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Abstract COVID-19 driven lockdown has affected air

quality worldwide. Changes in air pollutants concentration,

Air Quality Index (AQI), and associated Excess Health

Risk (ER%) were assessed using satellite data of before

(2019), and during (2020) COVID-19 periods in the

industrially, agriculturally developed and highly populated

area of Haryana in the northern region of Indo-Gangetic

Plains. Parameters such as Aerosol Optical Depth (AOD),

Particulate matters (PM), Sulphur Di-Oxide (SO2), Nitro-

gen Di-Oxide (NO2), Carbon Mono-oxide (CO), and

Methane (CH4) were derived using satellite data and vali-

dated using ground-based observations (n = 23). The

coefficient of correlation (r) 0.91, 0.90, 0.95, 0.73, 0.81 and

0.80 were established with AOD, PM2.5, PM10, SO2, NO2

and CO, respectively. Significant reduction (p\ 0.005) in

the concentration of air pollutants, viz. 38% in AOD, 55%

in PM2.5, 61% in PM10, 31% in SO2, 10% in NO2, 5% in

CO and 1% in CH4 were observed during lockdown. Sig-

nificant (p\ 0.00) improvement in air quality was

observed due to a 44% reduction in pollution level, which

led to the reduction in ER% by 71%, which is quite sig-

nificant. AQI and ER% from satellite and ground showed a

high r2 i.e. 0.88 and 0.99 respectively, suggesting the

potential application of satellite data for periodic AQI and

ER% assessment.

Keywords Sentinel-5P � MODIS � AOD � AQI � Health
risk

1 Introduction

Air pollution is a result of intense anthropogenic activities

on earth such as transport, industrialization, biomass

burning, along with natural causes such as volcanoes and

forest fire [1]. It is reported that the anthropogenic activi-

ties contributes approximately 80% increase in the pollu-

tion [2]. Thus reduced human activities would have

resulted in a reduced level of air pollutants as observed at

the global and regional level during the COVID-19 driven

lockdown in 2020 [3–10]. COVID-19 has significantly

impacted the socio-economic and environmental condi-

tions of planet earth [3–23]. COVID-19 is a respiratory

disorder of viral origin caused by novel coronavirus or

SARS CoV-2 with symptoms of fever, dry cough, and

breathing difficulty. The first case of COVID-19 was

reported from Wuhan city, China in December 2019 and

rapidly spread all across the globe. It has been declared as a

global pandemic by the World Health Organisation (WHO)

[24] on 11 March 2020, looking at its contagious nature

and death severity ([ 3,037,398 deaths worldwide till 22

April 2021). This was further taken as a serious note by the

Government of India after the detection of the first case on

30 January 2020 from Kerala, India, which resulted in the

three-phase lockdown viz. (1) March 24 to April 14, 2020,

(2) April 15 to May 3, 2020, and (3) May 4 to May 17,

2020, over the whole country. The first two phases were

strict, while the last one was a relaxed lockdown.

The lockdown has significantly reduces the pollutants

concentrations and improved Air Quality by reducing the

transport, industrial activities, and other anthropogenic

activities all across the globe [4, 6, 11–15, 25, 26]. Wang

et al. [15] observed a reduction of 36–53% in the con-

centration of Nitrogen Dioxide (NO2) over six megacities

of China. Fang et al. [16] observed a reduction of 18–45%,
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17–53%, 47–64%, 9–34%, and 16–52%, respectively for

particulate matters 2.5 (PM2.5), particulate matters 10

(PM10), NO2, Sulfur Dioxide (SO2) and Carbon Monoxide

(CO), over urban agglomerations in China, during lock-

down period relative to pre-lockdown period. Mendez-

Espinosa et al. [17] reported a reduction of 60%, 44%, and

40% respectively in the concentration of NO2, PM10, and

PM2.5 over South America during the strict lockdown amid

COVID-19. Siddiqui et al. [6] reported a total of 46%

reduction in average NO2 values and 27% improvement in

(Air Quality Index) AQI values over the eight cities of

India due to COVID-19 driven lockdown. However, a

complete study on the effect of COVID-19 driven lock-

down on air pollutants, AQI, and ER% is lacking particu-

larly for Haryana, India, though required on an urgent basis

looking at the lethality of disease (a total of 6% of global

deaths in India till 22 April 2021, and Haryana is among

the most affected states) possibly due to the consistent high

pollution level [1, 6, 27–29]. Aerosol Optical Depth (AOD)

which is a key parameter of air quality (which indicates

column integrated particulate matters) gets reduced in

response to COVID-driven lockdown [26]. Similarly AQI

is a range of index values that indicates the air quality

(Good = 0–50, Satisfactory = 51–100, Moder-

ate = 101–200, Poor = 201–300, Very Poor = 301–400,

and Severe = 401–500) of a location or region significantly

get reduces during lockdown [30]. ER% which is the

excess health risk associated with the pollutants level

excess than the standard concentration [5, 28] also gets

reduces in response to lockdown. Since the values of air

pollutants, AQI, and ER% have been identified as one of

the serious threat to human health (9 out of 10 people

breathe air containing high levels of pollutants, 7 million

deaths annually, and 12.5% of the total deaths worldwide),

and environment at global and local scale [24, 31–35] their

reduction may reduce the health risk and improve the

environmental quality. It is also reported that the areas with

high air pollution levels were found to be affected more

with COVID-19 and its severity [6, 29]. Thus, it is the need

to identify the hotspot of air pollution and take necessary

actions to combat it on an urgent basis, so that the risk of

COVID-19 like diseases may be reduced in the future

[17–19, 36].

