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Abstract
The evolution of medical technologies—such as surgical devices and imaging techniques—has transformed all aspects of sur-
gery. A key area of development is robot-assisted minimally invasive surgery (MIS). This review paper provides an overview 
of the evolution of robotic MIS, from its infancy to our days, and envisioned future challenges. It provides an outlook of break-
through surgical robotic platforms, their clinical applications, and their evolution over the years. It discusses how the integration 
of robotic, imaging, and sensing technologies has contributed to create novel surgical platforms that can provide the surgeons 
with enhanced dexterity, precision, and surgical navigation while reducing the invasiveness and efficacy of the intervention. 
Finally, this review provides an outlook on the future of robotic MIS discussing opportunities and challenges that the scientific 
community will have to address in the coming decade. We hope that this review serves to provide a quick and accessible way 
to introduce the readers to this exciting and fast-evolving area of research, and to inspire future research in this field.
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1  Introduction

Since the early breakthrough with Lister’s seminal work 
on antiseptic surgery (1860s), surgery has been constantly 
evolving, and surgeons continue to explore new approaches 
to improve outcomes for patients by making procedures 
safer, less traumatic and more effective (Vitiello et al. 2013). 
Moreover, emerging technologies have played crucial roles 
in aiding and enhancing the abilities of surgeons (Fig. 1). For 
example, advances in the areas of anaesthesiology, radiol-
ogy, microbiology, histopathology, immunology, oncology, 
engineering, imaging, and in particular the digital transfor-
mation of the healthcare domain, are today supporting the 
surgical procedures around the globe, allowing the surgeons 
to refine, or even redefine, their specialties. And such devel-
opments will continue to propel and transform approaches 

to diagnosis and surgical treatment of diseases, leading to 
exciting future developments.

The advent of Hopkins' endoscope in the 1960s, technol-
ogy advancements in the following two decades, and the first 
laparoscopic cholecystectomy by Mühe in the 1985 (Reynolds 
2001), marked the transition to the minimally invasive sur-
gery (MIS) era and its application in many surgical applica-
tions over open surgery. The main goal of MIS is to minimize 
the incisions—both in number and size—thus reducing the 
damage to soft tissues created by large incisions. In conse-
quence, this minimizes the patient recovery time, postopera-
tive pain or the risk of contracting an infection, while ensur-
ing overall cost-effectiveness (Vitiello et al. 2013). While the 
advantages of MIS are clear to patients, new surgical tech-
nologies require the clinicians to undergo specific training to 
use such new devices. Traditional surgical curricula have not 
yet been revised to accommodate advanced or even emerg-
ing technologies (Kuhn et al. 2021). Therefore, clinicians 
must adapt to new surgical workflows and surgical instru-
ments manipulation, thus to new visuo-tactile feedback. In 
fact, laparoscopic devices (e.g., video camera, rigid surgical 
instruments) physically separate the surgeon from the patient 
reducing their perception (e.g., visual or haptic sensing) and 
manipulation capabilities. For example, in laparoscopic pro-
cedures surgeons operate while looking at a screen displaying 
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2D images provided by the endoscope, with consequent loss 
of depth perception (Sørensen et al. 2016). Surgeons must 
manoeuvre the surgical instruments while addressing the so-
called ‘fulcrum effect’ brought on by the constricting incision 
ports, which limits haptic sensation, causes motion inversion 
and affects input scaling (Gallagher et al. 1998). Other MIS 
procedures (e.g., endovascular intervention (Dagnino et al. 
2018)), for example use force feedback to safely navigate 
the human body. However, novel assistive concepts were 
proposed to manual clinical routines, e.g., in laparoscopy, or 
the use of laser instrumentation. 3D visualisation has demon-
strated superior outcomes in laparoscopic surgery (Wagner 
et al. 2012) and became a component of European clinical 
roadmaps (Arezzo et al. 2019). More specifically, rendering 
of augmented visual feedback has demonstrated a significant 
improvement on adjustment of the laser focal position in 
endoscopic laser surgery (Kundrat et al. 2019; Schoob et al. 
2016).

Robotic systems have been introduced into clinical prac-
tice to mitigate these limitations, bringing solutions such 
as enhanced dexterity, improved stability, motion accuracy, 
and the possibility of accessing target anatomies located in 
previously difficult-to-reach areas of the body using bespoke 
flexible devices.

In the last 30 years, surgical platforms have been devel-
oped for essentially all parts of the human body. In order to 
overcome the limitations of conventional minimally inva-
sive procedures (challenging to perform due to the limita-
tions described above), surgical robots were first created to 
address the clinical demand for greater accuracy in manipu-
lation and visualisation (Vitiello et al. 2013). Today, robotic 
systems are utilized in many specialties, including neuro-
surgery, ear-nose-throat (ENT), head and neck, orthopae-
dics, laparoscopy and via human body lumens. According to 
(Bergeles and Yang 2014), there are four major generations 
of surgical robots: (i) stereotaxic robotic systems (first gen-
eration); (ii) rigid dexterous robots for MIS (second genera-
tion); (iii) flexible robots for MIS (third generation); and 
(iv) untethered microsurgeons (fourth generation). Standard 
laparoscopy (manual) can be considered the zeroth genera-
tion. Alternative classification approaches in medical robot-
ics, for example, consider the level of system autonomy to 
describe the evolution from teleoperation executed by 
skilled surgeons to full autonomy (Yang et al. 2017; Fiorini 
et al. 2022; Attanasio et al. 2021).The evolution of surgical 
robots over the last decades has shown a constantly grow-
ing and stronger integration of image-guidance, sensing, and 
robotic assistance, which resulted in safer and more effective 
procedures.

