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Abstract
Stereo vision system and manipulator are two major components of an autonomous fruit harvesting system. In order to raise 
the fruit-harvesting rate, stereo vision system calibration and kinematic calibration are two significant processes to improve 
the positional accuracy of the system. This article reviews the mathematics of these two calibration processes and presents 
an integrated approach for acquiring calibration data and calibrating both components of an autonomous kiwifruit harvesting 
system. The calibrated harvesting system yields good positional accuracy in the laboratory tests, especially in harvesting 
individual kiwifruit. However, the performance is not in line with the outcomes in the orchard field tests due to the cluster 
growing style of kiwifruit. In the orchard test, the calibrations reduce the fruit drop rate but it does not impressively raise the 
fruit harvesting rate. Most of the fruit in the clusters remain in the canopy due to the invisibility of the stereo vision system. 
After analyzing the existing stereo vision system, a future visual sensing system research direction for an autonomous fruit 
harvesting system is justified.
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1 Introduction

The growing New Zealand kiwifruit industry has achieved 
export sales of $2.599 billion NZD during the 2020/21 
season (Zespri 2020) and the revenue is expected to be 
$6 billion NZD by 2030 (NZKGI 2020). With this rapid 
growth, kiwifruit growers are experiencing challenges asso-
ciated with labour shortages and rising labour costs. Labour 
shortages have become apparent during the 2018 harvesting 
season, as declared by the New Zealand Ministry of Social 
Development of an official seasonal labour shortage of 1200 
people for six weeks (Msd 2018). This shortage is likely 
to worsen with a projected 7000 more seasonal workers 
required for the kiwifruit industry by 2027 (NZKGI 2018). 
The second problem is rising labour costs. Pruning, thin-
ning, and picking wages make up approximately half of the 
total orchard working expenses based on a 2011/12 orchard 
model. The New Zealand minimum wage has significantly 
increased recently. The Government has largely increased 

the minimum wage by 2021 (Statistics New Zealand 2018). 
Of the 2021 labour expenses, pruning wages are the great-
est at $9,700 NZD/ha, followed by picking wages at $3,922 
NZD/ha (Mpi 2021).

Robotics and automation in agriculture can play a key 
role in the long-term solution to both the labour shortage 
and rising labour cost. As a result, an autonomous kiwifruit 
harvesting system is developed in-house as shown in Fig. 1. 
The configuration parameters of this harvesting system can 
be found in references (Williams et al. 2019, 2020). The 
system consists of four identical modules. Each module has 
a robot and a stereo vision system. The robot has a manipula-
tor for moving the gripper, which grabs the kiwifruit and a 
corrugated tube for delivering the kiwifruit to the container. 
Although each module has a stereo vision system, it is not 
just dedicated to the robot of that module. The information 
gathered by the stereo vision system in each module will be 
merged together by a scheduler, which assigns the fruit to 
be harvested to each robot. This approach can fully utilize 
the resources to complete the task with the minimum time.

This autonomous kiwifruit harvesting system has been 
employed for fruit harvesting in various kiwifruit orchards. 
The harvesting task by robot in an orchard is quite simi-
lar to the pick and place operation in the manufacturing 
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environment, but it is more challenging due to uncontrol-
lable dynamic conditions in orchards. For instance, no two 
canopies are the same, the robot base is not fixed as it has 
to navigate the orchards with many obstacles to delicately 
grab and place a fruit.

One of the significant factors that affects the economic 
viability of the system is the successful harvesting rate of 
the total detached fruit. All the fruit left in the canopy and 
dropped on the ground are considered unsuccessful harvest-
ing, and thus, dropped kiwifruit during harvesting have a 
significant impact on the orchard profit. Fruit drop study 
is commissioned to investigate the number and causes of 
unsuccessful harvesting. A total of 1456 harvesting attempts 
under various operation conditions in ten hours of video 
footage is watched and recorded manually. The attempts are 
categorized into picked, dropped and unharvested as listed 
in Table 1.

The main reason for fruit left in the canopy and dropping 
on the ground is position error between the gripper and the 
fruit location. This is a combination of inaccuracies due to 
fruit localization by the stereo vision system, kinematics of 

the robot and the coordination between the vision system 
and the robot. Calibration is one of the approaches to remedy 
these inaccuracies.

This article presents an integrated approach to obtain the 
calibration data and perform these calibration processes for 
the autonomous kiwifruit harvesting system so that its posi-
tional errors are reduced. Field tests are carried out in the 
kiwifruit orchard. The performance of the calibrated harvest-
ing system has shed light on future visual sensing system 
research for an autonomous fruit harvesting system.

2  Related work

Various robots are developed for harvesting different fruits 
such as tomatoes (Liu et al. 2015), strawberry (Xiong et al. 
2020), apples (Silwal et al. 2017), kiwifruit (Mu et al. 2020) 
etc. These robots are demonstrated in the lab environment 
and they are prototypes for design concept proofs. Most of 
them are just one robot arm with a camera for sensing a 
target fruit. They are not fully autonomous to sense over 
hundreds of fruits in the canopy simultaneously and deter-
mine the harvesting order.

In order to develop an industrial scale autonomous har-
vesting system, harvesting speed and successful harvesting 
rate are two major factors to be considered. The system 
should have multiple robot arms to perform the harvest-
ing task simultaneously so that the harvesting speed is 

Fig. 1  The kiwifruit harvesting system with four robot modules

Table 1  The categories for harvesting attempts in the previous video 
footages

Number of attempts Harvested (%) Dropped (%) Unharvested (%)

1456 50.8 24.6 24.6
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comparable with the manual harvesting speed. This implies 
that the canopy view captured by the sensing system such as 
a set of stereo vision systems must be as much as possible, 
since an autonomous robotic system for kiwifruit harvest-
ing must first perceive and then correctly position the grip-
per precisely to perform a task. Furthermore, a scheduler 
is required for efficient fruit assignment to each robot. The 
information flow for harvesting kiwifruit with four modules 
is outlined in Fig. 2.

