
Vol.:(0123456789)1 3

International Journal of Intelligent Robotics and Applications (2023) 7:13–30
https://doi.org/10.1007/s41315-022-00262-y

REGULAR PAPER

An imitation learning approach for the control of a low‑cost
low‑accuracy robotic arm for unstructured environments

Fabio Bonsignorio1,2 · Cristiano Cervellera3 · Danilo Macciò3 · Enrica Zereik3

Received: 6 December 2021 / Accepted: 4 September 2022 / Published online: 11 November 2022
© The Author(s) 2022

Abstract
We have developed an imitation learning approach for the image-based control of a low-cost low-accuracy robot arm. The
image-based control of manipulation arms is still an unsolved problem, at least under challenging conditions such as those
here addressed. Many attempts for solutions in the literature are based on machine learning, generally relying on deep neural
network architectures. In typical imitation approaches, the deep network learns from a human expert. In our case the network
is trained on state/action pairs obtained through a Belief Space Planning algorithm, a stochastic method that requires only
a rough tuning, particularly suited to unstructured and dynamic environments. Our approach allows to obtain a lightweight
manipulation system that demonstrated its efficiency, robustness and good performance in real-world tests, and that is repro-
ducible in experiments and results, despite its inaccuracy and non-repeatable kinematics. The proposed system performs
well on a simple reaching task, requiring limited training on our quite challenging platform. The main contribution of the
proposed work lies in the definition and real-world testing of an efficient controller, based on the integration of Belief Space
Planning with the imitation learning paradigm, that enables even inaccurate, very low-cost robotic manipulators to be actu-
ally controlled and employed in the field.

Keywords Inaccurate lightweight manipulator · Imitation learning · Belief space planning · Soft robotics

1 Introduction

Many different control strategies have been proposed in the
literature for robotic manipulation, mainly dealing with a
specific problem and environment. Still, the proposed solu-
tions often fail to achieve the necessary robustness and dex-
terity, especially with lightweight arm structures operating

in open-ended environments and/or with inaccurate or soft
bodies, noisy sensing and actuation, as in our case. Fur-
thermore, many of the systems proposed in the literature
are only simulated or very few tests in real-world environ-
ments have been performed. This is very limiting since the
transition from simulation to reality always strongly reduces
the system nominal performance (which are usually difficult
to realistically evaluate in simulation). This appears very
clearly in Bonsignorio and Zereik (2021), which explicitly
demonstrated that, for lightweight, inaccurate robotic struc-
tures like H 2Arm, classic control algorithms are not robust
enough whenever a substantial number of real-world tests
are performed. In fact, the behaviour of a classic PID (Pro-
portional Integral Derivative) control was there evaluated
against a stochastic BSP (Belief Space Planning) methodol-
ogy; conclusions drawn from such comparison highlighted a
twofold important result: the BSP has a success rate remark-
ably higher than the PID (93.3 vs 40.0%), but in the mean-
time it is much slower (31.5 s vs 109.6 s as mean execution
time throughout all the experiments).

Recent approaches to the manipulation problem in
unstructured and uncertain environments rely on machine

 * Enrica Zereik
 enrica.zereik@cnr.it

 Fabio Bonsignorio
 fabio.bonsignorio@heronrobots.com;

fabio.bonsignorio@fer.hr

 Cristiano Cervellera
 cristiano.cervellera@cnr.it

 Danilo Macciò
 danilo.maccio@cnr.it

1 Heron Robots, Via Malta 3/7, 16121 Genoa, Italy
2 FER, University of Zagreb, Unska Ulica 3, 10000 Zagreb,

Croatia
3 Institute of Marine Engineering, Italian National Research

Council, Via de Marini 16, 16149 Genoa, Italy

http://orcid.org/0000-0001-6380-3554
http://crossmark.crossref.org/dialog/?doi=10.1007/s41315-022-00262-y&domain=pdf

14 F. Bonsignorio et al.

1 3

learning techniques. Such methods typically exploit the
reinforcement learning (RL) paradigm to derive controllers
able to learn and adapt in order to successfully execute the
required tasks. In most proposed approaches a deep neural
network is employed, trained either on datasets featuring
state variables or directly on images.

In our paper an imitation learning approach is proposed
to train a low-accuracy low-cost arm to perform a simple
reaching task, a critical and necessary step in every manipu-
lation problem.

The adoption of the imitation learning strategy allows
to cope with the effort required to perform experiments
with a real robot. In fact, with respect to approaches based
on reinforcement learning, exploiting the experience of an
expert teacher avoids the need for a very large number of
experiments before the controller starts learning something
meaningful. Indeed, a very large number of experiments
would be impossible in practice with a low-accuracy arm
and uncertain setting such as those here considered. In par-
ticular, we implemented the behavioral cloning paradigm
(Bain and Sammut 1999), which involves setting the prob-
lem of imitation as a supervised learning problem.