Ground-based monitoring stations provide data for the

assessment of pollution level and its hotspot. Setting up

ground-based stations with the capability to measure these

criteria pollutants require huge maintenance, operating

manpower, and a huge amount of money which is not

realistic at least in Indian conditions [1]. Thus, it is required

to use low-cost technologies and surrogate variables like

AOD from satellite that can provide relevant information

about air pollution and pollutant level for further AQI and

ER% assessment. Satellite-based assessment of air quality

parameters (such as AOD, PM2.5, PM10, SO2, NO2, CO,

and CH4) is found to be a potential way of regular and cost-

effective monitoring of these pollutants at a spatial scale

[1, 4, 6, 37–39].

The goal of reducing pollutant levels by 20 to 30% till

2024 (as decided in National Clean Air Programme,

NCAP) from its base year 2017 was observed to be a tough

task, looking into the requirement of economic growth and

industrialization. However, COVID-19 driven lockdown

has shown glimpses of reduced air pollution in 2020

worldwide, including India [4, 6, 11–15, 25, 26]. Though,

the assessment of effect of COVID-19 driven lockdown on

air quality both at global [11] and regional

[4, 6, 11–15, 25, 26] scale taking ground [5, 15] and

satellite-based [4, 6, 12] observations are available, no

study reported the satellite-based AQI and ER% assess-

ment over any region of the globe and over the Indian

region (Haryana) in particular. Furthermore, there is no

reported study for the validations of Sentinel-5P satellite-

based pollutant products concerning ground observations

which gives novelty to the current work. We compared the

satellite-based concentrations of various air pollutants/

indicators including AOD, PM2.5, PM10, SO2, NO2, CO,

and CH4 in the month of April 2019 (no lockdown) and

2020 (completely falling within the strict lockdown period

in India) to understand the effect of lockdown on the

concentrations of these pollutants/indicators. The study is

taken up with the following key objects: (1) Validation of

satellite-derived air pollutants using ground-based obser-

vations, (2) Assessment of the state of air pollutants using

these validated satellite-based measurements, (3) Utilisa-

tion of these measurements for the assessment of AQI and

ER%.

2 Method

2.1 Study area

The study area (Haryana state) is situated in the northern

part of India and bounded within the latitude of

27.64258158 to 30.90568992 and longitude of

74.46724953 to 77.53797611 (Fig. 1). The geographical

area of the state is 44,212 km2 with a total population of

25,350,000. Haryana has two major physiographic regions:

(a) the flat alluvial plain covering most of the state and

(b) a strip of the highly dissected Shiwalik range in the

North-East (including the narrow foothill zone). The Har-

yana state falls in the Indo-Gangetic region which is always

high in air pollutant concentration level [6, 31, 40–43].
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2.2 Method in brief

For this study, the two phase methodology was adopted.

PM estimation is being done (through a regression analysis

using Ground-based PM and Satellite-based AOD) in the

first phase, and AQI and ER% were generated (over Har-

yana through the validated Sentinel-5P pollution products

including NO2, SO2, CO, and CH4 and estimated PM) in

the second phase. Two times data (Table 1) were selected

based on COVID-19 driven strict lockdown i.e. during

(April 2020) and prior to this (April 2019).

The satellite-based pollutant concentrations were vali-

dated with respect to ground-based pollutant concentra-

tions at 23 stations. After confirmation of the accuracy of

satellite-derived pollutant parameters, the impact of

COVID-19 driven lockdown were assessed taking the %

difference into the consideration. Further, AQI were esti-

mated, using these pollutants parameters (PM2.5, PM10,

SO2, NO2 and CO) and a model suggested by CPCB for

each cell of 3 9 3 km spatial resolution in ArcGIS 10.6

desktop software. The ER% was also estimated in the same

fashion by using existing models [5]. The impacts of

COVID-19 driven lockdown were assessed both for AQI

and ER% at the final stage taking % difference into the

consideration. Final maps were prepared in ArcGIS 10.6

desktop software. The step-wise method is summarised in

Fig. 2.

2.2.1 Satellite data processing and validation

2.2.1.1 Processing MODIS AOD product was down-

loaded from National Aeronautic Space Administration

(NASA) Earth explorer web site and pre-processed using

MODIS MT tool kit. The pre-processed data were used for

statistical analysis and comparison before (April, 2019) and

during (April, 2020) lockdown period. Differences

obtained in AOD due to COVID-19 driven lockdown was

tested with t-test (both one and two tailed at p = 0.05). The

validated products of MODIS were used for the prediction

of Particulate Matter (PM) concentration.

