DE

(2)D
0
=

∑n

i=1
di

n

(3)DE =
0.5
√

n∕A

Fig. 2  Study area at a glance (a). Rural and Urban Settlement and 
(b). Population Density, Census 2011—1. Bagda; 2. Bongaon; 3. 
Gaighata; 4. Habra—I; 5. Swarupnagar; 6. Baduria; 7. Bashirhat- I; 
8. Bashirhat- II; 9. Deganga; 10. Hasnabad; 11. Haroa; 12. Minakhan; 
13. Sandeshkhali—I; 14. Sandeshkhali—II; 15. Hingalganj; 16. 
Habra- II; 17. Barasat- I; 18. Barasat- II; 19. Rajarhat; 20. Barrack-
pore—II; 21. Amdanga; 22. Barrackpore—I
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Clustering occurs when the index (average closest neigh-
bour ratio) is less than 1. The pattern is uniform if the index 
is greater than 1.

The spatial correlation between variables was assessed 
using spatial autocorrelation, which matched geography and 
attributes similarity [21]. The following is the mathematical 
expression for Global Moran’s I, a spatial autocorrelation indi-
cator based on cross products:

where n denotes the number of locations; xi denotes the 
CoVID-19 cases at each location i; x is the average value of 
CoVID-19 cases in the study area; and wij denotes the vari-
ables of a spatial lag operator W (spatial weights of matrix 
W). In most cases, the index’s relevance is determined in a 
scenario with a statistical distribution [22]. The result of 
Global Moran’s I ranges from − 1 to 1, with a positive value 

(4)I =

∑n

i=1

∑n

j=1
Wij

�

xi − x
��

xj − x
�

∑n

i=1
(xi − x)

Fig. 3  Covid containment points in North 24 Parganas between (a). May 2020; (b). June 2020; (c). July 2020; (d). August 2020; (e). September 
2020; to (f). October 2020
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indicating that a point is likely to be aggregated by neighbor-
ing points and a negative value indicating the reverse.

2.4  Joins count statistics for CoVID risk clustering

The type of sign for each region (e.g., continuous or binary) 
and how geographical interaction between areas is evaluated 
affect the indices used to aggregate spatial connection pat-
terns in relatively adjacent areas [23]. Join counts are useful 
for determining whether area i and the nearby region form a 
high-risk cluster or show some other type of localised risk 
pattern. When both area i and its nearby places have a high-
risk character, obtains a shared high-risk score.

The following formula can be used to calculate common 
low risk (where both area ‘i’ and the places surrounding it 
likely to be low risk):

When defining localized risk patterns, it is possibly nec-
essary to differentiate high-low risk pairings (bi = 1, bj = 0) 
from low–high risk pairings (bi = 0, bj = 1) in the situation of 
inconsistent risk level between area pairs when the emphasis 
is on area i. In these circumstances, the two local join count 
statistics are identical.

Wij is a binary spatial association that is determined by 
whether areas ‘i’ and ‘j’ are contiguous (wij = 1) or not 
(wij = 0). Let Ni indicate the area i’s neighborhood, i.e., the 
set of areas adjacent to area ‘i’ (those with wij = 1), and 
believe that this neighborhood comprises Li areas (the over-
all count of surrounding region e.g., Li = Ji + J

0i + J
10i + J

01i

).

3  Results

3.1  Distribution pattern of containment points

The COVID containment zones are distributed direction-
ally in a series in Fig. 4 (from May 2020 to October 2022). 

(5)Ji = bi

n
∑

i=1

wijbj

(6)J
0i =

(

1 − bi
)

n
∑

j=1

wij

(

1 − bj
)

(7)J
10i = bi

n
∑

j=1

wij

(

1 − bj
)

(8)J
01i =

(

1 − bi
)

n
∑

j=1

wijbj

The ellipse is often oriented in a west-northeast direc-
tion, indicating that for May and June 2020, the major-
ity of cases are located in the western blocks of North 
24 Parganas (Fig. 4a, b). SDE turns eastward in August 
2020 and makes elongated axis (Fig. 4d). It indicates the 
spread in the cases from centre towards periphery. The 
scenario remained same till September. SDE shows shrink 
and develops a little axis from southwest to northeast for 
October 2020, showing the declining spread of contain-
ment zones.