However, while in the typical imitation learning paradigm
the controller learns from a human expert, we follow the
less common approach of training from an algorithmically
generated dataset, like for example in Seita et al. (2020)
and train a deep neural network on datasets coming from
a Belief Space Planning (BSP) algorithm, representing the
teacher to be imitated by the network. The BSP belongs
to the class of stochastic algorithms, which provide better
performance with respect to deterministic ones in unstruc-
tured and dynamic environments. It is able to concurrently
drive the manipulator to the goal and reduce uncertainty;
hence, it is very suitable for manipulation in open-ended
environments. The main drawback of the BSP approach is
the computational burden to obtain the next action, which
severely limits its real-time applicability. The introduction of
a neural controller that learns to imitate its behavior is thus
aimed at providing a controller that yields, in real-time, the
same control action that the BSP would compute in the cur-
rent conditions. In our case, the data obtained from the set
of system trajectories corresponding to state-control action
pairs computed through the BSP method are used to learn
a mapping able to associate to each control the correspond-
ing output.

In this context, the main objective of the work is not
only to define an imitation learning technique for inac-
curate structures, but also to support the analysis through
real-world experimentation. To this purpose, a particularly
difficult test architecture has been selected, consisting in
a very inaccurate and non-repeatable structure, namely
H 2Arm (Bonsignorio and Zereik 2021). Such system is an
ad hoc designed, 3D-printed open-source tendon-driven

robotic arm, with a total cost of less than 200 € overall and
a weight of less than 1 kg. Its intrinsic unknown dynamics
and uncertainties make it very suitable to simulate errors
and non-modelled effects, in order to stress and test the algo-
rithmic approach. H 2Arm motors are not endowed with any
sensor (e.g. encoders) providing current position. The only
feedback signal is produced by a simple low-quality camera
mounted on the arm wrist. Hence, the robotic platform turns
out to be very challenging for controllers, in terms of both
uncertainties and unknowns: it is not possible to compute
inverse and forward kinematics from measurements, and a
model-free controller should be applied.

As in the previous work Bonsignorio and Zereik (2021),
also the work reported here aims at the assessment and
validation of the proposed control strategy through the con-
ducted experimental real-world test campaign on H 2Arm.

In our experiments performed under various conditions
the neural BSP-based controller yielded a strong improve-
ment in the execution time with respect to the original BSP:
overall, the neural controller turned out to be about 10 times
faster than the BSP one, making it actually exploitable for
real-time robust manipulation. Moreover, a great advantage
of this system is its high experimental reproducibility: dif-
ferent controllers may be applied and their performance
compared.

We remark that we tested our system in a laboratory con-
text but we target the underwater environment for H 2Arm
final application; this is one of the strongest motivations that
justify the employment of a stochastic control framework
integrated with a neural controller. In fact, the unstructured
environment poses great challenges in terms of control per-
formance and decisional autonomy, and is one of the major
reasons why robots are not really employed in everyday
tasks in close contact with humans, yet.

Concerning the proposed controller, although more
advanced imitation learning strategies could be applied
(such as, for instance, inverse reinforcement learning),
behavioral cloning was chosen for our preliminary tests
due to its simplicity. In fact, this basic imitation scheme
proved to be good enough to yield suitable performance in
our experiments. The developed deep learning controllers
have been able to execute the required task successfully in
all the tests; they showed good extrapolation properties and
robustness also in case of noise, injected to stress the system
and draw conclusion about its robustness.

The paper is organized as follows: in Sect. 2 a comprehen-
sive literature overview is provided, while the experimental
robotic platform is described in Sect. 3. The proposed con-
trol strategy is detailed in Sect. 4 and the obtained results are
presented in Sect. 5. Finally, Sect. 6 draws conclusions and
depicts the foreseen future research activities.

15An imitation learning approach for the control of a low‑cost low‑accuracy robotic arm for…

1 3

2 Related works

H2Arm is a specific example of compliant robot arm. It is a
common opinion that soft structure robots could, in princi-
ple, make the manipulation task easier, therefore, a number
of partially compliant robots has been proposed. In particu-
lar tendon-driven manipulators have been proposed to imi-
tate human arms driven by muscles. Traditional approaches
to robotic manipulation control rely on linearized models
and accurate sensing and actuation. Reducing weights and
increasing compliance, as with H 2Arm and typically in soft
robotics applications, leads to a dramatic increase in non-lin-
earities and uncertainties both in the dynamics and the meas-
ures, thus making most widely used methods unsuitable. The
most promising approaches are based on stochastic plan-
ning and control methods such as BSP, or through Machine
Learning (ML) and in particular Deep Learning (DL). These
approaches will be discussed later in this section. The Gum-
miArm is an example of compliant robotic manipulator,
similar to ours, 3D-printed and driven by a combination of
accurate (and expensive) digital servos with encoders and
viscoelastic composite tendons. It has been used to test sev-
eral advanced bio-mimetic control strategies (Stoelen et al.
2016). A non-linear robust control strategy for a tendon-
driven manipulator is presented in Okur et al. (2015). The
proposed approach considers, like in our work, uncertainties
and external disturbances. However, such control strategy
needs to know actuator positions and velocities, and also
forces generated on tendons; moreover, it has been tested
only in simulation. A visual-servoing control for a cable-
driven soft manipulator is reported in Wang et al. (2016),
where the authors discuss the effect of system linearization
and approximation, reducing system complexity but also
sacrificing accuracy. A planning algorithm for a soft planar
arm is proposed in Marchese et al. (2014), where a series of
constrained optimization problems is solved to find a locally
optimal inverse kinematics, introducing errors and limita-
tions. The environment is supposed to be known a priori ,
which is a very strict and limiting hypothesis. In Subudhi
and Morris (2009), soft computing techniques are applied to
the control of a multi-link flexible manipulator. Such meth-
odology is suited to control systems that are particularly
difficult to be modelled, and provides a greater tolerance
to imprecision. An overview of soft robotics approaches is
presented in Rus and Tolley (2015), whose conclusion is
that an effective control of such structures needs new models
and algorithms to iteratively learn the necessary manipula-
tion skills.

