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Abstract The saturation property of vegetation indices

posed a known limitation and this study was motivated to

understand the saturation property of three widely used

vegetation indices in mixed crop-forest ecosystem where

limited knowledge existed. Normalized Difference Vege-

tation Index (NDVI), Simple Ratio Index (SRI) and

Transformed Vegetation Index (TVI) were computed from

sentinel-2 bands and; variations among bands and among

vegetation indices were evaluated. The study employed

green Leaf Area Index (gLAI) Version 1 product, derived

from PROBA-V daily data for discriminating the saturation

property of the indices. Although the study applied various

methods of image preprocessing and processing, best curve

fitting and correlation analysis were the key ones. The three

vegetation indices: NDVI, SRI, and TVI computed from

sentinel-2 bands: four (red) and five (red edge) coupled

with bands 8 and 8a showed some levels of saturation.

Nonetheless, TVI computed from bands 8a and 4 is the best

outperforming combination, i.e., the least saturated one and

it is an interesting output in a sense that a single index with

significantly lower values of noise equivalent green Leaf

Area Index as well as having strong association with gLAI

is obtained that could be very useful for quantification of

gLAI in similar ecosystems. For the rest of the bands and

vegetation indices combination of the indices via setting

thresholds could be one possible solution.

Keywords Saturation � Vegetation indices � Green Leaf

Area Index � Biomass

1 Introduction

Remote sensing of vegetation is developed from the very

nature of spectral properties of vegetation, i.e. vegetation,

overall, exhibit strong absorption in the red band range

while higher reflectance in the near-infrared bandwidth.

Vegetation indices are used as proxies for understanding

temporal and spatial variations of vegetation structure and

density.

Though these proxies are used widely, they are associ-

ated with different problems and limitations. The saturation

nature of vegetation indices is one of the prominent

impediments which make them have little use, such as

leading to an underestimation of ecosystem productivity in

a highly vegetated or densely forested area. For example,

NDVI which is the most widely used vegetation index

yields poor estimates of vegetation productivity in areas

where there is 100% vegetation cover and during peak of

the season it is inadequate for showing important vegeta-

tion properties [1–5]. The most logical explanation behind

is that the red band (680 nm) strongly absorbs electro-

magnetic energy, represented by an exponential function

[1] and when canopy cover reaches 100%, the amount of

red light that can be absorbed by leaves reaches a peak

[1, 5] whereas, Near Infrared Reflectance (NIR) will

increase because an addition of leaves results in multiple

scattering [6]. In other words, for instance in crop fields,

while reflectance in the red region exhibits a nearly flat

response once the leaf area index (LAI) exceeds 2, the

near-infrared reflectance continues to respond significantly

to changes in moderate-to-high vegetation density (LAI
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from 2 to 6). The imbalance between a slight decrease in

the red and high NIR reflection results in a slight change in

the NDVI ratio, hence, yields a poor relationship with

biomass. In order to double the ratio, the NIR reflectance

should almost double to compensate for the slight change

in red reflectance, however, which is not always the case

[6].

As a response, various attempts have been made in

addressing this saturation problem that could be put within

three groups: mathematical improvement or modification

of the indices, comparison, selection and combined use of

less sensitive indices and the use of hyperspectral or red-

edge bands. The Wide Dynamic Range Vegetation Index

(WDRVI = (a * qNIR–qred)/(a*qNIR ? qred)), which is

a result of simple modification of NDVI, proposed, the

coefficient a (with values between 0.1 and 0.2) and it

increases the correlation with vegetation fraction by lin-

earizing the relationship in three crop canopies: wheat,

soybean, and maize. The approach resulted in more sen-

sitivity to moderate-to-high LAI (between 2 and 6) which

is at least three times greater than that of the NDVI, which

enables more robust characterization of crop physiological

and phenological characteristics [7].