Fig. 1 Study Area representing

the state of Haryana
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Sentinel 5P data from TROPOMI were processed using

SNAP tool. Data spanning from 1 to 30 April were

downloaded for two years i.e. 2019 and 2020 on a daily

basis. An average were then made for whole month and

compared. Values of satellite-based pollutants (SO2, NO2

and CO) were extracted for each of the ground stations and

Table 1 Characteristics of datasets used in the current study

Data used Sensors/medium Algorithm Spatial

resolution

Spectral regions Swath References

AOD-Level-2

MODIS/Terra

(MYD04)

Moderate Resolution

Imaging

Spectroradiometer

(MODIS)

dark target retrieval

algorithm Collection-6

3 9 3 km 36 spectral bands between

0.405 lm to 14.385 lm
2330 km [49–52]

Sentinel-5

Precursor (S-

5P)

TROPOspheric

Monitoring

Instrument

(TROPOMI)

Differential Optical

Absorption Spectroscopy

(DOAS) algorithm, and

slant column density

(SCD) using log-ratio of

the observed UV–visible

spectrum

7 9 7 km

at nadir

Ultraviolet (270–320 nm),

the visible (320–490 nm),

the near-infrared

(710–775 nm) and the

shortwave infrared

(2305–2385 nm) (2

spectral bands in each

spectral range)

– [12, 52–55]

Ground-based

air pollutants

such as PM2.5,

PM10, SO2,

NO2 and CO,

and AOD

Ground station of

Central Pollution

Control Board

(CPCB), and

Aerosol Robotic

Network

(AERONET)

– 23 ground

stations

(Table 3)

Capable in measuring

PM2.5, PM10, SO2, NO2,

CO, and AOD

– [27, 56, 57]

Fig. 2 Flowchart of the methodology adopted in this study
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compared with average values of the ground-based pollu-

tants. Ground data for CH4 was missing and thus no vali-

dation was done for CH4.

2.2.1.2 Satellite data validation Satellite observations

from Sentinel-5P represent an aggregated concentration of

pollutants in the tropospheric column [44]. The major

problem in the validation of these pollution parameters is

their measurement unit which is in mol/m2, whereas

ground-based observations are provided in lg/m3. Similar

units are essentially required for the validation of the

satellite-based products from ground-based observations.

So unit conversion of the satellite data from mol/m2 to lg/
m3 is done initially. Firstly, we converted mol/m2 into the

part per billion (ppb), so to get an order of magnitude

estimate for the ppb value and further divided the values by

the height of the troposphere i.e. 10 km (0.1 mol/m2/

10 km =[ 0.00001 mol/m3). Then we use a gas concen-

tration converter to convert the unit from mol/m2 to mol/

m3. The whole concept may be summarised following the

arithmetic expressions (Eqs. 1–4) as suggested by [45, 46]:

0:1mol=m2 ¼ 224 ppb ð1Þ

For tropospheric column we have

0:1mol=m2

1 km
¼ 0:00001mol=m3 ð2Þ

From Eqs. (1) and (2), we have

0:00001mol=m3 ¼ 224 ppb ð3Þ

Now, further the methods for converting ppb into lg/m3

[45]:

lg=m3 ¼ ppb� 12:187� Mð Þ
27:15þ T �Cð Þ ð4Þ

where M = molecular mass (SO2 = 64, NO2 = 46, CO =

28 and CH4 = 16), T = Surface Temperature (which is

taken on average of April month as 32 �C), So putting

above value in Eq. 4, we have,

For SO2 1 ppb ¼ 2:556 lg=m3

For NO2 1 ppb ¼ 1:837 lg=m3

For CO 1 ppb ¼ 1:118 lg=m3

For CH4 1 ppb ¼ 0:639 lg=m3

The data was further normalised using KNN method as

suggested by [47].

For the ground data, the heterogeneity is quite high for

validation purposes. So to regularize the data, first, we have

to fill in the missing values, so as to have continuous data.

For that KNN method was used with a weighted average of

the nearest neighbour values. The Eq. (5) used for that is

mentioned below [47]:

ŷ ¼ f xð Þ ¼ 1

k

Xk

j¼1

yij ð5Þ

where ŷ = predicted value for the missing values, yi = real

valued target as training data for ith observation, k = KNN

scale factor.

After the filling of the missing value, the data was ready

for validation. This has also been suggested that a process

called scaling may provide more reliable results for vali-

dation. Thus, the Scaling was performed using the method

suggested by Patro and Sahu [48] however, the final results

were presented with normalized data only to maintain the

consistency of the units of the pollution parameters. For the

validation we have used correlation method in R software

(R 4.0.5 for Windows). Correlation is a bivariate analysis

that measures the strength of association between two

variables and the direction of the relationship. Ground data

from 23 ground stations and relative point value depicted

from satellites are taken as input data.