While, for example, advanced solutions leveraging on
the group regularities in the movement and local displace-
ments of mechanical systems (Bonsignorio 2013), have
been proposed for the control of systems like ours, we have

focused on a simpler and more widely used approach, i.e.,
BSP (Zereik et al. 2015; Agha-Mohammadi et al. 2014; Platt
et al. 2010). Belief Space Planning belongs to the family of
stochastic control approaches, aimed at increasing the effec-
tiveness and robustness of control methods on ‘real-world
robots’. In Bonsignorio and Zereik (2021) authors report
on the performance comparison of a standard PID (Propor-
tional Integral Derivative) and Belief Space Planning control
implemented on H 2Arm. That work clearly demonstrates the
capability of the BSP, with very rough tuning, to perform
a simple reaching task. However, this method is too slow
for real-time control. This motivated us, as told above, to
find more effective solutions based on an imitation learning
approach exploiting deep neural networks.

Machine Learning approaches have focused on the iden-
tification (and composition) of ‘atomic’ chunks of motion
trajectories, ‘motion primitives’ and related planned tasks,
‘motor skills’ through Reinforcement Learning, for example
based on policy gradients and various policy search tech-
niques (more on this point later in the section). To cope with
the real-time requirements of robots, other approaches have
developed incremental online learning schemes suitable for
high dimensional spaces. Similar methods have been applied
to the learning of the inverse kinematics – the joint trajec-
tories corresponding to the desired end-effector trajectories
– of the robot itself. An adaptive neural network controller
is proposed in Xie et al. (2010), but only simulation has been
used to evaluate the approach, without any experimental val-
idation. Other approaches that exploit neural networks are
in Rolf et al. (2015), which is based on learning the inverse
kinematics/statics of soft manipulators and Thuruthel et al.
(2017), where the forward dynamics of the model is learned
using a RNN (Recurrent Neural Network) in order to enable
predictive control.

Reinforcement Learning and especially Deep Reinforce-
ment Learning (DRL) methods have been adapted to various
planning, grasping and manipulation problems. Efforts have
been dedicated to make learning faster – implementing asyn-
chronous and parallelization processes – and to develop real-
istic simulation – and appropriate simulation trial randomi-
zation procedures – to reduce the needed time-consuming
learning runs on ‘real robots’, (Kober et al. 2013; Rusu et al.
2016). In Bonsignorio et al. (2020) some key theoretical
issues are discussed, such as: how to exploit the manifold
structure of data, how to characterise temporal features, how
to implement unsupervised learning, and multifidelity rein-
forcement learning as well as the assurance and verification
of autonomous operations, see Bonsignorio et al. (2020).
Reference DL implementations of Reinforcement Learning
approaches can be found in the DeepMind Control Suite
(Tassa et al. 2018) and OpenAI Gym (OpenAI 2020). Both
platforms implement a number of test cases in simulation
in a partially reproducible way. New approaches based on

16 F. Bonsignorio et al.

1 3

Contrastive Unsupervised Learning have shown some prom-
ise, see Srinivas et al. (2020). Deep reinforcement learning
is exploited in more recent research, as in Gu et al. (2017),
which proposes the utilization of many different robots to
gather data to train the neural network; this reduces the train-
ing time, but increases complexity (for instance, it is difficult
to integrate different experiences learnt by different robots
and to obtain a generalizable policy) and costs (many robots
needed). A similar approach is adopted in Ebert et al. (2018),
where a Model-Predictive Control (MPC) is combined with
a retrying option to learn manipulation skills; as in previ-
ous work, a really huge amount of training data is collected
and employed, using two different robots. A lower amount
of training demonstrations is needed in Zhu et al. (2018),
where a model-free deep reinforcement learning algorithm
is applied to visuomotor tasks. However, a quite low success
rate is obtained, when simulation results are transferred to
real-world experiments.