The harvesting robotic system is positioned under the 
canopy to capture the kiwifruit distribution. The canopy is 
imaged by both camera L and R of the stereo vision system 
in each module. Since the images obtained from the cameras 
are distorted due to the lens geometrics, the images will be 
undistorted before the kiwifruit are detected based on the 
calyx recognition by using a fully convolution neural net-
work (FCNN). The positions of the detected kiwifruit are 
calculated with respect to the world frame. These positions 
from each module are fed into a scheduler so that all the fruit 

positions are merged. Then the kiwifruit is assigned to each 
robot arm for harvesting based on the minimum distance 
between the fruit and the current gripper position. Once the 
kiwifruit picking order is scheduled, the corresponding fruit 
position with respect to the world frame is transformed to the 
robot base frame. For each fruit position, the joint param-
eters are computed by inverse kinematics. The arm attempts 
to drive the gripper to harvest the kiwifruit when it receives 
the joint parameters sequentially.

The high successful harvesting rate refers to positioning 
the gripper accurately to the target kiwifruit for detachment 
from the canopy. When there is a discrepancy between the 
gripper position and the actual kiwifruit position, the fruit 
may not be correctly grabbed. These errors in the system 
have a negative impact on the successful harvest rate which 
determine the economic viability of the robotic system. A 
common approach for mitigating the positional inaccuracies 
is through calibration so that positional difference between 
the commended position and the actual position is reduced. 

Fig. 2  Information flow in the 
kiwifruit harvesting system with 
four modules
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Stereo vision system calibration, kinematic calibration and 
world—robot base frame transformation estimation are the 
major calibrations for reducing the positional inaccuracies.

A stereo vision system consists of two cameras for sens-
ing the depth information of a point. The computation is 
only related to the image locations in two cameras with their 
intrinsic and extrinsic parameters (Feng and Fang 2021). 
As a result, camera calibration is needed to obtain these 
parameters prior to the stereo vision system calibration. 
A pinhole camera model is used for modelling a camera 
(Brown 1971) which relates a 3D point with its image loca-
tion on the image plane by a projection matrix. The pinhole 
camera model is not directly applicable when the camera 
lens causes a nonlinear distortion in the image. A simpli-
fied polynomial model (Tsai 1987; Zhang 2016) is used for 
image undistortion so that the computation efficiency can be 
raised. The parameters of this model have to be estimated 
together with the camera intrinsic and extrinsic parameters 
using Levenberg–Marquardt Algorithm (Zhang 2016; Moré 
1987). The calibration process is equivalent to estimating the 
projection matrix using a set of 3D calibration points and 
their corresponding image locations. Various methods are 
employed to acquire the calibration points from a calibration 
tool (Tsai 1987; Zhang 2016).

Calibrating a stereo vision system refers to estimating the 
relative position and orientation of one camera with respect 
to the other camera. This can be determined from their orien-
tations and positions obtained in the individual camera cali-
bration procedures (Zhang et al. 2009; Cui et al. 2016). On 
the other hand, this information is also completely described 
by the epipolar geometry of the stereo vision system (Zhang 
1998) which relates the image locations on the right and 
left image plane of a 3D point by a fundamental matrix. 
The orientation and position of one camera expressed in 
the other camera coordinate frame can be obtained directly 
from the fundamental matrix (Zhang 2016). Furthermore, 
stereo camera calibrations are also developed based on the 
neutral network relating the 3D point with its image loca-
tion (Memon and Khan 2010). It is not necessary to model 
the distortion separately in this approach, but the noise and 
instabilities are also included in the network.

The major error in the position and orientation of the 
end–effector is due to the robot component tolerances and 
clearances which are termed geometric variation. The 
error can be expressed in terms of the geometric varia-
tion through the kinematic model of a robot. Kinematic 
calibration is a process of obtaining the geometric varia-
tion of a robot so that the error of the end–effector posi-
tion and orientation is minimized. The kinematic model 
of a robot depends upon its mechanical structure. For 
instance, it can be obtained by using Denavit–Hartenberg 
parameters (Rocha et al. 2011). On the other hand, the 

non-geometric parameters such as the manipulator stiff-
ness (Lightcap et al. 2008) and the compliance in the joints 
can also be included in the kinematic model (Nubiola and 
Bonev 2013). As a set of calibration points is needed for 
calibration, various methods are proposed to acquire these 
points. These include dial gauges (Xu and Mills 1999), 
laser trackers (Park et al. 2008) and 3-D camera (Motta 
et al. 2001) etc.

In summary, the modelling of various calibrations with 
the calibration data leads to a system of linear equations. 
In order to eliminate the noise influence, this system of 
linear equations is overdetermined. The research focuses 
on the autonomous robotic system accuracy including the 
coverage of the process and component models, compu-
tation efficiency of solving the system of equations and 
approaches of acquiring calibration data so that the error 
accumulation can be minimized.

3  Mathematical models for calibration

The mathematics for formalizing the calibration of the stereo 
vision system, kinematic and integration of both systems 
are briefed. Figure 3 depicts the configuration of a module 
which is part of the autonomous kiwifruit harvesting system. 
The robot has a manipulator and a gripper while the stereo 
vision system consists of two cameras R and L. There are 
four coordinate frames. 

{
Fw

}
 is the world frame, 

{
Fb

}
 is the 

robot base frame, 
{
Fr

}
 and 

{
Fl

}
 are the frame of camera R 

and L respectively. Furthermore, the frame 
{
Fr

}
 of camera 

R is also the stereo vision system frame. The relationships 
among these four frames 

{
Fw

}
 , 
{
Fb

}
 , 
{
Fr

}
 and 

{
Fl

}
 are:

where jiT is a transformation matrix of frame 
{
Fi

}
 with 

respect to 
{
Fj

}
.