In the next sections, we will provide a perspective on the 
evolution of surgical robot applications in the last decades, 
an overview of the available technologies for robot-assistive 
MIS, as well as open challenges and future directions of this 
fast-growing area of healthcare technology.

2 � Methodology of the study

An extensive examination of pivotal research studies and 
articles pertaining to robotic Minimally Invasive Surgery 
(MIS) has been conducted. This study encompassed a survey 
dedicated to robotic systems and publications that exem-
plify significant advancements in the field of robotic MIS, 
while also pinpointing ongoing challenges and prospec-
tive research avenues. The search terms employed for this 
inquiry included “Robotics for Minimally Invasive Surgery” 
and “Robot-Assisted Surgery.” In this review, the authors 
endeavor—when possible—to encompass systems that have 
progressed into the realm of commercialization, emphasiz-
ing their clinical impact and innovative contributions. The 
framework adopted in this paper is centered on the interplay 
between robotics, imaging, and sensing. It is essential to 
note that this review does not aim to present an exhaustive 
taxonomy of research publications. This review serves to 
provide a quick and accessible way to introduce the read-
ers to this exciting and fast-evolving area of research, and 
to inspire future research in this field. Instead, we direct 

Fig. 1   The evolution of surgery is strictly linked to the evolution of 
technology. The discovery of anaesthesia and antiseptic in the XIX 
century paved the way to modern open surgery. The mid of XX cen-
tury is characterised by the evolution of minimally invasive surgery 
(MIS), thanks to the discovery of rigid endoscopes followed by flex-
ible fibre optics devices. Imaging techniques such as x-ray and com-
puted tomography (CT) strongly contributed to the evolution of sur-
gery towards a more minimally invasive approach and early diagnosis 
of diseases. Smaller lesions brought on by early diagnosis necessitate 
minimally invasive access as well as precision surgery, which fre-
quently calls for surgeons to possess enhanced manipulation, vision, 
thinking, and decision-making capabilities. The era of robotic surgery 
started at the end of the XX century when bulky industrial robots 
were used for the first time to perform clinical tasks. In the follow-
ing decades, bespoke robots for minimally invasive surgery have been 
developed and quickly evolved toward smaller and smarted devices 
that can be used in several surgical applications (sometimes not 
even requiring an incision in the body, e.g., through natural orifices 
and lumens). The future of surgery will be directed by technology 
advances in areas like robotic MIS toward precision intervention and 
targeted therapy, e.g., micro/nano robots that can navigate the human 
body to a desired target and perform diagnosis and treatment in one 
step
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interested readers to consult existing reviews dedicated to 
the broader landscape of robotic surgery (Vitiello et al. 2013; 
Bergeles and Yang 2014; Troccaz et al. 2019; Bergeles et al. 
2016; Payne and Yang 2014; Cundy et al. 2013; Marcus 
et al. 2014; Marcus et al. 2017; Lee et al. 2010; Karimyan 
et al. 2009).

3 � Evolution of robotics for minimally 
invasive surgery

Figure 2 summarises the evolution of minimally invasive 
robotic surgery from its beginning in the 1980s to present 
days. In 1985 a conventional industrial robot, the PUMA 
200 (Unimation, Danbury, CT) (Kwoh et al. 1988), was 
experimentally employed in a surgical procedure of needle 
insertion, becoming the first example of a surgical robot in 
history. Since then, an ever-increasing number of platforms 
from both commercial and research organizations have been 
developed and successfully used in a wide range of surgical 
specializations, such as neurosurgery, ear-nose-throat (ENT), 
orthopaedics, laparoscopy, and endoluminal procedures. For 
a comprehensive domain-specific review of the literature, we 
refer the readers to Vitiello et al. (2013); Bergeles and Yang 
2014; Troccaz et al. 2019; Bergeles et al. 2016; Payne and 
Yang 2014; Cundy et al. 2013; Marcus et al. 2014; Lee et al. 
2010; Marcus et al. 2017; Karimyan et al. 2009).

The 80 s were characterized by the first generation of 
surgical robots for stereotaxic interventions in neurosurgery 
and orthopaedics. Examples include the Neuromate system 
(Renishaw, UK) for accurate positioning of neurosurgical 
tools for biopsy, electrode implantation, and neuro-endos-
copy (Lavallee et al. 1992); and Robodoc (Curexo Tech-
nology, USA), developed at IBM to improve arthroplasty 
surgeries of the hip (Paul et al. 1992a).

The 90 s’ marked the move from stereotaxic robotic sys-
tems to a second generation of surgical robots, i.e., rigid dex-
terous robots for MIS with several arms remotely controlled 
by the surgeon via a remote operating console. This concept 

was exploited in the Zeus platform (Computer Motion, USA) 
first, and then in the da Vinci system after the merger of 
Computer Motion and Intuitive Surgical in 2003. Since 2003 
several versions of the da Vinci system have been developed, 
including the most advanced multi-arm version (da Vinci 
Xi), and the single port version for narrow access surgery 
(da Vinci SP).

The first decade of the new millennium signs the evo-
lution of surgical robots toward miniaturised and smarter 
devices: this generation of surgical robots includes small 
and steerable devices (robotic catheters, robotic endoscopes 
or snake-like robots) which are flexible and can access and 
operate constrained regions of the human body not previ-
ously reachable with rigid laparoscopy. Exemplary applica-
tions are endovascular intervention, abdominal surgery, and 
bronchoscopy. One of the main limitations of such flexible 
robots is the inability of applying high manipulation forces 
to the tissues due to structural deficiencies. Concentric tube 
robots (also denoted as active cannula), introduced around 
2005 by research of Furusho et al. (2005); Sears and Dupont 
2006; Webster 2007), address such limitation by provid-
ing the required higher stiffness. These robots are made 
of nested groups of pre-curved elastic tubes (e.g., Nitinol) 
that, when translated and rotated in relation to one another, 
bend and deform as a result of structural interaction (Vitiello 
et al. 2013). This fundamental principle has been explored 
and extended to many different applications (please refer to 
reviews in Mitros et al. (2021)) and lately miniaturised to 
submillimetre scale (Nwafor et al. 2023).