Vegetation indices were combined taking into account

differences in the performance of various vegetation indi-

ces to vegetation density and the available bands in sen-

sors. For sensors with spectral bands having red and near-

infrared bands, NDVI combined with Simple Ratio (RVI)

resulted in the best combination for maize though such

combination is species-specific. Red-edge NDVI and

Chlorophyll Red edge (CIred-edge) is recommended for

sensors having bands with red-edge and near-infrared

regions [8]. Using RapidEye images three improved indi-

ces namely NDVIred&RE (red and red-edge NDVI),

MSRred&RE (red and red-edge MSR index), and CIred&RE

(red and red-edge CI) were developed that combined red

and red–edge bands; and these indices compared to exist-

ing indices proved to be powerful alternative for LAI

estimation of crops with wide chlorophyll range [9].The

combined use of NDVI with RVI was also developed after

the relationship between NDVI and the ratio vegetation

index (RVI) at high NDVI values was assessed. And it

produced an empirical equation for estimating saturation-

adjusted NDVI based on RVI in cornfields that enable

better prediction of actual vegetation conditions [10].

Unlike the few numbers of bands in multispectral sen-

sors which are often broad band, hyperspectral sensors

offer possibilities of discriminating vegetation indices

based on narrow bands in the whole electromagnetic

spectrum (350–2500 nm). Many studies acknowledged the

importance of narrow-band vegetation indices for estima-

tion of forest canopy LAI [11–15]. Narrow bands placed in

the red edge (680–750 nm) region influenced plant

properties, such as canopy biomass and leaf chlorophyll

content. The point of maximum slope on the red infrared

curve referred to as a red edge position is found to be

sensitive to biomass variations for green vegetation in

contrast to senescing vegetation and hence less susceptible

to saturation problem [3, 16]. Three methods: NN, PLS and

VI were implemented to find informative spectral bands

retained for LAI estimation using hyperspectral reflectance.

The study took 8 years of observations and results showed

that red edge and NIR bands were found to be the most

informative [17].

In a study that employs the narrow bands of Hyperion

imagery, three major regions have been identified showing

the strongest relationship with LAI and namely far-red and

red edge (680–740 nm), NIR (885–1134 nm) and SWIR

(1639–1790 nm) [18]. Applying a linear model the best

narrowband combinations in the boreal forest area revealed

an R2[ 0.65 and much higher R2[ 0.85 value for a

coniferous forest. Considering the placement of the bands’

narrow spectral bands close to the water absorption regions

are uniquely useful for estimating LAI. The usefulness of

the red edge position (REP) for LAI estimation is associ-

ated with the sensitiveness of the REP to leaf and chloro-

phyll content. That is an increase in the amount of

chlorophyll or LAI is related to the longer REP wavelength

due to the widening of the chlorophyll absorption region at

approximately 680 nm [19, 20]. On the other hand, con-

trasting to SWIR spectral bands, the far-red and red edge is

sensitive to species composition, displaying poor relation-

ships over mixed vegetation. Overall, although repeated

studies are asserting the importance of red edge and SWIR

spectral region, the specific spectral bands providing the

strongest relationship with LAI varied across studies [18].

Narrow multispectral bands (400–800 nm and 10 cm res-

olution) from Unmanned Area Vehicle (UAV) successfully

estimated LAI using a modified triangular vegetation index

(MTVI2) with calibrated and validated R2 of 0.79 and 0.8

respectively in wheat crop [21].

Most of the existing studies on the saturation nature of

vegetation indices have focused on crops and understand-

ing in other vegetation types such as forest and grassland

owing unique characteristics in terms of productivity are

presumably unaddressed [8]. In the meantime, the recently

available remote sensing sensor sentinel-2, which is

designed and developed with much promise in vegetation

studies, came up with three red-edge bands, one red band,

two near-infrared bands, and two shortwave infrared bands.