A point Q located on the xy plane of world frame 
{
Fw

}
 

has a position vector Qw =
[
xw yw 0

]T . Its image q is on 
the image plane which is at the focal length f along the 
z axis of the camera frame 

{
Fr

}
 . It has a position vector 

qr =
[
ur vr

]T and ql =
[
ul vl

]T on the image plane of cam-
era R and L with point or and ol as the origin of the pixel 
frame respectively. The principal point, where the optical 
axis pierces the image plane, is at 

(
ox, oy

)
 from the origin o.

(1a)
{
Fl

}
= l

rT ∙
{
Fr

}

(1b)
{

Fr
}

= b
rT ∙

{

Fb
}

(1c)
{

Fw
}

= b
wT ∙

{

Fb
}
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The stereo vision system calibration is split into two 
parts. The calibrations are performed on the cameras in 
the stereo vision system and the system itself.

3.1  Camera calibration

Camera calibration is to obtain the intrinsic and extrinsic 
parameters of the cameras. The intrinsic parameter matrix 
is

which consists of the pixel focal lengths fx and fy of the cam-
era (focal length f) in x and y direction of the image plane. 
The extrinsic parameters are the orientations and positions 
of the cameras.

Consider a point on the xy plane of the world frame {
Fw

}
 so that its z coordinate is zero. Camera R is at an 

orientation rwR =
[
r
wr

1 r
wr

2 r
wr

3

]
 and a position rwt 

(2)K =

⎡⎢⎢⎣

fx
0

0

0

fy
0

ox
oy
1

⎤⎥⎥⎦

expressed in the world frame Fw such that rwT =
[ w

r R
w
r t

0 1

]

 . 

The point Q at 
(
xw, yw, 0

)
 in the world frame is related to 

its image q at (u, v) in the pixel frame on the image plane 
as

where s is a scale factor and H =
[
h1 h2 h3

]
 is the homog-

raphy projection matrix and hT
i
 is the i–th row of homog-

raphy H . The pixel coordinates (u, v) are un-distorted using 
Levenberg–Marquardt algorithm (Weng et al. 1992). The 
homography H is computed by stacking Eq. (3) for each 
calibration point Qi

w
 (i = 1, 2, …, n ) from a single view yields 

a system of homogenous equations

(3)s
⎡

⎢

⎢

⎣

u
v
1

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

hT1

hT2

hT3

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

xw
yw
1

⎤

⎥

⎥

⎦

(4)Ah ∙ h = 0

Fig. 3  A module of the autono-
mous kiwifruit harvesting 
system
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where Ah is a n × 9 coefficient matrix and h =

⎡⎢⎢⎣

h1
h2
h3

⎤⎥⎥⎦
 . The 

homography H can be estimated by solving Eq. (4). On the 
other hand, the homography H can also be expressed as

The intrinsic parameter matrix K and extrinsic parameters 
r
wR and rwt of a camera can be decomposed from homogra-

phy H using a number of m (m ≥ 2) views. Each view j has 
a different homography Hj (and so do Rj and tj ). However, 
K is the same for all views. The homography for each view, 
Hj = K ∙

[
r
wr

j

1 r
wr

j

2 r
wtj

]
 provides two linear equations in 

the 6 entries of the matrix D = K−T ∙ K−1 =
[
d1 d2 d3

]
 

( ∵Disasymmetricmatrix).
Letting w

j

i
= K ∙ r

wr
j

i
 ,  the rotation constraints (

r
wr

j

i

)T

∙ r
wr

j

i
= 1 ( ∀i = 1, 2) and        

(
r
wr

j

1

)T

∙ r
wr

j

2
= 0 

implies

Stacking 2 m equations from m views, a linear system of 
equations is yielded

where Az  is  a  2m × 6 coeff icient  matr ix and 
d =

[
d11d12d22d13d23d33

]T  (which are the components of 
D ). The intrinsic parameter matrix K can be obtained from 
D by Cholesky decomposition.

The extrinsic parameters for view j can be computed using 
K and Hj =

[
h
j

1
h
j

2
h
j

3

]
,

3.2  Stereo vision system calibration

The orientation and position of a camera in the stereo vision 
system relative to the other is estimated during the stereo 
vision system calibration process. As shown in Fig. 3, frame {
Fr

}
 of camera R is the stereo vision system frame,  lrR and 

l
rt are the orientation and position of camera L expressed in 

the frame 
{
Fr

}
 of camera R such that lrT =

[
l
rR l

rt

0 1

]
 . Kr and 

(5)H = K ∙
[
r
wr

1 r
wr

2 r
wt
]

(6a)
(
w
j

1

)T

∙ D ∙ w
j

1
−
(
w
j

2

)T

∙ D ∙ w
j

2
= 0

(6b)
(
w
j

1

)T

∙ D ∙ w
j

2
= 0

(7)Az ∙ d = 0

(8)D = K−T ∙ K−1

(9a)r
wRj =

[
K−1 ∙ h

j

1
K−1 ∙ h

j

2
K−1 ∙ h1 × K−1 ∙ h2

]

(9b)r
wtj = K−1 ∙ h

j

3

Kl are the matrix K (Eq. (2)) of camera L and R respectively, 
then

where F =
(
K−1

l

)T
∙ E ∙ K−1

r
=
[
f 1 f 2 f 3

]
 is the funda-

mental matrix. By substituting n pairs corresponding image 
points in Eq. (10), the components of fundamental matrix F 
can be formulated a set of homogenous equations

where Af  is a n × 9 coefficient matrix and f =
⎡⎢⎢⎣

f 1
f 2
f 3

⎤⎥⎥⎦
 . The 

estimated fundamental matrix F are obtained by solving 
Eq. (11) which also gives the essential matrix E . Conse-
quently, the orientation lrR and position lrt of camera L 
expressed in the frame 

{
Fr

}
 of camera R is calculated from 

E using single value decomposition.

where Tx is the skew-symmetric matrix of lrt.