The 2000s also signed the development of a novel gen-
eration of MIS robots, the untethered microrobots, focus-
ing on improving the intraluminal navigation of human 
body thus enhancing the minimally invasive diagnosis 
and therapy of pathologies. As an example, capsule endo-
scopes can navigate the gastrointestinal tract with the 
great benefit of removing the pain, risks, and discomfort 
of traditional flexible endoscopy. The promising results 
of capsule endoscopy led to commercialization including 
advancing imaging and 3D tracking capabilities, e.g., the 

Fig. 2   Timeline of minimally invasive robotic surgery. Image adapted with permission from Troccaz et al. (2019)
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ENDOCAPSULE 10 system (Olympus, Tokyo, Japan). 
Beyond that, several research groups have proposed dif-
ferent designs and locomotion techniques for such devices, 
including legged (Gorini et  al. 2006) and worm-like 
(Kwon et al. 2007) locomotion systems. Recently, mag-
netic actuation of endoscopy capsules was demonstrated 
(Popek et al. 2017). The readers are kindly referred for a 
general review on capsule endoscopy to Ciuti et al. (2016), 
for magnetic actuation principles to Chen et al. (2022) and 
for a review on alternative intra-gastric and intra-intestinal 
locomotion to Liu et al. (2015).

Jumping at current days, we are entering the era of 
untethered micro/nano surgical devices (please refer to 
these review papers (Zhou et al. 2021; Hu et al. 2018)). 
Surgical platforms that are currently in use in clinical 
practice still present some major technical difficulties 
and challenges, such as mechanical parts that are still 
relatively large and rigid to access and treat small, early 
lesions or previously inaccessible parts of the human body. 
The development of miniaturized, adaptable robots with 
dimensions of a few micrometres and the ability of navi-
gating the whole human body will pave the way for new 
precise, localized (cellular-level), effective, and patient-
tailored procedures.

4 � Exemplary applications of robotic MIS 
platform

This section provides an overview of robotic platforms that 
have been developed in the last 30 years, categorised by 
clinical application as summarised in Fig. 3.

4.1 � Neurosurgery

As mentioned, the first clinical application of a robot was 
in stereotaxic neurosurgery in 1985, when the PUMA 200 
(Unimation, USA)—an industrial robotic arm—was used to 
introduce a needle and perform a brain biopsy (Kwoh et al. 
1988). Such system evolved into the Neuromate (Renishaw, 
UK), one of the first robots that received the FDA (Food and 
Drug Administration) approval. Based on the preoperative 
planning and intraoperative registration (between pre-oper-
ative CT or MRI data and intra-operative ultrasound or x-ray 
images), this image-guided robot allows accurate position-
ing of a tool holder along pre-planned trajectories. Due to 
the clinical advantages compared to frame-based interven-
tions, the device is still used in neurosurgical facilities and 
has been extensively evaluated in clinical trials (Yasin et al. 
2019).

Fig. 3   Examples of robotic 
MIS applications. Stereotac-
tic neurosurgery is the first 
application of a robot in surgery 
quickly followed by orthope-
dics. Laparoscopy robots started 
the great commercial success 
in the early 2000s (with the da 
Vinci) and are nowadays widely 
used in many applications such 
as prostatectomy, cystectomy, 
rectal cancer, and hysterectomy. 
Flexible robots for endolumi-
nal intervention are used in 
varying applications including 
bronchoscopy, endovascular 
intervention, colonoscopy and 
also brain microsurgery. Cap-
sule robots can be swallowed 
for endoscopic diagnosis and 
treatment of the gastrointestinal 
tract. Recent advances in micro/
nanorobots are paving the way 
for precise surgical applications. 
For example, micro/nanorobotic 
tools, such as nanodrillers, 
microgrippers, or microbullets, 
offer unique capabilities for 
early and targeted intervention
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Since then, the design of surgical robots moved from 
bulky industrial arms to smaller and bespoke devices with 
dedicated systems engineering resulting in enhanced clinical 
usability. Exemplary systems include the neuroArm, which 
could be used inside an MR scanner (Cossetto et al. 2012) 
coupling the superior display of soft-tissue contrast provided 
by MRI with the enhanced manipulation precision and dex-
terity of the robot. Additionally, robotic platforms were fur-
ther miniaturized so to be connected directly to the patient. 
For example, the Renaissance robot (Mazor Robotics, Israel) 
can be connected directly to the spine of the patient, and, 
on the basis of preoperative CT planning, it can follow the 
patient's motion and guide the surgeon to place screws and 
implants in the spine.

CyberKnife (Accuray Inc., USA) is another interesting 
system which used to perform radiotherapy to primarily treat 
brain and spine tumours. The system takes advantage by the 
integration of imaging and sensing to compensate for motion 
in an autonomous way, so to deliver an optimized radiation 
dose directly to the tissues affected by the tumour, while 
preserving and protecting the healthy structures (Schweikard 
et al. 2005).

4.2 � Orthopedics

Application of robotics to orthopaedics advanced in par-
allel to stereotactic neurosurgery. As both specialties deal 
with rigid structures such bones, the registration between 
the robotic system and the patient’s anatomy is simplified 
and considered constant over the procedure, enabling desired 
features such as real-time intraoperative navigation, tracking, 
and vision-based closed-loop control of the robot (Troccaz 
et al. 2019).