The imitation learning framework, that we merge in our
work with BSP for H 2Arm control, consists of a heteroge-
neous set of techniques able to emulate a control scheme
through the imitation of the controlled system itself during
its operating phase. The first techniques studied in this field
are those referring to behavioral cloning (Bain and Sam-
mut 1999). Some behavioral cloning methods make use of
local models based on kernel functions and also provide
notions of convergence to the reference controller (Macciò
2016; Macciò and Cervellera 2012); others use different
approximators and are more application-oriented (Bojar-
ski et al. 2016; Sammut et al. 1992). In order to overcome
the issue of having a not enough representative dataset,
some behavioral cloning methods have evolved further by
introducing techniques to artificially increase the available
dataset (Pomerleau 1989; Giusti et al. 2016). In particular,
the method known as Dataset Aggregation (DAgger) (Ross
2011), which has recently shown promising performance
in several applications (such as, e.g., Ross 2012), is note-
worthy. These techniques, however, show limitations when
applied in contexts where the specific target is complex and
the control scheme to be imitated is implemented by one or
more human operators. In this case, techniques that try to
infer the latent reward that is at the base of the policy gener-
ated by the reference controller are preferred. Probably, the
best known methods in this case are the Inverse Reinforce-
ment Learning (Abbeel and Ng 2004) and its derivative,
the Apprenticeship Learning (Ng and Russell 2000), which,
as mentioned, propose to use the trajectories generated by
the controlled system to infer the reward signal. This, in
turn, allows to reconstruct the reference controller. Other
methods belonging to this category are the (Deep) Maxi-
mum Entropy Inverse Reinforcement Learning (Ziebart et al.
2008; Wulfmeier et al. 2015), the Guided Cost Learning

(Finn et al. 2016) and the Generative Adversarial Imitation
Learning (Ho and Ermon 2016).

The imitation learning paradigm, for tasks similar to the
one we study, has been proposed by several authors. In Rah-
matizadeh et al. (2018) a cheaper manipulator is considered,
being endowed with rigid links and better sensors w.r.t. H 2
Arm. A behavioral cloning approach is applied to such plat-
form in order to learn some manipulation tasks; again, a
huge amount of data (acquired through demonstration by
a human operator) is needed to train the system. A virtual
reality-based teleoperation approach is employed for collec-
tion of (again, a lot of) training data in Zhang et al. (2018).
In Odetti et al. (2020), a behavioral cloning approach based
on reservoir computing, trained by inexperienced human
teachers during a festival, was successfully implemented
for the control of a marine Unmanned Surface Vessel (USV).

Almost all of the cited works exploiting machine learning
techniques employ robots with quite complex and expen-
sive structures (that can be easily modelled starting from
the mechanics), with precise and accurate sensors and a rea-
sonably repeatable behavior. We follow an approach simi-
lar to the one described in Seita et al. (2020). However, in
comparison to that study, where the authors train the imita-
tion learning systems on a synthetic dataset generated by
a fabric simulator and an algorithmic supervisor that has
access to complete state information, there are significant
differences. In our case we use the data calculated by a sto-
chastic planner.

3 H
2
Arm

In this section we present H 2Arm, the reference soft robotic
structure we consider for the proposed methodology. Both its
hardware and software architectures are described, as well
as its “standard” controller based on BSP.

3.1 Hardware and software architecture

H2Arm, depicted in Fig. 1, is a 3D-printed low-cost and
inaccurate manipulator designed and developed within the
Joint Lab between the Institute of Marine Engineering of
the Italian National Research Council and Heron Robots.
It has 4 degrees of freedom (DOFs), J1 − J4 ; the first three
are rotational joints, while the last one is a prismatic joint.
Each rotational joint is equipped with two counteracting
motors winding up a tendon-like rope. The last prismatic
joint is directly moved by one motor, without the need of
tendons. The joint configuration allows to perform vis-
ual-servoing tasks consisting in reaching by tracking and
centering objects with respect to the image plane. H 2Arm
is equipped with a commercial low-cost and inaccurate
webcam, mounted on top the mobile part of J4 , and hence

17An imitation learning approach for the control of a low‑cost low‑accuracy robotic arm for…

1 3

moving integrally with the last prismatic joint. H 2Arm low-
level is driven by a Pololu Mini Maestro 12-Channel USB
Servo Controller (Pololu 2020), suitably generating PWM
(Pulse Width Modulation) signals to drive the motors.

The software architecture is composed by two differ-
ent modules: i) the vision-based recognition algorithm, in
charge of measuring the red blob 3D position, and written
in C++; ii) the neural controller (that will be introduced in
Sect. 4), in charge of driving H 2Arm to track and center the
blob in the image plane, and written in Python. This last
module receives the measurements about the red blob 3D
position with respect to frame < c > (refer to Fig. 1) from
the recognition algorithm through a standard TCP socket.