In Table 1, compare to z-score and p-value results over 
the same study area of North 24 Parganas: May, June, July, 
August, and September months p-value are less than 0.005 
which demonstrates that our result of NNA is significant 

Fig. 4  Directional distribution of monthly covid containments during 
the period between (a). May 2020; (b) June 2020; (c) July 2020; (d) 
August 2020; (e) September 2020; to (f) October 2020
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at a 1% level, indicates that CoVID-19 distribution is clus-
tered at a 99% significant level. In October month, p-value 
is more the 0.005 at a 1% significance level, representing the 
dispersed pattern of CoVID-19 distribution.

3.2  Spatial autocorrelation of containment distribution

The areal distribution of CoVID-19 within an administrative 
border was studied using the Global Moran’s I statistics. 
Table 2 provides a summary of the results of the spatial 
autocorrelation data on monthly covid containment locations 
determined using Moran’s I and Getis-Ord Gi* statistics. 
There were statistically relevant findings from the global 
Moran’s I test (z scores above 1.96) and it suggests spatial 
heterogeneity. The comprehensive findings of the Moran’s 
I and Getis-Ord Gi* statistics, along with the p-value for 
each month, are displayed in Table 2. For the months of 
May, June, July, and August, the null hypothesis of the 
Global Moran’s I statistics, which contends that the exam-
ined attribute is distributed randomly among the blocks, is 
rejected (p-value less than 0.05). In the months of May and 
July, the p-value is more than 0.005, showing there is less 
than a 5% likelihood that a clustered pattern could be the 

result of random choice. In June, the estimated p-value is 
less than 0.005 showing there is less than 1% likelihood and 
this clustered pattern could be the result of random choice. 
In the months of August and October, the pattern does not 
appear with any significant p-value. Moreover, in the month 
of September, there is less than a 10% likelihood showed the 
clustered pattern that could be the result of random choice.

The Getis-Ord Gi* tool assesses each CoVID-infected 
block and contrasts the local situation with the global situ-
ation in the neighbouring blocks. Table 2 shows the val-
ues obtained using Getis-Ord Gi* statistics, z-score, and 
p-value. According to these findings, there was a positive 
spatial autocorrelation. The findings demonstrated that for 
the months of May, June, July, and September, all z-score 
values were statistically significant at a level of 0.05. There-
fore, the null hypothesis might be rejected. If the underlying 
spatial processes were altered, the spatial distribution of high 
and/or low values of CoVID in the data set was spatially 
clustered more than expected. According to joint count sta-
tistics, Fig. 5 depicts the spatial clustering of the CoVID-19 
containment zone in North 24 Parganas. High-high covid 
clusters have been noted over Barrackpore II and Rajarhat 
between the months of May and June, whereas low–high 
outliers have developed over Amdanga and Barasat. In July, 
Barrackpore I developed a high-high cluster. During the 
research period, the neighboring blocks of Amdanga and 
Barasat I persisted as low–high outliers for Covid cases. 
Minakhan, Basirhat II, Sandeshkhali I, Sandeshkhali II, Hin-
galgang, and Hasnabad, the south-eastern blocks of North 24 
Parganas, remained low-low clusters throughout the research 
period (Fig. 5a–f).