The first robotic platforms for orthopaedics that have been 
developed focused on arthroplasty applications. ROBO-
DOC (Curexo Technology, USA) was developed in 1986 
to improve total hip replacements, and then commercial-
ized in 1994 by Integrated Surgical Systems (Sacramento, 
USA) (Paul et al. 1992b). ROBODOC integrates patient CT 
data into the control system of a robotic arm allowing pre-
operative 3D planning of the procedure and—for the first 
time–force sensing to precise mill the femur of the patient 
and receive the replacement implant.

The Imperial College London’s system Acrobot, was 
developed for total knee replacement (Jakopec et al. 2003). 
A surgical plan is created using a CT scan of the patient, 
which is then integrated into the robotic system to direct the 
surgeon during the milling operations. Active constraints 
ensure that the robot only operates in predetermined and 
permissible locations. In such configuration, the robot coop-
erates with the surgeon (active guidance), rather than per-
forming surgical tasks autonomously as in the ROBODOC 
example.

Similarly to Acrobot, a more recent system for knee 
arthroplasty—the Mako system (Stryker, USA)—uses CT 
data of the knee acquired preoperatively to create the sur-
gical plan. The 3D model of the knee is registered to the 
patient and the surgeon can see it on a screen while manipu-
lating the burr intraoperatively. The Mako system generates 
no-fly zones to prevent burring the bone outside of prede-
fined and safe areas and offers haptic and auditory feedback 
(Lang et al. 2011). Clinical benefits include reduced post-
operative pain and more accurate implant positioning com-
pared to conventional arthroplasty (Batailler et al. 2021).

A smaller-scale, frameless handheld robotized driller for 
knee arthroplasty—the Navio system (Smith & Nephew, 
UK)—does not require intra-operative registration or pre-
operative CT scans. Instead, Navio uses an infrared cam-
era and optical tools to track the patient's anatomy and the 
handheld robotic device, and a 3D model of the knee is pro-
duced by the creation of a physical map of the anatomy by 
tactile mapping the tracked optical probe over it (Herry et al. 
2017). A comparative study of the latest robotic technologies 
for arthroplasty—the Mako and Navio systems—and their 
impact on the 1-year patient outcome showed no differences 
in terms of radiologic implant position assessment (Leelas-
estaporn et al. 2020).

Fracture surgery is another growing area of orthopaedics 
where robotics and image guidance can support the clinical 
team. Pioneering research from (Dagnino et al. 2017, 2016a, 
b; Georgilas et al. 2018) proposes a robotic platform to 
reduce joint fractures. The system, named as RAFS (robot-
assisted fracture surgery), can perform minimally invasive 
(percutaneously) reduction of joint fractures (i.e., in the 
knee) based on patient-specific CT data. Before surgery, the 
fracture is manually reduced in the computer (virtual reduc-
tion) by the surgeon using CT-generated 3D bone models. 
The preoperative planning is registered with the patient in 
the operating room, and the robot completes the physical 
reduction while the surgeon can make adjustments or take 
over as necessary. RAFS tracks both the patient's anatomy 
and the robotic manipulators to offer real-time intraoperative 
3D navigation.

4.3 � Robotic laparoscopy

Moving from robotic platforms that deal with rigid struc-
tures like bones to robots involved in the manipulation of 
soft tissues, a number of challenges such as manipulation 
and tracking of deformable anatomies in a constrained 
(luminal or endoluminal) space must be kept into considera-
tion. These limitations became the focus of surgical robots 
used in laparoscopy.

In the early 1990s—the development of surgical robotic 
systems for minimally invasive applications started. The first 
example is PROBOT—a modified version of the PUMA 
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560 industrial robot with a safety frame to restrict the arm's 
workspace—that was designed for prostatectomy (Ng et al. 
1993). The concept of using several robotic arms that can 
be teleoperated from a remote console to perform laparos-
copy procedures, resulted in the Zeus platform (Computer 
Motion, USA) (Butner and Ghodoussi 2003), followed by 
the da Vinci system. The da Vinci—the most famous surgi-
cal robotic platform on the market with almost 7000 units 
installs to date and 1.5 million procedures completed only in 
2021 (see Intuitive Surgical 2021 annual report https://​isrg.​
gcs-​web.​com)—features stereo vision of the surgical field at 
the master console, and restore the hand–eye coordination 
lost in traditional laparoscopy. The surgeon can interact with 
the anatomy using 7-DOF devices named EndoWrist, which 
is not achievable with traditional laparoscopy. However, the 
da Vinci does not offer haptic feedback despite these ben-
efits. Applications include prostatectomy, cholecystectomy, 
fundoplication, colorectal surgery and many others (Yaxley 
et al. 2016). Global research activities on the da Vinci plat-
form are supported by the da Vinci Research Kit (dVRK) 
(Intuitive Foundation, USA) and its academic community 
which enables participating institutions to develop and test 
customised design or control applications on retired genera-
tions of the platform. For example, integration strategies for 
haptic feedback have been proposed and evaluated (Sara-
cino et al. 2019). In 2018 Intuitive Surgical announced the 
da Vinci SP (single port) with the goal of further reducing 
the invasiveness of robot laparoscopy (Dupont et al. 2021). 
The system has received FDA clearance in the USA intro-
duced the Hugo RAS System to the market. The system is 
a portable and modular robot with the aim of improving 
the clinical workflow while reducing procedure-related 
costs. It consists of an "open" surgical console featuring a 
high-definition 3D passive display, a system tower, and four 
individual arm carts. Each robotic arm is autonomous and 
can extend, thanks to its six distinct joints. Its configuration 
allows the patient to experience the advantages of a highly 
flexible movable arm, made possible by the multitude of 
joints (Gueli Alletti et al. 2022). The Hugo RAS made its 
debut in the European market in March 2022, obtaining CE 
approval for various procedures, including gynecological, 
urological, and adrenalectomy surgeries (Raffaelli et al. 
2023).