2.2.2 Assessment of impact of COVID-19 on air pollutants

Satellite-based pollutant concentration for PM2.5, PM10,

SO2, NO2, CO and CH4 were obtained for the April month

for the year 2019 and 2020 at each ground station. Further,

the significance of differences obtained in the pollutant

concentration at each station were tested using t-signifi-

cance test in microsoft excel for conforming our null

hypothesis. Average of all the locations were then esti-

mated for concluding the over all reduction in the pollutant

concentration over the study area due to COVID-19 driven

lockdown. District-wise statistics was also estimated for

the assessment of impact of COVID-19 driven lockdown

on average concentration of pollutants at district-level.

2.2.3 Calculation of air quality index (AQI)

Standard model suggested by CPCB [30] has been used for

the calculation of AQI. The criteria pollutants from satellite

based measurements including PM2.5, PM10, SO2, NO2 and

CO were used for AQI estimation. The average pollutant

concentration at each location (23 representing districts of

the Haryana) were collected from satellite data only and

subjected to the criteria set by CPCB for Indian conditions.

The AQI of the year 2019 for each station were then

compared with the respective AQI of the year 2020 and

differences were tested using t-test of significance. The

formula used for AQI is presented as Eq. 7 [30]:
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AQI ¼
Xn

1

max
IHI�ILO

BHI�BLO

� ðCP � BLOÞ þ ILO

� �

1...n

ð6Þ

where IHI = AQI Value Corresponding of the BHI, BHI-

= Greater Breakdown Concentration, ILO = AQI Value

Corresponding of the BLO, BLO = Smaller Breakdown

Concentration, Cp = Concentration of Pollutant,

1…n = Pollutants taken.

Similar criteria [i.e. 30] were used for the spatial map-

ping of AQI. The sentinel-5P data were resampled to a grid

of 3 9 3 km spatial resolution from its original 7 9 7 km

using the nearest neighbour method so that it can be pro-

cessed with the MODIS-derived PM2.5 and PM10. Each

grid of 3 9 3 km for all the criteria parameters (including

PM2.5, PM10, SO2, NO2, and CO) was then used for the

AQI calculation after their conversion to a point feature.

The estimated AQI associated with point feature were then

converted to a surface of 3 9 3 km spatial resolution using

Kriging interpolation techniques as suggested by Saniei

et al. [49].

2.2.4 Calculation of ER%

The ER% is an indicator of health risk and originates due to

an increase in air pollution level or increase in the value of

AQI. The estimation of ER% is a two-step process, where

the first step includes the calculation of relative risk

(RR%), and the second step involves the estimation of

ER% [5, 31] following Eqs. 7, 8, and 9.

RRi ¼ exp bi Ci � Ci;0

� �� �
; Ci [Ci;0 ð7Þ

ERi ¼ RRi�1 ð8Þ

ERtotal ¼
Xn

i¼1

ERi ð9Þ

where RRi is the Relative Risk of pollutant i, bi is the

exposure–response coefficient of additional health risk

(Such as mortality) caused by per unit of pollutant i, when

it exceeds a threshold concentration (0.038, 0.032, 0.13,

3.7, and 0.081 for PM2.5, PM10, NO2, CO, and SO2

respectively). Ci is the concentration of the pollutant i and

Ci,0 is the threshold concentration ((35, 50, 40, 2, and 50

for PM2.5, PM10, NO2, CO, and SO2 respectively) of pol-

lutant (when threshold concentration of pollutant is less

than the pollutant concentration then the relative risk is

greater than 0). ERi is the excess risk for individual pol-

lutants and ERtotal is the excess risk associated with all the

pollutants. The spatial mapping of ER% was done with a

similar process as adopted for the AQI in this study.

3 Results and discussion

Satellite-based air quality assessments in terms of pollutant

concentrations, AQI, and ER%, were done using satellite

measurements in COVID-19 (April 2020) and NON-

COVID (April 2019) scenarios over Haryana, situated in

the Northern part of India. The selection of period was

done, with the assumption, that the COVID-19 driven

lockdown would have resulted in the reduction of pollutant

level in the study area as reported for other parts of the

world [9, 14, 15, 18, 19, 25, 26]. Validation showed a high

correlation between satellites measured concentration of air

pollutants with that of ground-based pollutants (r2 =[ 0.5,

p = 0.00). This indicates the potential of satellite-based

products for regular air quality monitoring and ER%

assessment. Our findings regarding the reduction in air

pollution concentration due to COVID-19 driven lockdown

were consistent with Ranja et al. [4], Sharma et al. [5],

Siddiqui et al. [6], Sur et al. [12], and Singh and Nanda

[27], among others. Objective-wise descriptions of results

are described in forthcoming sections.

3.1 Validation of satellite derived pollutants

The validation results are presented in Fig. 3a–f and

Table 2 respectively, for AOD, PM2.5, PM10, SO2, NO2,

and CO. Validation for CH4 could not be done due to the

lack of ground data related to CH4. Results showed con-

sistently significant agreement between satellite-derived

pollutants and ground-based pollutants.