The same simple vision-based recognition algorithm imple-
mented and exploited in Bonsignorio and Zereik (2021) was
employed to retrieve the red blob position in 3D space with
respect to the arm camera. This allows to directly compare
system performance with respect to different trials and con-
trollers. H 2Arm introduces many uncertainties in the control:
first of all, its tendon-based structure produces unwanted
forces that affect motion; furthermore, the (very low-cost
and inaccurate) motors do not provide reliable and repeat-
able motion, and the only available feedback comes from the
camera, measuring the arm distance from the center of the
object of interest. The camera itself introduces an error on

Fig. 1 3D-printed H
2
Arm and

related reference frames: < c >
is the camera frame centered
on the webcam, and < w > is
the world frame, assumed to be
placed in the center of the first
joint (the big yellow horizon-
tal disk). The main defined
kinematic quantities for H

2
Arm

control are also depicted (color
figure online)

Fig. 2 H
2
Arm architecture

18 F. Bonsignorio et al.

1 3

the object estimation. A block diagram summarizing the H 2
Arm architecture is depicted in Figure 2.

3.2 Reference BSP controller

The reference control scheme under which H 2Arm operates
is based on the Belief Space Planning algorithm. For details
on theory and experiments of the BSP technique applied to
 H2Arm, the interested reader can refer to Bonsignorio and
Zereik (2021) and related supplemental material (https://
ieeex plore. ieee. org/ ielx7/ 100/ 95353 19/ 91862 01/ supp1-
30142 79. pdf? arnum ber= 91862 01).

BSP is a stochastic control strategy able to concurrently:
(i) optimize the goal-reaching probability, and (ii) reduce
uncertainties acting on the system. The disturbance affecting
the observations is represented by the algorithm with a linear
Gaussian model and the assumption of maximum likelihood
observations is made. As proved in Platt et al. (2010), this
assumption allows to apply non-linear optimization tech-
niques in the belief space (that is the juxtaposition of the
mean and the covariance matrix columns of the state). The
actual system state is, in fact, not directly measured and only
its (Gaussian) probability density function (pdf) is assumed
to be known (the pdf mean is close to the current arm posi-
tion and the covariance matrix represents the confidence of
this information).

In brief, the algorithm works as explained in the
following:

• a trajectory moving the end-effector from the current
point to the next one is planned;

• such trajectory is linearly approximated by Direct Tran-
scription with a series of segments1;

• the algorithm moves piecewise on the trajectory. The
transition between segment extremes is accomplished
through LQR that computes the needed control action,
namely the Cartesian velocity �∗(t) to be followed by the
end-effector. This procedure is iterated until the final goal
is reached;

• from the current reference point, the reference arm joint
velocities q̇∗(t) are computed through inverse kinemat-
ics. Then, the reference motor velocities u∗(t) are esti-

mated by the robot Low-Level Control (LLC), applying
the motor model. The LLC is in charge of managing the
physical interaction with the robot hardware;

• at each step, the algorithm checks how much the com-
puted plan contributes to the final goal reaching. If the
planned trajectory deviates too much from the desired
one, re–planning occurs.

The BSP algorithm is graphically summarized by the flow-
chart of Fig. 3.

Notice that the joint velocities q̇∗(t) are obtained exploit-
ing a model of the robot equations. In our case, due to the
inaccurate structure of H 2Arm, the resulting values are
expected to be very noisy. Yet, the BSP algorithm is able to
cope with these uncertainties. In fact, since the BSP control
actions balance the objective to reach the goal with the one
to reduce the covariance matrix of the observations, they
can also be considered as information-gathering actions.
Note that the planning is performed in a higher dimensional
space (with respect to the state space), even in case of a
coarse-grained approximation of the belief space. Further-
more, the belief state dynamics is non-linear, stochastic and
inherently under-actuated (the number of control inputs for
the physical system is lower than the belief space dimen-
sion). To this aim, it is possible to simplify this very com-
plex problem through the already mentioned assumption of
maximum likelihood observations. This assumption means
that the current system state is supposed to be the most likely
state according to the past observations and the performed
actions; this is equal to state that the control actions are able
to achieve their intended purpose, thus leading the system
to the desired state.

4 DL‑BSP control

Despite the robustness and efficiency of BSP, obtaining the
optimal action for the current state requires a computational
effort that is, in general, unfeasible in real-time tasks. Here,
we trained a deep neural network to imitate (clone) the BSP
controller behavior, and be able to replicate it in real-time
without the aforementioned computational burden. We refer
to this controller as DL-BSP.