Recently, CMR Surgical (Cambridge, UK) launched the 
Versius surgical system. This a modular system featuring 
bedside units (BSUs) that are compact enough to fit within 
a standard operating room and can be easily relocated at 
the conclusion of a surgical procedure. The novelties of 
this system include the downsizing of its components, 
rendering them inconspicuous within the operating room, 
and the maneuverability of each robotic element, allowing 
this modular system to be effortlessly transferred from one 
operating room to another, effectively transforming it into 

a versatile "instrument" adaptable to the unique needs of 
patients (Dixon et al. 2021).

While the aforementioned commercial platforms provide 
enhanced dexterity and improved visual guidance, they are 
still lacking haptic feedback. Integrating such guidance into 
robot-assisted laparoscopy is being the objective of many 
research groups (Patel et al. 2022; Hernandez Sanchez et al. 
2023; Chua and Okamura 2023).

4.4 � Flexible robot for endoluminal intervention

A promising innovation that could enhance MIS through 
transluminal and/or endoluminal treatments involves min-
iaturized flexible robots that don’t require the need for skin 
incisions. Snake-like robots, such as the i-Snake (Shang 
et al. 2011), have the potential of navigating and exploring 
the anatomy via natural orifices and body lumens, providing 
enhanced navigation and manipulation accuracy via inte-
grated sensing and imaging. Although these robots can eas-
ily operate in the abdomen or chest of the patient, they are 
not suitable to navigate constrained anatomical sites such as 
arteries, veins, or brain, due to their large diameter. Hence, 
steerable catheters and concentric tube robots can overcome 
this limitation.

Endovascular procedures involve the navigation of cath-
eters and wires inside the vascular tree, to reach the anatomy 
of interest, and perform procedures like stent placement, 
coiling, valve (re-)implantation, and ablation (Lee et al. 
2017). These procedures require a high level of manoeu-
vrability to avoid dangerous injuries to the vasculature, i.e., 
puncture or rupture, and robotic assistance can improve these 
challenging manoeuvres by providing enhanced manipu-
lation precision and stability while reducing the ionizing 
radiation doses—generated by the necessary fluoroscopy 
guidance—to both the patient and the operator.

Exemplary commercial systems include the Magellan (for 
endovascular procedures) and Sensei X2 (for electrophysi-
ology procedures) by Hansen Medical (now Auris Health 
Inc., USA) platforms. These platforms are teleoperated by 
the clinician—who sits at the master console—and using a 
joystick or buttons. The Magellan system makes use of 2D 
fluoroscopy for intraoperative guidance, while the Sensei 
X2 integrates 3D guidance provided by third-party software. 
Niobe (Stereotaxis, USA) is used in endovascular electro-
physiology applications (Feng et al. 2017). Catheters and 
guidewires are remotely manipulated (therefore the operator 
is not exposed to ionizing radiations) using a magnetic field 
produced by two permanent magnets, while the CARTO 3 
system provides 3D intraoperative navigation.

CorPath GRX (Siemens Healthineers, Erlangen, Germany) is 
an interesting and more recent teleoperated robotic platform for 
endovascular intervention that features partial procedural auto-
mation of guidewire manipulation (e.g., spin to cross lesions) 

https://isrg.gcs-web.com
https://isrg.gcs-web.com
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mimicking motion patterns from manual instrument handling 
(Mahmud et al. 2020). Moreover, the platform has been used for 
the first-in-human long distance robotic percutaneous coronary 
intervention (Patel et al. 2019).

In 2023, Robocath (Rouen, France) launched their new 
product R-One + , a robotic endovascular platform that 
provides physicians with reliable, precise assistance dur-
ing procedures and enhance movements creating better 
interventional conditions, by being totally protected from 
x-rays (Durand et al. 2023). The system can use third-party 
endovascular devices, an improvement with respect to other 
systems that requires proprietary devices.

A novel approach to robot-assisted endovascular inter-
vention is proposed by researchers at Imperial College Lon-
don (Fig. 4), who developed a robotic platform that features 
enhanced instruments manoeuvrability, multimodal image 
guidance (standard fluoroscopy and MRI), and vision-based 
haptic feedback (Dagnino et al. 2018; Kundrat et al. 2021). 
The system was successfully tested on in-vivo porcine mod-
els (Dagnino et al. 2022).

As mentioned above, one main limitation of the steerable 
robotic catheters is their limited capability of producing high 
manipulation forces. As highlighted in Sect. 3, concentric 

tube robots offer the necessary flexibility to manoeuvre 
through tortuous anatomy while also having a higher stiff-
ness due to inherent material and structural properties. 
Concentric tube robots have evolved to enable teleoperated 
surgery in a number of endoluminal applications (e.g., car-
diology, urology and ENT). New platforms for endoluminal 
interventions like the Ion system by Intuitive Surgical and 
the Monarch system by Auris Healthcare have recently been 
launched to the market targeting peripheral lung biopsy with 
the support of 3D image guidance complemented by robotic 
assistance.