3.2 Variation in satellite based air pollutants

in response to lockdown

Variations in the concentration of air pollutants are pre-

sented in Fig. 4a–g. State-level statistics for all the Pollu-

tants for 2019 and 2020 are presented in Table 4 and a

decrease/increase in the concentrations (as a result of

COVID-19 driven lockdown) is presented in Table 5.

Pollutant-wise concentration variations are described in

forthcoming sub-sections.

3.2.1 AOD variations

AOD is an indicator of air pollution. Industrial activities,

transport, and biomass burning along with the natural dusty

air current from the desert are the central sources of AOD

over the study area. The AOD showed varying patterns

over Haryana (Fig. 4a). The AOD for April month were

ranging from 0 to 1.35 for both 2019 to 2020. Relatively

high AOD were obtained in the National Capital Region

(NCR) districts of Haryana for both years [27]. However,
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in the year of lockdown, the AOD concentration was very

less as compared to the AOD concentration in 2019

(Fig. 4a).

The average AOD in the April month of the year 2019

was 0.626 ± 0.07 with a minimum of 0.073 (in Mahen-

dragarh district) and a maximum of 0.947 (in Kaithal dis-

trict). The average AOD in the same month of the year

2020 during lockdown was 0.386 ± 0.058 with a minimum

- 0.05 (in Bhiwani district) and a maximum of 0.651 (in

Sonipat district). Both the average and standard deviation

Fig. 3 Scatter plots for the validation of satellite derived parameters

with ground measurements during April 2019 and 2020: a AOD

(2016–2019, Goswami et al., 2020, Red dots presents Amity

University, Gurgram and Blue dots presentsGual Pahari, Gurgram

Locations), b PM2.5, c PM10, d SO2, e NO2, f CO

Table 2 Validation of satellite derived pollution parameters

Pollutant R R2 p value df t-value SE

AOD 0.91 0.83 2.2e-16 � 0 85 20.235 0.03311

PM2.5 0.90 0.82 2.2e-16 � 0 42 20.692 0.04914

PM10 0.95 0.90 2.2e-16 � 0 43 26.399 0.03774

SO2 0.73 0.53 1.3e-08 � 0 43 6.9858 0.10382

NO2 0.81 0.66 1.1e-11 � 0 43 9.1841 0.09434

CO 0.80 0.65 4.1e-12 � 0 45 9.3479 0.104313
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(SD) were less during the lockdown period, and the aver-

age was significantly reduced (p = 0.05), showing the

reduced level of pollutant gasses in the atmosphere during

the lockdown. A total of 38% decrease was observed in

average AOD due to COVID-19 lockdown (Table 3).

High AOD concentration over Haryana is attributed to

the contribution of agriculture practices, crop residue

Fig. 4 Spatial varition in average conectartion of pollutants during April 2019 (left), and 2020 (right): a AOD, b PM2.5, c PM10, d SO2, e NO2,
f CO, g CH4
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burning, vehicular pollution, and natural dusty wind,

among others [4, 27, 28]. The range of previous year AOD

and mean concentration of last four years (also reported in

another study by Goswami and Singh [56]) were higher

than the current year. However, in 2020, the AOD

decreased by 38% as compared to the previous year.

Similar results have been reported by Ranjan et al. over

Indian region [4]. The low AOD values are attributed due

to the COVID-19 driven lockdown. Reduced vehicle

movement, reduced agriculture practices, and reduced

burning of biomass have created the total decrease in AOD

[4, 27]. Our findings show consistency with Ranjan et al.

[4], Sharma et al. [5], and Singh and Nanda [27].

3.2.2 PM2.5 and PM10 variation

The PM2.5 was ranging from 17.34 to 129.6 lg/m3. PM2.5

concentration was found to be higher during April 2019 as

compared to April 2020 (Fig. 4b). The average concen-

tration of the PM2.5 for the year 2019 (without lockdown)

was 106 ± 4.527 lg/m3. At the same time, the PM2.5

concentration for the year 2020 (during lockdown) was

47.5 ± 1.64 lg/m3. This showed a total of 55% reduction

in the level of PM2.5 due to lockdown (Table 4). Faridabad

was found to be with high PM2.5 concentration.

Satellite-based PM10 showed high agreement with

ground-based data, similar to other studies of [1, 29]. The

PM10 was ranging from 48.29 to 372.45 lg/m3. The PM10

concentration was found to be higher during April 2019 as

compared to the concentration of PM10 in April 2020

(Fig. 4c). The average concentration of the PM10 for the

April month of the year 2019 (without lockdown) was

283 ± 8.5 lg/m3. At the same time, the PM10 concentra-

tion for the April month of the year 2020 (during lock-

down) was 109.5 ± 3.6 lg/m3. This showed a total of 61%

reduction in the level of PM10 due to lockdown (Table 4).

The PM10 concentration was found to be very high over the

Faridabad area in the year 2019.