3.3  Kinematic calibration

The end-effector location Qb with respect to the robot base 
frame 

{
Fb

}
 is expressed in terms of the robot geometric a 

and joint parameters �,

The position error ΔQb of the end-effector due to a set 
of identified geometric variation Δa is given by

where J is the Jacobian matrix of the kinematic model f  . 
The kinematic calibration is to determine the robot geomet-
ric variation Δa so that the position error ΔQb is eliminated.

Using a set of n end-effector locations at various cor-
responding joint parameters, Eq. (14) can be expressed in 
form of a set of homogeneous equations with geometric 
variation Δa =

[
Δa1 ⋯ Δam

]T (where m is the number of 
identified geometric variations)

(10)
[
qT
l
1
]
∙ F ∙

[
qr
1

]
= 0

(11)Af ∙ f = 0

(12a)E =
(
Kl

)T
∙ F ∙ Kr

(12b)E = Tx ∙ l
rR

(13)Qb = f (a,�)

(14)ΔQb = J ∙ Δa

(15)
⎡⎢⎢⎣

J1

⋮

Jn

⎤⎥⎥⎦

⎡⎢⎢⎣

Δa1
⋮

Δam

⎤⎥⎥⎦
=

⎡⎢⎢⎣

ΔQ1

b

⋮

ΔQn
b

⎤⎥⎥⎦
orAk ∙ Δa = ΔQb
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where Ak =

⎡
⎢⎢⎣

J1

⋮

Jn

⎤
⎥⎥⎦
 and Ji is the Jacobian matrix of kinematic 

model f  with i-th configuration; ΔQb =
[
ΔQ1

b
⋯ ΔQn

b

]T.
Hence, the geometric variation Δa can be estimated by 

solving Eq. (15).

3.4  Integration calibration

The stereo vision system in the autonomous robotic system 
returns the coordinates of a target location with respect to its 
frame 

{
Fr

}
 . These coordinates are transformed into the world 

frame 
{
Fw

}
 by the transformation matrix rwT (obtained from 

the camera calibration) so that locations from various stereo 
vision systems are merged together in the world frame for har-
vesting scheduling. However, the robot control modules orien-
tates and moves the end–effector to a target location expressed 
in the robot base frame 

{
Fb

}
 . The world–robot base frame 

transformation is a process that binds the domain of locations 
(expressed in the world frame) perceived by the stereo vision 
system with the domain of end-effector target locations in 
robot base frame. These two tasks need to be integrated by a 
transformation matrix wbT , which is estimated based on a set 
of n calibration points.

A set of n points Qi ( ∀i = 1,⋯ , n ) expressed in the world 
frame with position vector 

{
Qi

w
=
[
xi
w
yi
w
zi
w

]T
,∀i = 1,⋯ , n

}
 

and the robot base frame with position vector {
Qi

b
=
[
xi
b
yi
b
zi
b

]T
,∀i = 1,⋯ , n

}
 are employed to establish 

the transformation matrix.
A rigid correspondence between these two sets of coordi-

nate expression (i.e. point Qi is always expressed as Qi
b
 in robot 

base frame 
{
Fb

}
 and Qi

w
 in world frame 

{
Fw

}
 ∀i = 1,⋯ , n ) 

is assumed so that

(16)
[
Qi

b

1

]
= w

bT ∙

[
Qi

w

1

]
,∀i ∈ I

where wbT =

[
w
bR w

bt

0 1

]
 is the transformation matrix 

between the robot base frame and the world frame such that 
w
bR =

[
w
br1 w

br2 w
br3

]
 . Expanding Eq. (16) and stacking 

it for each n calibration point Qi (I = 1, 2, …, n ) gives a sys-
tem of linear equations

where AT is a 3n × 12 coefficient matrix and bt is a 3n × 1 

column vector; t =

⎡
⎢⎢⎢⎣

w
br1

w
br2

w
br3

w
bt

⎤
⎥⎥⎥⎦
 . The transformation matrix wbT 

can be estimated by solving Eq. (17). A summary of these 
calibrations are tabulated in Table 2. The column “Method” 
lists the methods to obtain the matrix in column “Outcome” 
using the equations listed in the “Equation” column.

4  Calibration

The autonomous kiwifruit harvesting system has a stereo 
vision system of two cameras as the sensor for localising kiwi-
fruit, and a robotic arm for picking the kiwifruit as shown in 
Fig. 4.

The manipulator consists of three major links and a wrist. 
These links are actuated by three servo motors installed at 
the base. At the HOME position of the robot, link 2 aligns 
with link 1 vertically. Link 3 is positioned horizontally, and 
the gripper is oriented vertically upward as shown in the fig-
ure. Figure 5 shows a schematic configuration of the kiwifruit 
harvesting robot. �1 , �2 and �3 are the joint parameters driving 
the link 1, 2 and 3 with link length are l1 , l2 and l3 respectively. 
Parameter aj , bj and cj (j = 2, 3) are link lengths of the two 
four-bar linkages.