4.5 � Medical capsules and untethered micro/nano 
robots

In the early 2000s, the possibility of taking a "pill" to cap-
ture images from deep inside the human body revolutionised 
the science of gastrointestinal endoscopy and gave rise to a 
brand-new area of study: medical capsule robots (Dupont 
et al. 2021). The latter are small enough to be swallowed by 
the patient, and while navigating the gastrointestinal tract 
acquire images of the anatomy similarly to endoscopy cam-
eras (Valdastri et al. 2012). Given Imaging (Yokneam Illit, 

Fig. 4   The CathBot platform developed at Imperial College London 
during in vivo testing on porcine models. This MR-safe system allows 
teleoperated manipulation of catheters and guidewires to complete 
cannulation tasks. The operator interacts with a tailored human–
machine interface, i.e., the master device, that incorporates human 
motion patterns (gripping, displacement, rotation) from conventional 
endovascular surgery, guided by the navigation system. The master 
device renders vision-based haptic feedback, providing the operator 

with haptic guidance. The remote pneumatically actuated and MR-
compatible robotic manipulator is placed close to the animal and 
manipulates the endovascular instrument replicating the surgeon’s 
motion commands captured by the master device. Comprehensive 
evaluation of the CathBot systems showed that it can potentially 
improve the execution of endovascular procedures, paving the way 
for clinical translation. Image adapted with permission from Dagnino 
et al. (2022)
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Israel—now Medtronic) introduced PillCam in 2001—a 
wireless capsule that can inspect the gastrointestinal tract in 
a minimally invasive way. Since then, several other devices 
have been launched, such as the EndoCapsule (Olympus, 
Japan). Please refer to (Chen et al. 2022; Liu et al. 2015; 
Valdastri et al. 2012; Ciuti et al. 2010) for a comprehensive 
review. The suboptimal field of view of the camera and the 
lack of active control for necessary interaction with tissue 
(e.g., to take a biopsy) are main limitations. Researchers 
(Gorini et al. 2006; Kwon et al. 2007) focused on improving 
the locomotion of the capsules by proposing novel actua-
tion strategies. For example, by means of an external and 
controllable magnetic field, it is possible to manipulate the 
capsule inside the patient (Ciuti et al. 2010). Other improve-
ments focused on the possibility of taking biopsies through 
the actuation of various sampling tools like magnetic-field-
actuated blades, razors, and screw-like devices (Popek et al. 
2017).

In the coming years, micro/nano robots with embedded 
advanced imaging and sensing may enhance the clinicians’ 
diagnostic and therapeutic capabilities with great potential 
for early-stage detection and precision treatment of diseases. 
However, while promising, these new technology is still 
challenging to translate into actual clinical therapies due to 
the safety concerns and the complexity of operating inside 
the human body (Soto and Chrostowski 2018). Locomotion 
is once again a challenge, and due to the small scale of the 
robots, traditional actuation and power supply are not pos-
sible. Novel solutions may make use of chemically pow-
ered motors or external magnetic and ultrasound energies 
to drive their motion (Li et al. 2017). Recent advances in 
micro/nanorobots are paving the way for precise surgical 
applications. For example, micro/nanorobotic tools, such as 
nanodrillers, microgrippers, or microbullets, offer unique 
capabilities for early and targeted intervention. Exemplary 
application include eye surgery nanorobots developed by 
Nelson’s group (Chatzipirpiridis et al. 2015); the endovas-
cular microrobots proposed by (Park et al. 2010); the robotic 

drug delivery capsule RoboCap (Srinivasan et al. 2022); or 
the magnetic helical microrobot for image-guided targeted 
therapies developed by (Yan et al. 2017).

5 � Technologies for robotic MIS

This section is dedicated to the analysis of the state of the art 
of technologies that support and complement Robotic MIS 
(Table 1), which we have categorized in two main areas: (1) 
surgical navigation, and (2) human–robot interaction and 
artificial intelligence (AI). With surgical navigation we refer 
to the integration of imaging and sensing technologies into 
the robot control architecture to provide the surgeon with 
enhanced visual and haptic guidance as well as to guide 
the robot to accomplish surgical tasks autonomously or in 
cooperation with the human operator. Human–Robot Inter-
action and AI are key technologies to enable the interaction 
between the human users and the robotic system at different 
levels of autonomy, e.g., from teleoperated control to coop-
erative interaction between operators and robot, to AI-driven 
fully autonomous robotic tasks.

This analysis complements the description of the robotic 
platforms introduced in the previous section and serves as 
an input to the discussion of future directions and challenges 
of Robotic MIS, which will be the topic of the next and final 
section.

5.1 � Surgical navigation for robotic MIS

5.1.1 � Imaging

New surgical robotic systems should work alongside sur-
geons, giving them enhanced dexterity as well as integrated 
real-time intraoperative image guiding, and sensing. The 
surgeon will be able to close the system's control loop and 
collaborate with the robot by using sight and sense data. This 
will ensure a shorter procedure, less cognitive demands on 

Table 1   Technologies that support and complement robotic MIS
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the clinical operator, and a better surgical outcome for the 
patient.

Patient-specific volumetric data is usually acquired 
pre-operatively via MRI and CT imaging and represents 
the basis to preplanning the procedure and developing the 
optimal surgical strategy. However, these imaging modali-
ties have limited temporal capabilities (i.e., it takes time to 
acquire the data). This limitation makes such image modali-
ties not yet suited to be directly used intra-operatively where 
the temporal resolution is very important. Therefore, the 
effective fusion of preoperative planning with intraopera-
tive data such as real-time imaging and sensing information 
is essential to support the clinician in delivering the best 
possible treatment (Troccaz et al. 2019). Ultrasound imag-
ing is routinely utilized to help with guidance and soft tissue 
identification in MIS. Fluoroscopy is frequently employed 
for intravascular applications, but soft tissues are not visible 
to the operator without the use of iodine contrast. Unfortu-
nately, these real-time intraoperative imagining modalities 
provide only a limited amount of data when compared to 
CT and MRI. Real-time MRI guidance is able to provide 
good soft tissue contrast, but the low temporal resolution 
limits the number of 2D images that can be acquired per 
second. On top of this, MR-compatible instruments and tools 
can only be used during MR-guided procedures. A number 
of novel MR-compatible robotic devices have been devel-
oped for clinical applications like endovascular interven-
tion (Dagnino et al. 2022), neurosurgery (Sutherland et al. 
2008), prostate interventions (Stoianovici et al. 2007) and 
breast biopsy (Groenhuis et al. 2020). With more and more 
expected MR-compatible robotic devices, advances in the 
field of real-time MR imaging are also happening (Nijsink 
et al. 2022).