PM2.5 and PM10 showed a 55% and 61% decrease in

concentration due to lockdown. Similar reduction in the

PM2.5 and PM10 were observed in Baghdad [9], Malaysia

[19], South America [17], and China [26] among others.

The major source of PM2.5 and PM10 in this region is the

natural dusty wind, vehicle emissions, industrial emissions,

Table 3 State of air pollutants over various stations

Pollutants during April 2019/2020 in lg/m3 except for AOD (which is unit less) and CO (mg/m3)

Location name AOD PM2.5 PM10 SO2 NO2 CO CH4

Rohtak 0.57/0.38 82.97/43.11 199.60/100.59 23.7/17.8 22.86/14.47 0.90/0.88 889.34/867.56

Faridabad 0.60/0.37 106.41/46.59 283.26/108.17 23.1/18.1 24.06/35.85 1.08/0.91 905.39/903.22

Yamunanagar 0.45/0.27 80.25/42.23 197.94/94.27 20.4/11.5 19.76/19.03 0.98/0.90 881.77/874.94

Charkhi Dadri 0.41/0.24 74.43/44.91 189.45/98.32 23.5/18.1 23.22/16.96 0.91/0.88 899.61/890.89

Hisar 0.47/0.34 79.31/44.50 198.43/101.59 33.2/13.8 19.25/15.40 0.91/0.89 894.31/887.79

Jind 0.52/0.37 79.89/43.57 197.27/99.94 24.1/20.8 19.15/13.46 0.89/0.88 877.13/874.01

Palwal 0.60/0.39 91.24/47.00 219.19/109.53 21.8/22.3 23.47/21.00 0.95/0.93 907.06/899.30

Kaithal 0.54/0.33 79.95/41.84 193.73/95.48 22.1/14.6 18.83/13.70 0.91/0.88 881.45/875.93

Karnal 0.62/0.32 77.34/43.58 191.45/102.82 18.0/18.3 20.24/16.71 0.97/0.90 883.59/876.90

Gurgaon 0.50/0.31 90.20/47.47 230.71/103.71 21.5/13.4 24.19/27.18 0.96/0.88 903.66/895.32

Bhiwani 0.42/0.25 76.98/42.38 191.09/98.92 28.2/14.5 19.93/15.19 0.92/0.87 900.45/896.68

Mahendergarh 0.28/0.14 75.49/43.15 203.38/97.69 31.3/18.8 19.65/18.56 0.92/0.86 896.43/894.66

Kurukshetra 0.54/0.30 75.83/42.24 192.10/94.40 24.1/16.5 18.90/17.34 1.00/0.92 886.88/876.46

Panchkula 0.33/0.22 64.88/35.31 182.63/88.24 24.1/14.5 12.59/16.03 0.87/0.82 860.87/858.16

Panipat 0.62/0.34 77.38/43.55 192.71/107.32 18.9/21.7 24.36/22.64 0.91/0.89 883.07/881.37

Mewat 0.43/0.25 80.75/43.44 209.79/100.16 17.1/14.3 22.44/21.31 0.96/0.90 907.13/903.90

Fatehbad 0.51/0.33 79.87/43.60 207.85/99.44 27.7/13.4 18.04/15.35 0.90/0.90 885.12/881.34

Sirsa 0.48/0.32 80.3/42.58 196.42/99.41 31.0/15.2 21.28/16.75 0.92/0.90 891.91/889.98

Sonipat 0.63/0.38 85.32/42.67 201.08/103.19 19.2/15.8 21.30/15.60 0.90/0.90 885.80/874.86

Rewari 0.42/0.18 78.28/45.31 204.64/94.92 22.9/16.5 23.63/19.29 0.94/0.88 901.72/899.91

Jhajjar 0.52/0.35 82.18/47.40 198.59/100.55 24.2/18.9 24.73/22.71 0.92/0.87 899.36/892.45

Ambala 0.44/0.27 73.37/40.95 190.61/92.03 22.4/13.5 18.86/18.36 0.96/0.90 884.44/876.87

Average 0.49/0.30 80.57/43.52 203.27/99.58 23.7/16.5 20.94/18.77 0.93/0.89 891.20/885.11
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and stubble burning [10, 27, 28]. The districts that fall in

the NCR region (i.e. Faridabad, Gurugram, Jhajjar, and

Sonipat) showed high PM2.5 values even in the lockdown

scenario [27]. This may be due to the limited movement of

vehicles in these regions along with agriculture residue

burning which is prevalent during this period in normal

years.

3.2.3 SO2 variation

SO2 were found to be consistently higher and spatially

variable in non-COVID scenario i.e. in the April month of

the year 2019, as compared to April 2020 (Fig. 4d). The

effect of COVID-19 driven lockdown on SO2 concentra-

tion was seen in the form of a reduction of 31%. The

average SO2 in the April month of the year 2019 was

23.7 ± 7.85 (lg/m3) and for April 2020 it was 16.5 ± 7.03

(lg/m3).