The orientation of the gripper �4 = � −
(
� − �

�

3

)
 . The coor-

dinates of pick point Q are expressed in the robot base frame 
Fb as

(17)AT ∙ t =

Table 2  A summary of 
calibrations

Calibration Method Outcome Equation

Camera calibration A set of n calibration points H (4)
A set of m views D (7)
Cholesky decomposition K (8)
Computation

r
w
T (9)

Stereo vision system calibration A set of n calibration points F (11)
Computation E (12a)
Single value decomposition

l
r
T (12b)

Kinematic calibration A set of n calibration points Δa (15)
Integration calibration A set of n calibration points

w
b
T (17)
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where f (g,�) is the kinematic model of the robot with 

� =

⎡⎢⎢⎣

�1
�2
�3

⎤⎥⎥⎦
∈ R3 and g =

⎡⎢⎢⎣

g1
g2
g3

⎤⎥⎥⎦
∈ R3.

(18)

Qb = f (g,�) =

⎡⎢⎢⎣

�
l2sin�2 + l3cos�

�

3
+ g2

�
sin�1 + g1cos�1�

l2sin�2 + l3cos�
�

3
+ g2

�
cos�1 + g1sin�1

l1 + l
2
cos�2 + l3sin�

�

3
+ g3

⎤⎥⎥⎦
∈ R3

�
�

3
=

�

2
− �

2

− �

� = sin−1

(
a2sin

(
�2 − �3

)
e2

)
+ cos−1

(
e2
2
+ c2

2
− b2

2

2e2c2

)

e2
2
= a2

2
+ l2

2
− 2a2l2cos
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Fig. 4  The autonomous kiwi-
fruit harvesting system

Fig. 5  A kiwifruit robot arm 
manipulator with two four bar 
linkages
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The angle �′

3
 , � and � are shown in Fig. 5.

The stereo vision system has two Basler ac1920‐40uc 
USB 3.0 cameras with Kowa lens LM6HC F1.8 f6mm 1" 
format. The devices are installed in a way that two pairs 
of stereo cameras share two pairs of floodlight bars. Each 
consists of a 200 kW floodlight bar with 40 LEDs which 
illuminates the canopy with white light. A 3-D space meas-
urement system is required to perform measurements that 
will quantify the magnitude of inaccuracies contributed by 
the stereo vision system and robot of the harvesting system.

Appropriate calibrations can be applied once these inac-
curacies have been quantified. Figure 6a, b depict the setup 
of the measurement system. It consists of a frame holding 
a constraint plate which is above the robot and the stereo 
vision system. The constraint plate is connected to a sub-
frame through a ball head so that its position and orientation 
are adjustable. Its height h is also adjustable using the adjust-
ing unit. The constraint plate is made from an aluminium-
acrylic composite sandwich material which has a flatness of 

� = sin−1
(
a3sin�

e3

)
+ cos−1

(
e2
3
+ c2

3
− b2

3

2e3c3

)

e2
3
= a2

3
+ l2

3
− 2a3l3cos�

0.3 mm while suspended. A permanent marker and a dial 
gauge with resolution of 10 μm are installed at the end of 
the manipulator as shown in Fig. 6c. A small spring is placed 
under the marker so that it can be pressed against the con-
straint plate. The amount of compression is measured by the 
dial gauge. As the manipulator is moved to a measurement 
position, it leaves a mark indicating the marker position. 
The spring action of the marker is implemented so that the 
marker tip position can either be varied (higher or lower) 
across the constraint plate. Hence, the position of the marker 
can be measured with reference to the frame.

Various calibration processes can be performed by attach-
ing different calibration tools such as a checkerboard or a 
board with a grid of dots to the constraint plate. For instance, 
a checkerboard is used for camera calibration as depicted 
in Fig. 7a, b shows a board with a grid of dots attached 
to the constraint plate for stereo vision system calibration, 
kinematic calibration and integration calibration. The world 
frame (in red) is set at the centre of the calibration tool as 
shown.

As the robot moves back and forth, dots are drawn on 
the board fixed with the constraint plate. The board can 
then be removed from the frame and placed on a bench 
to measure the dot positions. Measurements are made by 
measuring the deviation in the x and y directions of the dots 

Fig. 6  The measurement system

(a) (b)

(c)



359Integration of stereo vision system calibration and kinematic calibration for an autonomous…

1 3

from their target positions. A 10 × etched optical magnifier 
with an etched in ruler with 100 μm increments as shown in 
Fig. 8a is used during the measurement process to get sub-
millimetre resolution accuracy. An example measurement is 
shown in Fig. 8b (the optical magnifier is not quite aligned 
with the grid in this image as it is difficult to both align the 
magnifier and take an image simultaneously). The centre of 
the dot shown is estimated by measuring the position of the 
outside edges of the dot and using them to calculate a centre-
point. In this case the centre of the dot would be measured as 
1.5 mm away from the reference line. The system performs 
dot position measurements for verifying the kinematic cali-
bration and integration calibration.

4.1  Camera calibration

The cameras in the stereo vision system are calibrated indi-
vidually to obtain their intrinsic and extrinsic parameters. A 
checkerboard (A1—80 mm squares—9 × 6 vertices, 10 × 7 
squares) is installed on the constraint plate. The cameras 
are calibrated individually using 50 images taken at mul-
tiple orientations, covering the entire field of view of the 
cameras. The matrix H and D are estimated using Eqs. (4) 
and (7). Moreover, the intrinsic and extrinsic parameters are 
computed by Eqs. (8) and (9).

Fig. 7  The calibration tools

(a) (b)

(a) (b)

Fig. 8  Dot position measurement
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4.2  Stereo vision system calibration

The checkerboard is replaced by a board with a grid of dots 
(13 × 17 dots is spaced 50 mm apart in the x range of ± 400 mm 
and y range of ± 300 mm) for stereo vision system calibration. 
Images of the dots are captured by both cameras. The dots 
are detected using a simple colour filter that generates a black 
and white mask for both images based on pixels that meet 
the criteria of the filter. From these masks, the pixel locations 
of the centroid of the distinguished dots are calculated and 
are stored as a list of key-points. These key-points are then 
processed through the undistortion matrix of the stereo vision 
system and then matched between the left and right images. 
The fundamental matrix F and essential matrix E are then 
estimated using Eqs. (11) and (12). Consequently, the transfor-
mation matrix lrT of camera L with respect to the frame 

{
Fr

}
 

of camera R is obtained from the essential matrix E by single 
value decomposition.