3.3  Covid risk clustering and hotspot in North 24 
Parganas

The Getis-Ord Gi* statistic is calculated for each feature 
in a dataset by the Hot Spot Analysis tool. The resulting 
z-scores and p-values show us where geographic clus-
tering of characteristics with either high or low values 

Table 1  Summary of nearest neighbour ratio (NNR) of CoVID-19 
distribution in North 24 Parganas

*p-value < 0. 005 demonstrates that our result of NNA is significant 
at a 1% level and point distribution is clustered at a 99% significant 
level
**p-value > 0.005 at a 1% significance level, representing the dis-
persed pattern of CoVID-19 distribution and it could be the result of 
random chance

Month NNR Z-score p-value

May 0.5524 9.3013 0.0000*
June 0.3889 − 34.459 0.0000*
July 0.3976 − 34.475 0.0000*
August 0.5446 − 8.8422 0.0000*
September 0.7343 − 2.8302 0.0046*
October 1.4496 2.7196 0.0065**

Table 2  Summary of Global 
Moran’s I and Getis-Ord 
Gi statistics of CoVID-19 
distribution in North 24 
Parganas

*p-value < 0.05 denotes that there is a less than 5% likelihood that pattern could be the result of random 
chance
**p-value > 0.05 indicates that the pattern does not appear to be significantly different than random

Month Moran’s Index Pattern Getis-Ord Gi *index

Moran’s I Z-score p-value Observed G Z-Scores p-value

May 0.135 2.551 0.010* High-clusters 0.000026 2.138 0.032*
June 0.564 2.909 0.003* High-clusters 0.000031 2.511 0.012*
July 0.246 2.395 0.016* High-clusters 0.000023 2.027 0.042*
August 0.246 2.395 0.016* Random 0.000018 1.506 0.131**
September 0.065 1.387 0.165** High-clusters 0.000026 2.196 0.028*
October 0.269 1.884 0.0594** Random 0.000035 1.440 1.440**
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occurs. Each feature is examined in relation to its neigh-
bors. A high-value feature may or may not be a statis-
tically significant hot spot. A feature must have a high 
value and be surrounded by additional features that have 
high values in order to be a statistically significant hot 
spot. When the local sum of a feature and its neighbors is 
proportionally compared to the total number of features, 
a statistically significant z-score is produced. This occurs 
when the local sum differs significantly from the expected 
local sum and when the difference is too great to be the 

result of random chance. A z-score is the Gi* statistic that 
was returned for each feature in the dataset. For statis-
tically significant positive z-scores, the concentration of 
high values increases with increasing z-score (hot spot). 
Smaller z-scores have more intensive low value clustering 
for statistically significant negative z-scores (cold spot). 
The statistically significant hotspot for covid occurrences 
is shown in Fig. 6a–f. During the study period, Barrack-
pore I, Barrackpore II, Amdanga, Barasat I, and Barasat 
II formed significant covid hotspots and were estimated 

Fig. 5  Covid clusters in North 
24 Parganas during the period 
between (a). May 2020; (b). 
June 2020; (c). July 2020; (d). 
August 2020; (e). September 
2020; to (f). October 2020
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to be extremely vulnerable blocks that require strategic 
planning.

4  Discussion

In this study, the micro level containment zone is used to 
map CoVID-19 hotspots from May to October 2020 in the 
North 24 Parganas district of West Bengal. The study also 
evaluates the spatiotemporal spread of CoVID-19. Along 

the western border of the North 24 Parganas, the contain-
ment cases of CoVID-19 show a higher density and con-
siderable clustering, according to the results. A significant 
cluster of CoVID-19 hotspots was found on the western 
edge of the North 24 Parganas during the peak period of 
CoVID-19 case records. The blocks, namely, Barrackpore 
I and II, Rajarhat, Barasat I and II, Basirhat II, and Habra, 
recorded significant clustering tendency as appeared from 
the Global Moran’s I value. With less than a 5% likelihood 
that this clustered pattern could be the result of random 

Fig. 6  Covid Hotspot in North 
24 Parganas during the period 
between (a). May 2020; (b). 
June 2020; (c). July 2020; (d). 
August 2020; (e). September 
2020; to (f). October 2020
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chance, such a highly concentrated spatial pattern of con-
tainment zones may be attributed to urbanisation and the 
higher population density of these blocks.