We assume that all the notation in the following is referred
to frame < c > (see Fig. 1). Let us assume the time horizon
during which the task is performed is divided in T discrete
intervals at which actions are performed and measurements
are collected. Denote by r∗ = [r∗

x
, r∗

y
, r∗

z
]� the desired final

position of the end-effector with respect to the target object.
Define, for t = 0,… , T − 1 , r(t) = [rx(t), ry(t), rz(t)]

� as the
current end-effector position with respect to the object,
estimated by the camera at time t. Finally, define the error
e(t) = r(t) − r∗ = [ex(t), ey(t), ez(t)]

� at time t. Figure 1

1 Direct transcription is a method of trajectory optimization (in our
case in the belief space) used together with non linear optimization
techniques, in our case Linear Quadratic Regulation (LQR). Direct
Transcription methods translate a continuous optimization problem,
like in our case that of optimizing a trajectory in the belief space,
into a discrete one by evaluating the problem in a finite set of nodes
obtained by time discretization. The set of differential equations gov-
erning the motion in the belief space is ‘transcribed’ into a finite set
of equality constraints. This allows to solve the optimal trajectory
problem with the degree of accuracy of the numerical optimizer used
(the interested reader can refer to Betts (2010) for details).

https://ieeexplore.ieee.org/ielx7/100/9535319/9186201/supp1-3014279.pdf?arnumber=9186201
https://ieeexplore.ieee.org/ielx7/100/9535319/9186201/supp1-3014279.pdf?arnumber=9186201
https://ieeexplore.ieee.org/ielx7/100/9535319/9186201/supp1-3014279.pdf?arnumber=9186201

19An imitation learning approach for the control of a low‑cost low‑accuracy robotic arm for…

1 3

provides an overview of the defined kinematic vectors r∗ , r(t)
and e(t) for H 2Arm in the execution of the required visual-
servoing task.

In order to train the deep neural controller, the first step
consists in defining the training set of pattern/targets for
a supervised learning procedure. As said, the patterns are
derived from the arm trajectories obtained by BSP, while the
targets are derived from the corresponding actions.

To this purpose, recall that u∗(t) is the vector of the
velocities assigned by BSP to the various motors at stage t.
In particular, we write u∗(t) = [v∗

1
(t),… , v∗

M
(t)]� , where M

is the total number of motors. At each stage t, the optimal
Cartesian velocity reference �∗(t) given the error e(t) is
computed by the BSP algorithm, to which correspond the
motor velocities u∗(t) obtained as described in Sect. 3.2.

We consider two setups, corresponding to two different
training sets for the behavioral cloning procedure:

• Cartesian Deep Learning (CDL) control: the deep
learning model provides, at every temporal stage t, an
approximation of the optimal Cartesian velocity �∗(t) ;
then, the corresponding motor velocities are computed
through inverse kinematics and the LLC model.

Fig. 3 Flowchart of the BSP algorithm and its relation with the neu-
ral controllers MDL and CDL. Note that m

0
 and mgoal are the initial

and final belief state mean, respectively; m̂
1∶s and û

1∶s are the planned
trajectories for the belief state mean and the related control actions;
�∗(t) is the Cartesian reference velocity for the end-effector, q̇∗(t) and
u∗(t) are the reference joint trajectories and the motor velocity com-
mands, respectively. Finally, q̄j are the joint positions and �

1
 , �

2
 are

pre-defined thresholds related to the belief state and the Cartesian
error, respectively. DT, LQR and EKF stand for Linear Quadratic
Regulator, Direct Transcription and Extended Kalman Filter; IK and
LLC denote Inverse Kinematics computation and Low-Level Control
of the robot. The blocks whose behavior is incorporated in the CDL-
BSP and MDL-BSP are highlighted in green and violet, respectively.

20 F. Bonsignorio et al.

1 3

• Motor Deep Learning (MDL) control: the deep learning
model directly estimates the vector of motor velocities
u∗(t).

The Cartesian control involves the approximation of a
generally smoother and lower-dimensional function with
respect to the motor velocities. On the other hand, the
motor control avoids the need to compute the pseudo-
inverse of the Jacobian matrix that, in case of robots with
many links and joints, can be very large and lead to numer-
ical issues. Further, for some kinds of robots, the structure
exact kinematic model could be unavailable.

Consider a set of N successful trials obtained with the
BSP, i.e., tasks in which the robot successfully reached the
target within a maximum number of steps. In the case of
Cartesian control, for j = 1,… ,N , define the j-th trajectory
as

where the subscript j in e and e∗ denotes the j-th trajectory
and Tj is the final time before trajectory j converged to the
target. Similarly, we define the j-th trajectory in the case of
motor control as

According to the definitions above, a trajectory is the collec-
tion of the observed errors, paired with the corresponding
feature of the BSP control scheme that we want to imitate
with the learning model.

The aim of the imitation controller is to learn from these
sets of trajectories a mapping from the observed errors and
the desired BSP output feature, in order to estimate online
the action that would be yielded by the BSP approach for
the current state.

For the sake of introducing the imitation learning scheme,
let us focus on the motor control setting and denote by u(t)
the vector of motor velocities produced by the imitation
controller at stage t. Notice that in the case of Cartesian
control it is sufficient to replace u(t) with �∗(t) in the rest of
the section.