A significant reduction of 31% (p = 0.00) was observed

in SO2 over the region, during COVID-19 scenario. The

reduction is attributed to the lockdown as most of the

industrial activities, vehicular movements, and Brick cline

operations were stopped during COVID-19. Similar

reductions (19.51%) in the SO2 concentration were

observed over South and South East Asian region due to

lockdown amid COVID-19 [20].

3.2.4 NO2 variation

NO2 was also found to be higher in the non-COVID sce-

nario (Fig. 4e). The NO2 values were ranging from 20.02

(lg/m3) to 61.14 (lg/m3) with an average 20.94 ± 3.75

(lg/m3) for April 2019 which get reduced by 10% to reach

an average of 18.77 ± 3.93 (lg/m3) for April 2020. The

difference in mean concentration was significant

(p = 0.05).

NO2 also showed a decrease in concentration and results

were following other studies from across the world such as

Siddiqui et al. and Sur et al. [6, 12] in India, Dantas et al.

[13] in Brazil, Brimblecombe and Lai [21] in China, and

Jephcote et al. [22] in United Kingdom (UK). Though the

decrease in NO2 concentration was significant (p = 0.05), it

decreased less as compared to other pollutants (except CO

and CH4). This may be attributed due to the vehicle

movements in local areas [22] for the distribution of

facilities to the migrants and low-income group peoples.

3.2.5 CO variation

CO mainly originates from the incomplete combustion of

fossil fuel. The spatial distribution of CO concentration

was found to be decreasing in the year 2020 (Fig. 4f).

Spatial statistics at the district level show a 5% decrease

(Tables 4 and 5). Gurugram, Faridabad, and districts near

Yamunanagar were having very high CO concentration in

April 2019 which gets reduced in the COVID-19 scenario.

CO showed a decrease in concentration by 5% in the

strict lockdown scenario. CO was found to be high in the

Faridabad district during April month of the year 2019

which get significantly reduced in the April month of the

year 2020 by 15%. A similar decrease was observed in the

northern districts (Karnal, Kurukshetra, Ambala, and

Yamunanagar) of the state. The industrial operations were

closed during the COVID-19 lockdown and thus decrease

in the pollution level was observed similar to the others

Table 4 Statistics of pollutant concentration over Haryana in the

month April 2019 and 2020

Parameter# Year Min Max Mean STD

AOD** 2019 0.073 0.947 0.626 0.074

2020 - 0.050 0.651 0.386 0.058

PM2.5** 2019 41.554 129.612 106.413 4.527

2020 17.345 59.204 47.467 1.647

PM10** 2019 141.773 372.449 283.264 8.524

2020 48.290 145.250 109.531 3.559

SO2** 2019 0.00 110.55 23.73 7.85

2020 0.00 80.73 16.52 7.03

NO2* 2019 20.02 61.14 20.94 3.75

2020 27.49 49.02 18.77 3.93

CO** 2019 0.82 1.04 0.93 0.04

2020 0.83 0.94 0.89 0.02

CH4* 2019 871.23 904.30 891.20 6.82

2020 853.79 902.42 885.11 9.77

#All the variable unit is in lg/m3 except for CO which is measured in

mg/m3

Parameters* = means difference before and during COVID-19 are

significant at p = 0.05, Parameters** = means of before and during

COVID-19 are significant at p = 0.00

Table 5 Decrease in Air

pollutants, AQI and ER% due to

COVID-19

Year AOD PM2.5 PM10 SO2 NO2 CO CH4 AQI ER%

2019 0.63 106.41 283.26 23.7 20.94 0.93 891.20 176.02 6.78

2020 0.39 47.47 109.53 16.5 18.77 0.89 885.11 98.86 1.94

Difference 0.24 58.95 173.73 7.2 2.18 0.05 6.09 77.16 4.84

%Decrease 38.36 55.39 61.33 30.69 10.39 5.09 0.1 43.83 71.37
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[21]. The decrease in the CO was actual with high confi-

dence at p\ 0.00. Further, coal burning in the street

restaurant and stubble burning in the open field has also

reduced due to COVID-19 driven lockdown, which further

reduces the CO concentration over these regions.

3.2.6 CH4 variation

CH4 concentration was consistent during the lockdown

period at the district level statistics. However, spatial dis-

tribution showed higher CH4 concentration in non-COVID

scenario i.e. in the year 2019, especially in Gurugram,

Faridabad, and Palwal region. Southern portions were

found to be with high CH4 concentration (Fig. 4g). Only a

Fig. 5 AQI for the month of April, a 2019, and b 2020

Fig. 6 ER% for the month of April, a 2019, and b 2020
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1% decrease was observed in CH4 due to COVID-driven

lockdown.

CH4 concentration was consistent and a minor reduction

(1%) was observed. The southern part of the state had

shown high CH4 in both years. The high concentration of

CH4 over southern-districts may be due to emission from

higher livestock populations in the southern part of the

Haryana, low-lying wet areas, and prevailing wind direc-

tion from North (Paddy belt) to South. Small differences in

CH4 during April lockdown may also be attributed to the

missing data in the year 2020.