In this regard, outputs from very recent studies addressed

an estimation of biophysical parameters using simulated

and real sentinel-2 data. For instance, simulated sentinel-2

data was applied for estimation of canopy chlorophyll

content (CCC), fraction of photosynthetically active radi-

ation absorbed by the vegetation canopy (FAPAR), and
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fraction of photosynthetically active radiation absorbed

only by its photosynthesizing components (GFAPAR) in a

dynamic subalpine grassland ecosystem [22]. The combi-

nation of sentinel-2A with sentinel-1A was applied for high

spatial–temporal decametric LAI estimates. For rice fields,

LAI estimates were attained by inverting the PROSAIL

radiative transfer model with gaussian regression [23]. A

very recent study by [24] produced a novel index called

SeLI for estimation of gLAI using sentinel-2 bands; and it

was implemented using a multi-crop dataset. LAI, by using

weighted difference vegetation index could be estimated at

a level of R2 of 0.809 using band 4 with 10 m spatial

resolution of sentinel-2 that implying the avoidance of the

use of the red-edge bands with 20 m spatial resolution [25]

but the study didn’t evaluate the red-edge bands.

Nonetheless, apart from the few studies, in general,

understanding the saturation properties of sentinel-2 bands

as the data availability is relatively recent is yet an open

area with much-expected progress ahead to fully appreciate

the real capability and implement practical methods for

estimation of biophysical parameters using real sentinel-2

bands. Therefore, this study is primarily motivated for

understanding the sensitivity of the narrow bands of sen-

tinel-2 with respect to saturation in the mixed crop-forest

ecosystem. And it is also original in performing the inter-

band variation of the multispectral bands of sentinel-2 in

light of explicitly explaining saturation properties. The

selection of a mixed ecosystem is purposive as the maxi-

mum green leaf area index is obtained often in the highly

forested area while crop areas represent low values and

hence placing the study in a mixed agricultural-forest

ecosystem enables understanding the full saturation char-

acteristics of the bands. Accordingly, this paper evaluates

the saturation nature of three widely applied vegetation

indices calculated from bands of sentinel-2.

2 Materials and methods

2.1 Study area

The study site is located in two adjacent crop and forest

ecosystems in southeastern Ethiopia. The forest has area

coverage of 2671 km2 and an average elevation of 2101-

masl located within Harenna Forest of the Bale Mountains

National Park. The cropland, which is placed in weredas of

Arsi-Bale districts, is widely known as part of the highly

productive wheat belt of Ethiopia. The cropland covers an

area of 590 km2 with an average altitude of 2448 masl

(Fig. 1).

2.2 Data

This study used the sentinel-2 imagery and Leaf Area

Index (LAI) product; hence, to suit intercomparison,

equivalent products from the two sensors were collected at

similar or close days. Imageries and products were acces-

sed for a specific geographic area and for four time periods

(Table 1) so that comparison results will be more reason-

able accounting temporal variations.

LAI product used in this study is obtained from the

Copernicus Global Land Service (CGLS) Leaf Area Index

(LAI) Version 1 product, derived from PROBA-V daily

data having 300 m spatial resolution. It is a 30-days

composite, updated every 10 days using a moving window.

The PROBA-V LAI Version 1 is derived from the SPOT/

VGT-like Top of Atmosphere (TOA) PROBA-V reflec-

tance in three VNIR spectral bands (B0 (blue), B2 (Red),

B3 (NIR)) generated by the PROBA2VGT module. The

retrieval methodology is described in [26].

The use of this product is said to have some limitations,

notably, the collection 300 m Version 1 product is not

accurate over the wetlands and can provide unrealistic

values over water areas. This is explained by the fact that

the MODIS products and the CYCLOPES products used to

train the neural networks do not perform well over such

surfaces. Nonetheless, the accuracy assessments of

PROBA-V LAI product at 300 m spatial resolution over

Europe have shown a good overall quality with good

spatial and temporal consistency. No major issues were

detected, except by the low precision of the NRT guess

[27].

2.3 Image preprocessing and processing

Six bands of sentinel-2 including Band 4 (central wave-

length (CW) of 0.665 lm, bandwidth (BW) of 30 nm),

Band 5 (CW = 0.705 lm, BW = 15 nm), Band 6 (CW =

0.740 lm, BW = 15 nm), Band 7 (CW = 0.783 lm,

BW = 20 nm), Band 8 (CW = 0.842, BW = 115 nm) and

Band 8A (CW = 0.865 lm, BW = 20 nm used for stack-

ing. As the study uses images from different platforms and

involves cross-comparison study, for valid geometrical

accuracy, image to image registration between inter-sen-

sors was conducted. Then, a subset of images was imple-

mented for all of the three sensors.