For the generation of the closed-loop control u(t), due to
the dynamic nature of the robotic system, we consider as
approximating architecture a neural network of the recur-
rent kind (RNN), i.e. a structure endowed with memory (see
Goodfellow et al. 2016 for a detailed description of these
models). The generic mathematical form is given by

where �1 is a set of parameters to be optimized, g is the
output function (e.g., a linear function), and h(t) is an inter-
nal state vector (usually called ”hidden state”) that keeps

�j = {(ej(0), �
∗
j
(0)),… , (ej(Tj − 1), �∗

j
(Tj − 1))}

�j = {(ej(0), u
∗
j
(0)),… , (ej(Tj − 1), u∗

j
(Tj − 1))}

(1)u(t) = g(h(t), �1)

track of the evolution of the input, thus, implementing the
memory mechanism. In particular, we have

where f is the state equation ruling the internal state and �2 is
the set of parameters devoted to the internal state evolution.
In general, a RNN typically receives as input a regressor that
contains the last l states, i.e., �l(t) = [e(t),… , e(t − l + 1)]� ,
and applies recursively the equations (1) and (2) l times
determining the output u(t). Figure 4 provides a graphi-
cal representation of a RNN as described by equations (1)
and (2).

The optimization of the sets of parameters �1 and �2 cor-
responds to the training procedure of the approximating
architecture. This operation relies on the minimization of
an empirical cost defined on the basis of the observed (error/
BSP control) pairs from the successful trajectories. More
specifically, we define the following mean squared error

where uj(t) is the output of the RNN in correspondence to
the regressor �(j)

l
(t) = [ej(t),… , ej(t − l + 1)]� . The optimal

parameters �∗
1
 and �∗

2
 are determined by minimizing the cost

J; this can be done using standard training procedures rely-
ing on the well-known backpropagation algorithm applied
to the RNN structure (Goodfellow et al. 2016).

For the imitation of the BSP scheme we consider deep
RNNs, i.e., neural architectures obtained by a cascade of
recurrent layers. However, we employ a more sophisticated
version of the “naive” RNN presented in equations (1)
and (2); it is in fact known that such neural networks suf-
fer from some structural problems, such as the vanishing/
exploding gradient (Goodfellow et al. 2016). Therefore, in
order to implement the recurrent deep architecture, we make
use of multiple layers of the popular Gated Recurrent Unit
(GRU) (Cho et al. 2014) with a linear output layer, which

(2)h(t) = f (h(t − 1), e(t), �2)

J(�1, �2) =

N�

j=1

Tj−1�

t=0

‖uj(t) − u∗
j
(t)‖2,

Fig. 4 Graphical representation of the RNN structure implementing
the proposed controller

21An imitation learning approach for the control of a low‑cost low‑accuracy robotic arm for…

1 3

is more robust in the training phase with respect to simple
RNNs.

The parts of the standard BSP whose behavior is imitated
by the neural controllers (CDL and MDL) are highlighted in
the flowchart of Fig. 3.

5 Experiments

The imitation learning strategies described above were
implemented and tested on H 2Arm. The tests involved the
execution of a visual-servoing task consisting in centering
a red blob in the image plane, acquiring 3D information
on the error through a camera. This task was chosen to
be the same as in Bonsignorio and Zereik (2021), in such
a way to have a basis for comparison. For details about
H 2Arm hardware and the software implementation of the
task, refer to Sect. 3.1.

Our tests were designed to evaluate the performance of
the deep neural controller (introduced in Sect. 4) when used
in place of the BSP-based one. Both kinds of neural con-
trol methods described in Sect. 4 (i.e. Cartesian and motor)
were considered. The tests also involved additional noise
injected in the system in such a way to evaluate system
robustness. In the remainder of the section we provide a
detailed description of the setup for the testing campaign,
and present the main results of the experiments , together
with some discussion.

5.1 Experimental setup

The neural controllers were trained using data collected
from N = 97 successful trajectories generated by the BSP
approach. The training trajectories always started with the
red blob in view (totally or partially) in two of the four cor-
ners of the image, namely the top right corner - denoted as
‘Ref1’ - and the bottom left corner - denoted as ‘Ref2’ (the
top left and bottom right corners are denoted as ‘Ref3’ and

‘Ref4’, respectively). The relative position between the red
blob and the arm wrist, estimated by the robot camera, was
used (as the only available information about the arm end-
effector) to train the neural controllers, together with the
corresponding commands sent to motors. As said, a noise
was injected into the system, more specifically added to the
end-effector position r(t) estimated by the camera at time t.
In particular, since our long-term objective is underwater
manipulation, the generated noise is distributed according
to the Pierson-Moscowitz spectrum (Pierson and Moskowitz
1964). According to this formulation, the sea elevation is
expressed as

where for each wave j = 1,… ,W , Aj is the amplitude, �j is
the angular frequency, kj is the wave number and �j is a ran-
dom phase angle; x is the wave location from the origin.
Angles �j are constant and uniformly distributed in the range
[0, 2�] ; for deep water, the relation kj =

�2

j

g
 holds. In these

experiments, the additional noise generated at each step
accordingly to the Pierson-Moskowitz spectrum was of the
form n = w� along each considered axis, where w is a scal-
ing factor. We tested our system versus two different noise
magnitudes, namely w = 0.035 and w = 0.05 ; an example of
the temporal behavior of such noise for each scale factor is
shown in Fig. 5.