The combination of preoperative models (e.g., from CT 
or MRI data) and the intraoperative data and scene (e.g., 
from fluoroscopy or ultrasound) is usually necessary, and 
requires the registration of such models to the intraoperative 
workspace. Registration between different imaging modali-
ties has been—and is—widely studied by several research-
ers (Dagnino et al. 2017; Markelj et al. 2012). While rigid 
registration of multimodal images is relatively simple to 
accomplish and maintain during a surgical procedure, track-
ing soft tissues that deforms intraoperatively is still a chal-
lenge (Lee et al. 2010; Schoob et al. 2017). Computer vision 
can be used to address this challenge, providing techniques 
to generate 3D surfaces directly from a surgical video dur-
ing laparoscopy (Pérez-Pachón et al. 2020). For example, 
with augmented reality, preoperative or intraoperative data 
can be overlaid onto the exposed surgical view. Combin-
ing and integrating in the surgical workflow preoperative 
and intraoperative images is also focus or research: clinical 
usability is a challenge here, and clinical operators should 
always be in control of the scene and of the way preoperative 

and intraoperative images are fused together and displayed. 
Intuitiveness and ease of use are also key aspects in terms 
of clinical usability of this technology. In neurosurgery and 
orthopaedic surgery the overlay of preoperative data to the 
intraoperative scene is easily obtainable via rigid registra-
tion; however, this is still a challenge when tissues deform 
during the procedure (e.g., soft tissue manipulation) (Vitiello 
et al. 2013).

One potential solution is provided by Dynamic Shape 
Instantiation, a technique that combines preoperative 3D 
motion models with a few intraoperative images. This 
modality allows a fast and computationally low generation 
of proper 3D geometry of deforming anatomy (Zhou et al. 
2018).

Regarding Robotic MIS, the intraoperative detection 
and tracking of robotics end effectors with respect to the 
anatomy is a fundamental requirement. While the coarse 
pose (position and orientation) of robotic end effectors in 
the operational workspace can be calculated via the robot 
kinematics, robotics platforms make use of external meas-
urement devices—usually mounted on the robot end-effec-
tors—that track their pose in real-time with high accuracy. 
Tracking technologies commonly used in clinical practice 
include optical sensors, electromagnetic sensors, and imped-
ance sensors (Glossop 2012).

Optical tracking devices, such as the Polaris (NDI, Can-
ada) use infrared cameras to determine the pose of tracking 
tools (usually made of reflective markers) placed on desired 
targets (Dagnino et al. 2016b). Optical tracking systems 
present a high level of tracking accuracy but suffer from 
line-of-sight issues (i.e., cameras and tracking tools must be 
maintained on a continuous unobstructed line).

EM tracking systems—e.g., the Aurora (NDI, Canada)—
consist of a field generator and detecting sensor coils. Sen-
sors detect the EM field created by the field generator, and 
a current is generated in the receiving coil. This current can 
be used to define the pose (at least 5-DOF: x, y, z, pitch, and 
yaw) of the sensor based on its phase and intensity. One limi-
tation of EM systems is their susceptibility to metal and EM 
interferences that distort the magnetic field. A benefit over 
optical technologies is the lack of line-of-site issues, and the 
small size of the sensors allows their placement inside small 
clinical devices such as catheters, guidewires, and needles.

Another family of tracking systems is based on imped-
ance and are mostly used in cardiovascular applications such 
as electrophysiological mapping and ablation. While these 
systems do not suffer of the line-of-sight issue and are not 
affected by ambient metal in the environment, they have a 
limited attainable accuracy. Biosense Webster for example 
make use of this technology in their CARTO 3 system (a 3-D 
mapping system for electrophysiology applications) which 
is used in combination of robotic catheter platforms, as 
described above. An alternative impedance-based navigation 
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approach inspired by electric fish is proposed for real-time 
intravascular navigation and mapping to preoperative models 
(Sutton et al. 2020).

5.1.2 � Sensing

In terms of robotic navigation, robotic platforms should pro-
vide haptic feedback to the operators, thus the necessary sur-
gical guidance. To this regard, active constraints and virtual 
fixtures have been developed to guide the surgeon during the 
robot-assisted procedure by gradually increasing the stiffness 
of the robotic handle when the end-effector enters a pre-
define forbidden region of the anatomy (the aforementioned 
Acrobot robot is an example). The goal is to enhance the 
safety of the procedure while reducing the cognitive work-
load of the clinician.

However, in most robotic MIS applications, direct force 
sensing at the end-effector would require the integration of 
force sensors directly on the robot, which is challenging 
and not always possible or desirable. A potential solution 
is provided by image-base haptic guidance. Researcher at 
Imperial College London (Dagnino et al. 2018; Benavente 
Molinero et al. 2019) have developed a vision-based haptic 
guidance framework for robot-assisted endovascular inter-
vention. Dynamic active constraints are generated by track-
ing via image processing the relative position of vascular 
instruments and the vasculature with the goal of guiding 
the operator during the procedure while avoiding high-force 
contacts between the instruments and the vessel walls that 
may result in dangerous injuries. For the sake of complete-
ness, the readers are kindly referred to the comprehensive 
survey on virtual fixtures and active constraints in Bowyer 
et al. (2014).