Three vegetation indices namely Normalized Difference

Vegetation Index (NDVI) or a generic Normalized Dif-

ference Index (NDI), Simple Ratio (SRI) and Transformed

Vegetation Index (TVI) were derived. Since the original

NDVI is specific bandwidth dependent, NDI is more rep-

resentative nonetheless given the popularity of NDVI it is

chosen to use this name. These indices, their respective

formulae are presented below, are mainly selected as they
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employ red, near-infrared bands and used widely for esti-

mating biomass for agricultural and ecological applications

[5].

2.3.1 Normalized difference vegetation index (NDVI)

The widely used index is probably the Normalized Dif-

ference Vegetation Index (NDVI), originally proposed by

[28]:

NDVI ¼ NIR800� RED670

NIR800þ RED670
ð1Þ

Generic Normalized Difference Index (NDI), defined as

NDI ¼ Rb� Ra

Rbþ Ra
ð2Þ

And looking for those wavelengths a and b that provides

the best correlation with LAI (Leaf Area Index), Ch

(chlorophyll) and some other biophysical parameters

obtained from experimental data.

2.3.2 Simple ratio vegetation index (SRI) [29]

SRI ¼ NIR=RED ð3Þ

2.3.3 Transformed vegetation index (TVI)

TVI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NIR� REDð Þ
NIRþ REDð Þ þ 0:5

2

s

ð4Þ

2.4 Saturation property and sensitivity analysis

Two major analysis methods: correlation and best curve

fitting were used to evaluate the saturation nature of the

three indices versus gLAI (Table 2). First, a correlation

coefficient was computed between the indices and gLAI to

discover the presence of any valid association, if the result

indicated a strong association, then, the best fit function

that describes the relationship will be determined by

Fig. 1 Map of the study area

Table 1 Date of Imageries used for the study

No Set Sentinel 2 LAI 300

1 Set One December 15, 2017 December 10–20, 2017

2 Set Two December 30, 2017 December 20–31, 2017

3 Set Three December 10, 2016 December 01–10, 2016

4 Set Four January 14, 2018 January 10–20, 2018
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analyzing the possible mathematical functions using the

coefficient of determination and RMSE. Then, a detailed

analysis of the saturation properties was implemented via

graphical analysis. Furthermore, to understand the satura-

tion properties across the full range region-wise sensitive-

ness was implemented by computing, the noise equivalent

of green leaf area index versus green leaf area index

(NEDgLAI vs. gLAI) [30] it tells the accuracy of the gLAI

estimation.

NEgLAI ¼ RMSE VIvs:gLAIð Þ
d VIð Þ=d LAIð Þ ð5Þ

Where NEDgLAI = is the noise equivalent (NE) of gLAI

RMSE (VIvsgLAI) = is the RMSE of the VI versus gLAI

relationship d (VI/d(LAI) = is the first derivative of the VI

for gLAI.

The NEDgLAI takes into account not only the RMSE of

gLAI estimation but also accounts for the sensitivity of the

VI to gLAI, thus providing a metric accounting for both the

scattering of the points from the best-fit function and the

slope of the best-fit function [8]. The NEDgLAI provides a
measure of how well the VI responds to gLAI across its

entire range of variation.

3 Result and discussion

3.1 Correlation matrix of vegetation indices

Table 3 presented the correlation matrix among NDVI, SRI

and TVI values computed via different combinations of

sentinel 2 bands as well as with green LAI. Accordingly,

for the three of the vegetation index values computed from

bands 4 and 5 coupled with bands 8 and 8a resulted in a

strong correlation with green LAI, which is consistent

across the four time periods. Additionally, the inter-band

association between b4/b5 with b8/b8a resulted in a strong

correlation. Conversely, NDVI values computed using

bands 6 and 7 coupled with bands 8 and 8a display weak

correlation with LAI that is again consistent across the

four-time periods, except for b6 with b8a. This result

implies that the linear relationship is strong and could be

useful for those groups with a strong correlation coeffi-

cient, whereas, band 6/7 combined with band 8/8a linearly

is not important.