The rural–urban distribution of the population plays a 
crucial role in the spatio-temporal distribution of CoVID-
19 [15]. The western boundary of the North 24 Parganas 
records a faster rate of urbanisation and a maximum popula-
tion density, and as a result, a higher distribution of CoVID-
19 instances, due to its greater geographic and economic 
proximity to Kolkata City. According to Mishra, Gayen, and 
Haque, urbanisation results in larger population densities, 
where those who use outdoor toilets and drink contami-
nated water are more vulnerable to pandemic disease [24]. A 
low population density rural area of Hingalganj, however, 
shows no containment zone from May to October 2020. A 
few authors also point out that socio-demographic variables 
including resource distribution and proximity to urban areas 
were key explanatory variables in determining the occur-
rence of CoVID-19 [25]. Our findings show similar results. 
The eastern blocks of North 24 Parganas, predominantly 
covering rural blocks away from the major urban agglomera-
tions, record the minimum number of containment locations 
from May to October 2020.

In the North 24 Parganas, the spatial distribution of 
CoVID-19 cases is quite unequal. Based on environmental 
and population characteristics that may control the covid-19 
distribution, the district represents the danger of exposing 
the disease’s spatial spread in connection to distinct blocks 
of North 24 Parganas district. The population density is rela-
tively high here, which is the main source of concern, as 
there is a significant chance of CoVID-19 infections [26]. 

To analyze the influence of rural–urban pattern, space, 
and morphodynamic properties on Coronavirus infection, 
a detailed study is required to understand micro-level dif-
ferences within the district space. To decode the factors 
influencing the geographic spread of infectious illnesses, 
further studies need to incorporate the socioeconomic, 
behavioral, environmental, topographic, and demographic 
factors as explanatory variables [27]. A group of scholars 
in Bangladesh have adopted district-level studies and used 
demographic, economic, meteorological, built environment, 
health, and facilities-related parameters to discover prob-
able variables impacting CoVID-19 incidence rates [28]. 
They have used the three global models including Ordinary 
least squares (OLS), spatial lag model (SLM) and spatial 
error model (SEM), and one local (geographically weighted 
regression (GWR) in context to spatial regression model 
(SRM). A similar type of approach may be adopted further 
to explain the block-wise clustering of the CoVID-19 clus-
tering of the North-24 Parganas. Inclusion of environmental 
and socio-economic risk factors of age, gender, language, 
caste, religion, occupation, infrastructure, and urban status 
to CoVID-case and death data, may further explain the pan-
demic’s geographical determinants.

5  Conclusion

The study showed the patterns of geographical dispersion 
and CoVID-19 pandemic spread in North 24 Parganas. Spa-
tial methods based on GIS have provided a prism through 
which to evaluate the extent of the pandemic’s spread. We 

Fig. 7  Containment locations 
of North 24 Parganas notified 
on February 1, 2022 and Covid 
hotspot of 2020
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observe that the containment clusters of 2020 again noted 
a higher density of CoVID cases during 2022 (Fig. 7). It 
seems to support the investigation into Covid-19 distribution 
and its important geographic link. The government may be 
able to monitor and predict the spread of the virus in both 
local and large parts of the state by analyzing such geograph-
ical distribution patterns. The results of this study could be 
helpful to the associated organizations as they carry out a 
thorough analysis of the virus’s spread and environmental 
management in the research area. Micro-level analysis is an 
integral part of facilitating regional cooperation to support 
recovery plans by establishing consistent safety and mitiga-
tion standards, pooling resources, and enhancing investment 
opportunities. The varied geographical impact necessitates 
territorialized policy responses on the grounds of fiscal, 
social, economic, and health as well as robust intergovern-
mental collaboration. This study aims to provide support 
at the national and subnational levels for vulnerable popu-
lations to prevent the situation from getting worse and to 
promote inclusivity during the recovery phase.
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