5.2 � Human–robot interaction and AI

One important aspect of robotic MIS is the interaction 
between clinical operators and the robotic platforms. 
Human–robot interfaces (HRI) constitute the main operator 
interface in terms of control input and visual representation 
of the device state and are an essential component of robotic 
MIS platforms. Therefore, it is very important that HRIs are 
designed with end user involvement and clinical application 
in mind in order to increase clinical acceptance and posi-
tive user experience. The implementation of suitable HRIs 
and related control strategies is fundamental to enhance the 
users’ skills, thus the positive outcome of the surgery.

In the last decade, various HRIs concepts were pro-
posed in MIS robotics. Many research platforms still use 
conventional joysticks which are mapped to the robot 
end-effector displacement, feeding, rotation, or bending. 
However, as mentioned above, it is important that HRIs 

present task-specific features. As an example, a bespoke 
HRI for endovascular robotic surgery has been designed 
to replicate clinical handling and motion pattern of con-
ventional catheters and guidewires (Kundrat et al. 2021). 
This approach has been well received by senior vascu-
lar surgeons due to its transparency. Thanks to the direct 
mapping of robotic manoeuvres to manual procedures, 
this design approach can reduce the operator’s training 
for a smooth transition from manual to robotic interven-
tions. Similarly, flexible electronic circuits are proposed 
for realisation of customised HRIs to enhance user control 
and feedback for example of soft robots for endoscopy 
(Gifari et al. 2019).

The interaction between the robot and the operator is 
linked to the concept of robot autonomy. Currently, most 
of the robotic platforms are still teleoperated. The actua-
tion of a remote robotic manipulator operated by the clini-
cian via a dedicated HRI is still the clinical gold standard 
in robotic surgery and represents the lowest autonomy 
level according to the taxonomy presented in Yang et al. 
(2017). Here, six independent autonomy levels are defined, 
ranging from no autonomy (level 0)—with robotic con-
trol based on direct operator input—to fully autonomous 
surgical tasks without human interaction (level 5). Cur-
rently, only partial automation of some tasks is realised 
in commercial MIS devices like the CorPath® GRX plat-
form (Corindus, A Siemens Healthineers Company) for 
endovascular applications. This system can automate the 
manipulation of a guidewire mimicking motion patterns 
from manual instrument handling (e.g., spin to cross 
lesions). Research on conditional autonomy (level 3) using 
a robotic platform with generative adversarial imitation 
learning has demonstrated feasibility is selected cannula-
tion results (Chi et al. 2020). In the future, it is expected 
that surgical robotic platforms will be able to cooperate 
with surgeons, and even to perform surgical tasks in auton-
omy (level 5). On this direction, researchers at Johns Hop-
kins and at the University of North Carolina Wilmington 
have recently demonstrated the feasibility of autonomous 
robotic laparoscopic surgery for intestinal anastomosis on 
in vivo porcine models using a setup of two robotic arms 
with embedded suturing device and endoscopic vision 
(Saeidi et al. 2022). However, the use of fully autonomous 
robots in clinical practice is still science fiction for both 
technological and regulatory issues. In terms of technol-
ogy, a better integration of imaging, sensing, and AI across 
all levels is necessary to facilitate a robot with the abilities 
from making clinical decisions to completion of surgical 
tasks. And this brings in other issues related to regulatory, 
ethical, and legal challenges, which requires harmonised 
efforts of engineers, clinicians, regulators, investors, and 
the business community in order to be addressed (Dupont 
et al. 2021).
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6 � Conclusion

This paper presented an overview of robotic platforms and 
related technologies that have contributed to the evolution 
of robotics MIS (Fig. 5). In the last few decades, the scien-
tific community has addressed a multitude of surgical chal-
lenges by proposing novel robotic technologies and intro-
ducing novel clinical methodologies and workflows. Recent 
advances focus on miniaturising robotic devices, better 
integrating advanced imaging modalities intraoperatively, 
increasing the level of autonomy and cooperation with the 
clinical team, and improving the integration within the sur-
gical workflow.

Looking at the future, interdisciplinary efforts are 
required from engineers, clinicians, and industry to create 
the next generation of robotic MIS platforms. Major future 
challenges and opportunities include the combination of 
AI technologies, the increasing availability of large clinical 
data sets, and the next generation of robotic devices. It is 
expected that robots will become smaller and smarter and 
will be able to navigate the human body with an increased 
level of autonomy, and interaction of microrobots with 
pathologies at cellular level will be possible. For example, 
dexterous and atraumatic endoscopes with compliant manip-
ulators in combination with holistic diagnostic workflows 
with imaging, online assessment of tissue lesions, decision 
support, and subsequent autonomous sample dissection may 
become reality. Integration of AI, novel imaging modali-
ties, and sensing devices will also impact other minimally 
invasive procedures, such as endovascular intervention. For 
example, action recognition applied to recordings of clinical 
imaging data (e.g., non-ionising MRI) may enable trajectory 
planning, decision making and autonomous robotic real-time 
navigation of endovascular instrumentation. Talking about 
autonomy, driven by advances in AI, fundamental research 
efforts in robotics MIS target increased autonomy levels to 
support clinical operators and to realise even better clinical 

outcomes. For example, autonomous cannulation of targets 
in the vasculature represents a highly relevant clinical use 
case (Chi et al. 2020). The integration of robotics, computer 
assistance, and control enables autonomous manipulation 
and navigation of magnetic endoscopes. Partial autonomy 
enables cooperation between the surgeon and the robot in 
certain situations, e.g., navigating challenging anatomy. 
However, despite many recent technology advances, clini-
cians will still continue to be in charge and take full control 
of the procedure, and it is envisioned that partial autonomy 
will become an important feature of clinical assistance in 
robotic surgery in the coming years. Last but not least, trans-
lational efforts are required to mature technology readiness 
levels from research to product level involving clinical use 
cases and working toward commercialization. This huge leap 
is essential for making novel technologies available to the 
broader society.
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