4.3  Kinematic calibration

The board with a grid of dots is also used for kinematic 
calibration. The marker is driven by the manipulator so that 
it moves to each dot on the constraint plane sequentially. The 
marker leaves a dot at each actual position. The joint param-
eters � are recorded at each dot. These dots are the actual 
positions of the marker. The joint parameters are substituted 
into the kinematic model (Eq. (18)) to obtain the calculated 
positions. The differences in each pair of calculated posi-
tion and actual (marked) position of the marker define the 
position error ΔQb . The geometric variations are estimated 
iteratively using Eq. (15).

4.4  Integration calibration

An array of dots  Qi
w

(
xi
w
, yi

w
, zi

w

)
(∀i = 1,⋯ , n) expressed 

in the world frame 
{
Fw

}
 is used for calibrating the robot 

base and the stereo vision system integration. The end-
effector with the marker is driven to each of these points 
and their corresponding joint parameters are recorded. The 
coordinates of this array of dots Qi

b

(
xi
b
, yi

b
, zi

b

)
(∀i = 1,⋯ , n)  

expressed in the robot base frame 
{
Fb

}
 are obtained by sub-

stituting the joint parameters into the calibrated kinematic 
model as modelled by Eq. (18). The transformation matrix 
w
bT is computed by solving Eq. (17).

4.5  Solving a system of linear equations

All the calibrations result in solving a system of equations 
such as Eqs. (4), (7), (11), (15) and (17) in the forms of

(19)A ∙ x = b

When b = 0 such as Eqs. (4), (7) and (11), the solving of 
this system of homogeneous equation can be formulated as 
estimating x̂ by

A Loss function L
(
x̂, �

)
 is defined such that

Taking derivative of L
(
x̂, �

)
 with respect to x̂ yields an 

eigen value problem

x̂ is an eigen vector with smallest eigen value � of matrix 
AT ∙ A minimizing the Loss function L

(
x̂, �

)
 . Once variable 

x̂ is estimated, the corresponding matrix can be obtained by 
re-arranging the components of variable x̂.

If b ≠ 0 , the equations are linear such as Eqs. (15) and 
(17), the least squares solution x̂ is estimated

However, Eq. (15) Ak ∙ Δa = ΔQb in kinematic calibra-
tion is a non-linear system and Δa is computed by iteration 
until convergence. At the j-th iteration,Δa , ΔQb and Ak are 
denoted as Δaj , ΔQ

j

b
 and Aj

k
 ( Aj

k
 contains aj and � , the joint 

parameters for n calibration points) respectively,

5  Verification of calibration processes

A constraint plate with a circular array of dots is used for 
accuracy verification. These dots are arranged in polar coor-
dinates with the origin at the home position of the robot. 
The verifications are conducted at three height level h of 
700 mm, 800 mm and 900 mm. The measured dots are plot-
ted with the circular array of dots for comparison. The plot 
is shown as arrows pointing from the measured dot positions 
to the dot positions in the circular array. The length of the 

(20)���
x

(
x̂
T
A
T ∙ Ax̂

)
such that x̂

T
∙ x̂ = 1

(21)L
(
x̂, �

)
= x̂

T
AT ∙ Ax̂ − �

(
x̂
T
∙ x̂ − 1

)

(22)AT ∙ Ax̂ = �x̂

(23)x̂ =
(
ATA

)−1
ATb

(24a)A
j

k
= A

j

k

(
a
j
,�

)

(24b)Δa
j
=

((
A
j

k

)T

∙ A
j

k

)−1

∙
(
A
j

k

)T

∙ ΔQ
j

b

(24c)a
j+1

= a
j
+ Δa

j

(24d)ΔQ
j+1

b
= A

j

k
∙ Δa

j



361Integration of stereo vision system calibration and kinematic calibration for an autonomous…

1 3

arrow is proportional to the error magnitude in radial and 
circumferential direction. The colour of the arrow is based 
on the measured z error, which is the depth of that data point, 
with purple being below the average depth and yellow being 
above.

In the stereo vision system verification, the sensed dot 
(measured dots) locations expressed in the world frame 

{
Fw

}
 

are calculated. The discrepancies between the sensed dots 
and the dots in the circular array are plotted in Fig. 9. The 
summary of the plot is tabulated in Table 3.

In the kinematic accuracy verification, the end-effector 
is driven to each point of the circular array. The joint 
parameters are recorded. The calculated end-effector 
location for each set of joint parameters is obtained from 
Eq. (18). The positional errors between these calculated 
locations and their corresponding dot locations in the cir-
cular array are plotted in Fig. 10. Figure 10a, b show the 
positional errors before and after the kinematic calibra-
tion. The summary of the plot is tabulated in Table 4.

The accuracy of integration calibration is verified by 
considering the hand–eye coordination accuracy of the 
autonomous harvesting system. A circular array of dots is 

sensed by the stereo vision system. The coordinates of the 
dots Qi

r
 are computed and expressed in the stereo vision 

system coordinate frame 
{
Fr

}
 . These coordinates are then 

transformed into the world frame 
{
Fw

}
 to yield coordi-

nates Qi
w
 . By using the transformation matrix wbT , these 

dot coordinates are transformed to Qi
b
 in the robot frame {

Fb

}
 . The joint parameters �i corresponding to each dot 

coordinate Qi
b
 are obtained by inverse kinematics. Eventu-

ally, the end-effector is driven by these joint parameters 
�
i(∀i = 1,⋯ , n) to mark the dots on the constraint plate. 