3.2 Best fit functions and sensitivity analysis

Under Sect. 3.1 presented above, important linear associ-

ations were revealed and the involved bands were identi-

fied and here to understand the saturation nature of these

associations, possible fit functions were determined for

three fitting curves from three functions: logarithmic, linear

and polynomial. The best curve lines for NDVI versus

gLAI, where bands 4/5 combined with bands 8/8a, are

obtained using 3rd order polynomial, and Fig. 2 presented

the case for bands 4 with 8. That is the polynomial function

resulted in coefficient of determination of 0.98 compared to

0.96 and 0.95 by logarithmic and linear function

respectively.

For inter-band comparisons using the third-order poly-

nomial function, which is selected as the best one, curves

of four combinations of NDVI using four bands are cal-

culated and presented in Fig. 3.

As it is well noticed in all the NDVI calculated, the

NDVI values computed from b4 and b8 as well as b4 and

b8a showed an increasing and higher full range distribution

that reaches an approximate value of 0.9. In contrast, the

NDVI values computed from b5 and b8 as well as b5 and

b8a have narrow range values that reach a maximum of 0.7.

For all of the four curves, initially, the slope increases

sharply followed by decreasing rate of increase and then it

became almost to the horizontal level of after 3 gLAI.

This observation could be explained using Fig. 4, in

which the NEDgLAI increases sharply starting from 3

gLAI that peaks the highest value at around 4.5 gLAI

which implies vividly the associated saturation property is

emanated from these highest values of NEDgLAI. Besides,

Table 2 Combinations of

Sentinel-2 bands used
No. Red or Red Edge NIR or Narrow NIR

1 Band 4—Red (10 m) Band 8—NIR(10 m)

2 Band 5—Vegetation Red Edge (20 m) Band 8—NIR(20 m)a

3 Band 6—Vegetation Red Edge (20 m) Band 8—NIR(20 m)a

4 Band 7—Vegetation Red Edge (20 m) Band 8—NIR(20 m)a

5 Band 4—Red(10 m) Band 8A—Narrow NIR(20 m)a

6 Band 4—Red(10 m) Band 8A—Narrow NIR(20 m)a

7 Band 5—Vegetation Red Edge(20 m) Band 8A—Narrow NIR(20 m)a

8 Band 6—Vegetation Red Edge(20 m) Band 8A—Narrow NIR(20 m)a

9 Band 7—Vegetation Red Edge(20 m) Band 8A—Narrow NIR(20 m)a

aResampled from original 10 m resolution
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Fig. 4 indicated among the four curves, NDVI computed

using bands 8a and 4 possesses the lowest value of

NEDgLAI. This indicated band 4 combined with band 8

and 8a is less saturated than band 5 combined with band 8

and 8a, and therefore, it is band four that plays the key role

in producing the lowest value of saturation.

Similarly, for SRI, among the tested five fitting func-

tions, exponential growth function resulted in the best-fit

function having the highest value of the coefficient of

determination of 0.94. Whereas functions such as power,

polynomial, linear and logarithmic revealed coefficient of

determination of 0.92, 0.85, 0.84 and 0.78 respectively

(Fig. 5 showed the case of band 4 coupled with band 8).

To evaluate the interband variation plots were prepared

using exponential growth function for bands of 4, 5, 8 and

8a and displayed in Fig. 6. Among the four plots displayed

SRI computed from band 4 coupled with band 8 and 8a

revealed the highest exponential growth functions. In

contrast, SRI computed from band 5 coupled with band 8

and 8a demonstrated relatively low increasing exponential

growth function.

The slowly increasing slopes of the SRI curves up to

three green leaf area index especially for band combina-

tions of 8a and 4 as well as 8 and 4 is well supported by

highest values NEDgLAI for these bands as depicted in

Fig. 7.

Nonetheless, at higher values of green leaf area index all

the bands own smaller values of the NEDgLAI which

implies SRI performs well at higher values of green leaf

area index compared to NDVI (see Fig. 4 for comparison).