3.3 Impact of COVID-19 on AQI and ER%

Significant reduction in the AQI and ER% were observed

(Figs. 5, 6). Impact of COVID-19 on AQI (Fig. 5a, b) was

seen in the form of reduced values and improved air quality

in the April month of the year 2020 (Fig. 5b) as compared

to April 2019 (Fig. 5a). The average AQI was 176 in the

April month of the year 2019 while 99 in April 2020. At

the district level, the AQI was moderate to unhealthy (for

sensitive groups) (Figs. 5a, b, 7a). However, the AQI was

consistently higher ([ 150) for all the districts in the non-

COVID scenario (year, 2019) and at a low to moderate

level, i.e.\ 100 during the lockdown phase.

All the districts have shown a considerable decrease in

the ER% due to lockdown amid COVID-19 (Figs. 6a, b,

7b). Overall, ER% in the state get significantly reduced

(p = 0.00). We have also observed a hotspot over the

Faridabad district, which is an industrial area. High ER%

was also observed for Fatehabad, Mahendragarh, and

Fig. 7 District-wise, a AQI, and b ER%, for entire Haryana, before (blue bars) and during (red bars) COVID-19 lockdown
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Yamunanagar districts during April 2019. However, the

same was not observed for April 2020.

Interestingly, the areas with industries have shown rel-

atively high ER% during the year 2020. This showed that

the industrial operations were not stopped during the

lockdown period and these areas serve as a hotspot of

pollution during lockdown which was otherwise not clear

in the year 2019. The AQI, as well as ER%, have shown a

gradual decrease i.e. 44% and 71% respectively during the

lockdown phase. As we can see in Fig. 6, the hotspot was

shown in the parts of Faridabad during April 2019 and

2020.

This part has been further visualised in Google Earth

and concluded that this area consists heavily of industry,

causing a release of the high volume of particulate matter

and other pollutants, due to which there is a hotspot of AQI

and ER% (Fig. 8). But still, during the lockdown, these

areas have shown a low scale of AQI and decreased con-

siderably from unhealthy to moderate level.

AQI completely based on satellite measured products

along with the estimation of ER% is the novelty of the

current work. A significant (p = 0.00) reduction (44%) in

the AQI values was observed due to the reduction in the

concentration of criteria pollutants. Our findings were

consistent with the [5, 9, 20]. Most of the region comes

near to the satisfactory level of AQI as per the Government

norms during the lockdown. Improvement in AQI and

ER% was observed in all the districts due to reduced

industrial operations, agriculture practices like residue

burning, and transport activities as a result of COVID-19

driven lockdown enforcement [1, 5, 6, 9, 10, 14, 17].

This analysis showed the industrial pollution was pre-

vailing during the lockdown and highlighted the places of

industrial operations even in lockdown enforcement con-

ditions. The method proposed in this work is having global

importance and can be applied for the regular monitoring

of satellite-based AQI and ER% as both the parameters are

in high agreement with ground-based estimates.

Fig. 8 AQI hotspot visible during lockdown period associated with industries in these areas. The industries showed are only representative and

the contribution of other sources/industries is combined
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3.4 Validation of AQI and ER%

We have also validated satellite-based AQI and ER% with

ground-based AQI and ER%. A very high correlation was

observed between satellite-based AQI and ground-based

AQI. The validation results have shown a very good

agreement with r2[ 0.88 and 0.94 for AQI and ER%. The

Root Mean Square Error (RMSE) for AQI was 23.05 and

for ER% it was 1.12. The correlation plots are presented in

Fig. 9a, b.

4 Conclusions

Based on the analysis of satellite derived air pollutants,

AQI, and ER% for April 2019 (non-COVID) and 2020

(with COVID), over Haryana state, India, some of the key

conclusions are drown. Significant differences in the con-

centration of almost all the pollutants were observed due to

COVID-19 driven lockdown measures. Highest decrease

was observed in PM10 followed by PM2.5, AOD, SO2, NO2,

CO, and CH4. Improved air quality (AQI) and Health Risk

(ER%) is also resulted from lockdown measures. Satellite

data showed a good agreement with ground observations

(r2[ 0.5 for all the pollutants). We consider AQI and ER%

assessment as an important aspect of our work, where we

have used only satellite derived parameters. Satellite-based

AQI showed high correlation and less error (r2 = 0.88, and

low RMSE of 23.05) with AQI estimated from ground-

based data. Significant reduction (44%) in AQI values

indicates the improvement of air quality of the study area

due to the COVID-19 driven lockdown, which is far better

than the decided limit (20–30%) of NCAP target. Simul-

taneously, the ER% derived from satellite-based data also

showed decrease of 71% with respected to the previous

year’s ER%. The currently identified ER% from satellite-

measured parameters showed a very good agreement with

ER% calculated from ground-based data with r2 0.93 and

RMSE 1.12. Satellite-based ER% assessed in this study is a

novel work and maybe up-scaled to the global scale. It may

be beneficial for the health management of the global

population.
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