The differences between the original circular array of 
dots and the marker positions are plotted in Fig. 11. The 
results are summarized in Table 5.

6  Lab tests

Several tests are set up to check the performance of the 
autonomous kiwifruit harvesting system after calibra-
tions using the fake kiwifruit in the laboratory as shown 
in Fig. 12a. As the kiwifruit tends to grow in cluster, the 
fake kiwifruit is arranged as individual fruit, three fruit clus-
ters, two fruit cluster and seven fruit cluster as shown in 
Fig. 12b–e.

The autonomous kiwifruit harvesting system is placed 
under the fruit which are hung on the lab ceiling. The fruit is 
localized by the stereo vision system and the corresponding 
joint parameters of the manipulator are then computed to 
drive the gripper in picking the fake kiwifruit. The outcomes 
are categorized into three categories of picked, dropped and 
unpicked as tabulated in Table 6.

Fig. 9  Stereo vision system 
accuracy of the kiwifruit har-
vesting system after calibration

Table 3  Summary of stereo vision system accuracy before and after 
calibration

Average error Maximum error Error range

r (mm)  − 1.02  − 3.15 5.65
θ o 1.52 2.54 3.41
z (mm)  − 1.75  − 8.2 14.8
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Fig. 10  Kinematic accuracies of 
the kiwifruit harvesting system 
before and after calibration

(a) Un-calibrated kinematic accuracy.

(b) Calibrated kinematic accuracy.

Table 4  Summary of kinematic 
accuracy before and after 
calibration

Average error Maximum error Error range

Un-calibrated Calibrated Un-calibrated Calibrated Un-calibrated Calibrated

r (mm) 4.92 1.71 12.47 2.56 20.5 2.75
θ o 3.54 1.35 − 5.5 3.23 7.78 2.2
z (mm) − 0.76 0.91 2.15 2.06 3.05 2.25
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7  Orchard tests

Orchard tests are conducted in the several commercial Hay-
ward orchards to determine the performance of the cali-
brated harvesting system as shown in Fig. 13.

Four bays of kiwifruit are harvested to determine the per-
formance. Each bay is divided into several zones. At each 
zone, the harvesting system is instructed to pick the fruit that 
are visible by the stereo vision system. At the end of harvest-
ing in a zone, fruit harvested and fruit dropped are manually 
picked and counted. Fruit left in the canopy is also manually 
harvested and counted. The harvesting processes are video 
recorded so that a more detailed analysis can be performed 
later. The results are summarized in Table 7 which are com-
pared to the performance before calibration.

8  Discussion

The calibrations can be categorized into two parts. The 
stereo vision calibration and kinematic calibration. Ste-
reo vision techniques use two cameras to view the same 
object. The orientations of both cameras installed in the 
stereo vision system are the same and the distance apart is 

known. However, these are hard to guarantee the accuracy 
due to manufacturing issues, especially the fixture holding 
the cameras. Such inaccuracies affect the extrinsic param-
eters of the cameras. The stereo vision system calibration 
is mainly to evaluate these parameters using a set of cali-
bration points and to eliminate the unwanted noise. Since 
the cameras are operated under the optical principles, a 
linear model and a set of linear equations are employed 
to model the system except the lens distortion. The lens 
distortion is non-linear and this complicates the calibration 
process. The effects of lens distortion can be serious if it 
is not properly undistorted.

Different from stereo vision system calibration, kin-
ematic calibration is performed to minimize the differ-
ence between the desired and actual gripper position. A 
kinematic model of a manipulator, which depends on its 
mechanical structure, is required for calibration. The kin-
ematic model is usually a non-linear function due to the 
revolution joints. As a result, the kinematic calibration 
results in a system of non-linear equations and iterative 
processes are required to solve the equations.

In the kinematic calibration accuracy plot, those 
"crosses" around the plot centre at (0, 0) indicate that the 
r and θ coordinates of the commanded and actual positions 
are very close. In addition, the z coordinate differences 
are also close to zero. This shows that the assumption of 
approximating the gripper orientation to be vertical to sim-
plify the inverse kinematic computation is feasible when 
the gripper is around its home position.

In fact, the plots in Figs. 9, 10, 11 show that the accu-
racy of the autonomous harvesting system is very high. 
This also reflects in the laboratory test. The success-
ful picking rate for individual fake kiwifruit is 100%. 

Fig. 11  The accuracy of hand–
eye coordination

Table 5  Summary of the hand–eye coordination accuracy

Average error Maximum error Error range

r (mm) 0.7 3.15 5.65
θ o 1.52 2.54 3.41
z (mm) 1.95 7.12 11.8
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(a) Lab test set up. 

(b) Individual fake kiwifruit. (c) 3 fruit cluster. 

.retsulctiurf7(e).retsulctiurf2(d)

Fig. 12  Laboratory tests of autonomous kiwifruit harvesting system
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However, this rate drops when the fruit cluster size 
increases. The average picking rate drops from 100% for 
individual fruit to 67% for seven fruit clusters (with a min-
imum at 57% for three fruit clusters). The actual successful 
harvesting rate in the orchard test is even lower than that 
of the laboratory test results. The calibration improves the 
positioning of the gripper so that the number of entry fail-
ure, grip failure, target and non-target knockoffs, and fruit 
throws and drops are reduced. As a result, the fruit dropped 
percentage decreases from 24.6 to 10.7% after calibration. 
However, the successful harvesting rate just rises from 
50.8 to 55%. This indicates that those fruits remain in the 
canopy instead of harvested as the percentage of fruit left 

in the canopy increases from 24.6 to 34.3%. This is due to 
the “offline” stereo vision system for sensing the canopy 
information, which refers to capturing the canopy once at 
the beginning of a harvesting cycle.