Overall, SRI computed using band 4 is less saturated

compared to band 5. On the other hand, for TVI, polyno-

mial function evidenced by the highest R2 values of 0.98

and 0.96 produced the best fit plot for the association

between TVI and gLAI among the five best possible fitting

Fig. 2 NDVI (band 4 and 8) plotted versus gLAI for three equations

Fig. 3 Best fit function for NDVI (bands 4, 5 with bands 8 and 8a)

plotted versus gLAI

Fig. 4 Noise equivalent of the green leaf area index plotted versus

green leaf area index for NDVI for four bands
Fig. 5 SRI (band 4 and 8) plotted versus gLAI for five functions
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functions for bands of 4 and 8(Fig. 8) and for bands of 5

and 8.

For inter-band comparisons using the polynomial func-

tion, which is the best-fit function, plots for TVI versus

gLAI is presented in Fig. 9. There are two identified groups

of curves and these are that of band 4 coupled with bands 8

and 8a on one hand and band 5 coupled with bands 8 and

Fig. 6 Exponential growth

function of SRI (bands 4, 5 with

bands 8 and 8a) plotted versus

gLAI

Fig. 7 Noise equivalent of the

green leaf area index plotted

versus green leaf area index for

SRI using four bands

Fig. 8 TVI (band 4 and 8) plotted versus gLAI Fig. 9 Best fit function for TVI (bands 4, 5 with bands 8 and 8a)

plotted versus glai
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8a on the other side. The two groups within the first group

have more widely distributed values of TVI that reach up to

1.2 compared to the second group of two curves that are

narrowly distributed TVI range of values with a maximum

of below 1.1. Thus, the two TVIs in the first group: b8_4

and b8a_b4 are less saturated than b8_b5 and b8a_b5.

As shown in Fig. 10, the NEDgLAI versus gLAI curves
for the plots also unveiled similar output, in particular for

TVI from bands 8a and 4 showed not only smaller also

consistent values across the full range value of green leaf

area index. TVI calculated using bands 8a and 5 is the

second one in terms of having less value of NEDgLAI, as
evidenced at 4.5 gLAI the corresponding NEDgLAI is

smaller than the values for the rest two bands combinations

specifying lower values of NEDgLAI are associated with

band 8a.

Previous researches implemented in agricultural fields

using simulated sentinel-2 resulted in comparable findings.

That is, using Normalized Difference Index (NDVI), LAI

can be derived with 674 nm and 712 nm as best perform-

ing bands which are positioned closely to sentinel-2 B4

(665 nm) and the new red edge band, B5(705 nm)

[23].Similarly, for potato fields, the use of the 10 m red

band, b4, enabled an estimation of LAI using the weighted

difference vegetation index (WDVI) with an R2 of 0.809

and it was stated the avoidance of the red edge bands which

are available at 20 m spatial resolution [25]. In the boreal

forest, a study using simulated sentinel-2 bands the highest

R2 values resulted from SRI and NDVI (Normalized

Vegetation Index) compared to other types of vegetation

indices. For effective LAI estimation band 4 combined

with band 8 was the best one with R2 of 0.93 [31].

A very recent study by [24] using real sentinel-2 images

produced anew green LAI called SeLI which is a normal-

ized index that applied band 5 and band 8a using multi-

crop data set as the best performing index compared with

different tested indices. Using linear fitting an R2 of 0.708

and 0.732 were obtained for the calibrated and validated

dataset. Thus, it indicated that despite the difference

between the present study area (mixed agricultural-forest)

and the indicated output from agricultural areas, results are

consistent and agreed.

On the other hand, for the three of the indices that

computed from bands of 6 and 7 coupled with bands of 8

and 8a, correlation coefficient values between the three VIs

versus gLAI are so small revealing weak association

(Table 3). Furthermore, these observations are supported

by smaller values of coefficient of determination and

among the possible functions, notably linear and non-linear

(logarithmic, polynomial, exponential and power), all

failed to result in a strong relationship. For instance, both

logarithmic and polynomial functions yield coefficient of

determination of 0.15 and a very close result of 0.14 is

obtained for linear function. Consequently, these bands are

not useful for discriminating biomass parameters such as

gLAI.