The operation of the autonomous harvesting system at a 
specific zone under the canopy follows a harvesting cycle 
as shown in Fig. 14a. The stereo vision system on each 
module images the canopy. Then the fruits are detected and 
their positions in the world frame are located. The located 
fruit positions from each module are collated by a scheduler 
which assigns the target fruit for each robotic arm dynami-
cally based on the principle of minimum distance with a set 
of rules for collision prevention. When the robot controller 
receives a target fruit location from the scheduler, the joint 
parameters are calculated and the manipulator drives the 
gripper to perform the harvesting. Then the next target fruit 

Table 6  Results of laboratory tests of autonomous kiwifruit harvest-
ing system

No. of picks Picked Dropped Unpicked

Individual fruit Over 300 100% 0% 0%
2 fruit cluster Over 320 87.5% 6.25% 6.25%
3 fruit cluster Over 360 57% 19% 23.8%
7 fruit cluster Over 420 67% 28.57% 4.76%

Fig. 13  Orchard test for autonomous kiwifruit harvesting system

Table 7  Orchard test result comparison to before and after calibration

Calibration No. of picks Harvested Dropped Left

Before 1456 50.8% 24.6% 24.6%
After 5327 55% 10.7% 34.3%
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for the robot will be determined by the scheduler until all tar-
get fruit in the scheduler are assigned. Then the autonomous 
harvesting system is moved to another zone.

Reviewing the harvesting videos shows that most of the 
kiwifruit grow in clusters. These fruits are not at the same 
level. Some are at a level higher than the others. Before the 
calibration, once a fruit is harvested, the gripper usually 
knocks off the neighbouring fruit because of the position 
inaccuracy. After calibration, the position error is reduced. 
The fruit is correctly placed into the gripper and the neigh-
bouring fruit are not knocked off. However, these fruits in 
the cluster are obstructed by the stereo vision system before 

harvesting. They are not visible to the stereo vision system 
and are not scheduled for harvesting. Hence, they remain 
in the canopy even though they are not knocked off. As an 
alternative, the harvesting cycle is re-run as a “sub-cycle” 
again to pick those fruit left in the canopy at that zone. This 
sub-cycle repeats until all the fruit are clear from the canopy 
(Williams et al. 2019). The flow charts of these processes are 
outlined in Fig. 14b. Hence, the harvesting time is increased 
depending upon how the kiwifruit grows clustery.

In order to increase the economic viability of the har-
vesting system, a real-time stereo vision system (Jin and 
Tang 2009; Matsumoto and Zelinsky 2000) is proposed 

Fig. 14  The harvesting cycle 
of the autonomous harvesting 
system at a specific location

(a) The harvesting cycles using the “offline” stereo vision systems. 

(b) The harvesting cycles using the “offline” stereo vision systems with “sub-cycles”. 

(c) The harvesting cycles using the “real-time” stereo vision systems. 

Schedule Detect 
All 

done? 

Arm 
control 

Move 

No 

Yes 

A harves�ng cycle 

A harves�ng cycle 

Detect 

Move 

Schedule 
All 

done? 

Arm 
control 

No 

Yes Kiwifruit
?

Yes 

No

A harves�ng sub-cycle 

A harves�ng cycle 

Schedule Detect 
All 

done? 

Arm 
control 

Move 

No 

Yes 



367Integration of stereo vision system calibration and kinematic calibration for an autonomous…

1 3

for the next development phase as depicted in Fig. 14c. 
With the real-time stereo vision system, the instantaneous 
canopy information is obtained, and the scheduler should 
update the harvesting order accordingly if an obstructed 
kiwifruit becomes visible. Furthermore, the target fruit 
allocation by the scheduler should also be based on evenly 
workload distribution to minimize the cycle harvesting 
time. This can be achieved by introducing competition 
among the robots while they are cooperating to complete 
the harvesting task. With the real-time stereo vision sys-
tem, visual servoing control (Chaumette and Hutchinson 
2006, 2007) can also be implemented into the manipulator 
controller to achieve a more accurate fruit harvesting.

9  Conclusion

Video analysis is performed to investigate the reasons for 
high fruit drop rate during harvesting using an autonomous 
kiwifruit harvesting system. It is revealed that the position 
error between the gripper and the fruit is the main cause 
of fruit drop during harvesting. In order to reduce these 
position errors, an integrated approach for stereo vision 
system calibration and kinematics calibration is proposed 
for the autonomous kiwifruit harvesting system.

A measurement system is set up to acquire the data for 
both calibrations and verifications. Laboratory tests and 
orchard tests are arranged to investigate the performance 
of the harvesting system in real application environments. 
Based on the measurements after these calibrations, it is 
found that the position error of the harvesting system is 
greatly reduced. This is actually reflected in the high suc-
cessful picking rate (100%) in the laboratory test of pick-
ing individual fake kiwifruit. The fruit dropped rate is also 
greatly improved in the real orchard tests because of the 
position error reduction. However, the successful harvest-
ing rate is not impressively improved as most of the fruit 
remain unharvested in the canopy even though they are 
not knocked off due to position error. This is mainly due to 
the fact that canopy information such as fruit distribution 
is obtained by the stereo vision system before harvest-
ing starts. These fruits are not harvested because they are 
obstructed to the stereo vision system as they are hidden 
by their neighbouring fruit.

As a result, a real-time stereo vision system is required 
during harvesting to sense the dynamic environment of can-
opy information to increase the successful harvesting rate 
and economic viability. Nevertheless, this will complicate 
the harvesting scheduling and workload distribution among 
the robots. As the autonomous kiwifruit harvesting system 
consists of multiple robots, the harvesting task is cooperative 
and competitive. The robots cooperate to harvest the fruit 

and they compete with each other so that the harvesting is 
completed in a minimum of time.
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