3.3 Sensitivity analysis of inter-vegetation indices

In the aforementioned discussions, the saturation charac-

teristics among the bands for the three of the vegetation

indices were presented. It is also imperative to understand

the variations of the three vegetation indices for estimating

of green leaf area index. This is done by analyzing the plot

noise equivalent of the green leaf area index versus green

leaf area index. Under the previous sections, bands 4 and 5

were obtained as the best performing bands; and in this

part, the analysis considered solely these bands.

Accordingly, as shown in Fig. 11a, using bands 8 and 4

for low to medium gLAI values (\ 4.2 gLAI), NDVI has

the lowest noise equivalent of green leaf area index value

compared to SRI and TVI. On the other hand, for medium

to the high value of gLAI, all of the three vegetation

indices have closely similar values of NEDgLAI though

TVI has the smallest values.

The analysis for band combinations of 8 and 5 and 8a

and 5 (see Fig. 11 (b and d)) showed very close results. SRI

got the largest value of NEDgLAI for gLAI values less than

Fig. 10 Noise equivalent of the

green leaf area index plotted

versus green leaf area index for

TVI using four
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2. At this range, both the NDVI and TVI are characterized

by similar small values of NEDgLAI. Beyond 2 gLAI, SRI

by far got the lowest values of NEDgLAI and therefore in

the former range either NDVI or TVI is preferred to

determine gLAI whereas in the later range SRI outweighs

the rest two indices.

On the other hand, among the three of the vegetation

indices compared using bands of 8a and 4(see Fig. 11c)

across the full range of gLAI, TVI is characterized by

lower values of NEDgLAI that implies TVI outperforms in

terms of its utilization for estimation of gLAI. This is an

interesting output in the sense that a single index with

significantly lower values of NEDgLAI as well as having a

strong association with gLAI is obtained that could be very

useful for quantification of gLAI in mixed agricultural and

forest ecosystems. For the rest of the bands and vegetation

indices combination of the indices setting thresholds could

be one possible solution [8].

The outputs from the present study should be considered

within the context of the research. As the study employed

the VI approach for estimating LAI involving two bands at

a time, the application of other methods or approaches that

use more number of bands for LAI discrimination, for

instance, lookup tables and an approved artificial neural

networks could be other capabilities to utilize different

bands of sentinel-2 [32].

4 Conclusion and recommendation

The three vegetation indices: NDVI, SRI, and TVI com-

puted from sentinel-2 bands: four (red) and five (red edge)

coupled with bands 8 and 8a showed some level of satu-

ration. Across the three of the vegetation indices, the

combination of band 4 with 8a is the least saturated one

among all of the evaluated bands. Vegetation indices cal-

culated from band 4 with b8 and b8a are less saturated than

vegetation indices computed from band 5 with b8 and b8a.

Nonetheless, TVI computed from bands 8a and 4 is the best

outperforming combination for using as a tool for

Fig. 11 Noise equivalent of the green leaf area index plotted versus gLAI for three vegetation indices. a Bands 8 and 4 b Bands 8 and 5 c Bands
8a and 4 d Bands 8a and 5
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discriminating green leaf area index in a mixed agriculture-

forest ecosystem. Using linear model interpretation NDVI

derived from bands 4 and 5, though the former showed

slightly increased importance, could be reliably used for

estimation of a biophysical parameter such as green leaf

area index showing 95% variation. Conversely, other red

edge bands such as 6 and 7 combined with bands 8 and 8a

are less significant to apply using the three vegetation

indices and then discriminate biomass parameters notably

green leaf area index under the current forest ecosystem.

In the present study, though the overall conclusion drew

was convincing and well agreed with previous related

researches, the green leaf area index was derived from

Proba-V sensor and will have some potential limitations

that could be associated with error propagation. Therefore,

future research might consider the determination of green

leaf area index using a more accurate approach that could

be set in more controlled experimental plots to come up

with better validated and assertive outputs.
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