The scale factor values were chosen in light of the stand-
ard BSP experimental campaigns previously conducted and
detailed in Bonsignorio and Zereik (2021). The BSP train-
ing trajectories have been executed both with or without
additional noise injected into the system. In particular, 34
trajectories were executed without noise, and the remain-
ing 63 were executed with added noise as described above.
Note that in the training trajectories different scale factors

(3)� =

W∑

j=1

Aj sin
(
�jt − kjx + �j

)

Fig. 5 Samples of generated noise for w = 0.035 and w = 0.05

22 F. Bonsignorio et al.

1 3

w were tested (for details please consult Bonsignorio and
Zereik 2021). Figures 6 and 7 illustrate some examples of
BSP training trajectories with and without injected noise.

Concerning the deep models training process, the param-
eter l, as explained in Sect. 4, was chosen equal to 3, thus
the N trajectories yielded a total number N∗ = 1801 of input/
output pairs used to train the neural models.

The deep neural models employ GRU neural units, as said
in Sect. 4, for the recurrent layers. In particular, for the Car-
tesian control we used a network with 2 layers of 50 GRU
units, while for the motor control, due to the more complex
dynamics and larger output, we employed 5 layers of 500
GRU units. The network parameters have been optimized
with the ADAM algorithm (Goodfellow et al. 2016), using
batches made of 16 samples. All the network models have
been implemented with PyTorch2.

For each neural controller, 20 tests were performed
without noise injection and 20 with noise injection with
w = 0.035 . Each set of 20 experiments was equally distrib-
uted among the 4 different initial conditions (i.e., red blob
initially in view in all the 4 corners of the image). Hence,
a total number of 80 test experiments was performed. The
test starting points in ‘Ref1’ and ‘Ref2’ are always different
with respect to those of the training trajectories. In general,

“starting from Refn” actually means “starting from a random
point in the corner area Refn”. Concerning the tests starting
from ‘Ref3’ and ‘Ref4’ (i.e., the corners never used during
the generation from the training trajectories), they have been
included to evaluate the ability of the neural controller to
learn and extrapolate, not only to imitate. After these tests,
we conducted some in-depth analysis on the MDL control-
ler, focusing on: i) the effect of varying the value of the
neural controller parameter l; ii) the effect of a larger noise
(w = 0.05) acting on the system.

To evaluate the performance of the neural controllers, we
employ the norm of the Cartesian error (expressed in [m])
between H 2Arm end-effector current position and its desired
final position (right in front of the red blob). This is used to
compute two main performance indices:

• the number of motion steps required to reach the goal
(here represented by the error threshold level e∗ = 0.03
m), starting from an initial common distance (here set to
0.18 m);

• the actual execution time (in seconds) required to reach
the goal as above.

Fig. 6 Examples of BSP training trajectories (without injected noise)

Fig. 7 Examples of BSP training trajectories (with injected noise)

2 http:// www. pytor ch. org.

http://www.pytorch.org

23An imitation learning approach for the control of a low‑cost low‑accuracy robotic arm for…

1 3

5.2 Results

Both the Cartesian and motor controls allowed to obtain
100% success rate in all tests, with and without injected
noise. Table 1 reports a summary at a glance of the obtained
results. In particular, it reports the average number of steps
and the average time needed to reach the goal over the
above-mentioned sets of 20 test trajectories for both the

Cartesian and the motor deep-learning controllers, both
with and without noise. The mean time-per-step of the single
trajectory, averaged over the set of test trajectories, is also
reported. For a comparison, the average number of steps,
the average execution time and the mean time-per-step are
reported in the table also for the 97 trajectories used for the
training, obtained with the BSP algorithm.

Table 1 Comparison of the
mean number of steps, the
mean execution time and the
mean time-per-step between the
training and test trajectories for
both neural controllers, both
with and without additional
noise. Note that the training
trajectories correspond to the
97 successful BSP experiments
described in Bonsignorio and
Zereik (2021)

Test trajectories

Neural Controller Noise Average steps Average time [s] Av. mean time/step [s]

CDL No 18.25 6.98 0.38
MDL 19.45 7.53 0.39
CDL Yes 37.1 14.66 0.39
MDL 31.7 12.33 0.38
Training trajectories
Neural Controller Noise Average steps Average time [s] Av. mean time/step [s]
CDL No 15.74 73.83 5.29
MDL
CDL Yes 13.91 91.08 8.55
MDL

Fig. 8 Norm of the error and corresponding component-wise behavior in two example trajectories - Cartesian control without injected noise.
Notice that trajectory 5 starts from Ref1, while trajectory 11 starts from Ref3

Fig. 9 Norm of the error and corresponding component-wise behavior in two example trajectories - Cartesian control with injected noise. Notice
that trajectory 4 starts from Ref1, while trajectory 19 starts from Ref4

24 F. Bonsignorio et al.

1 3

Overall, the table shows how the proposed methodology
proved to be quite effective in providing a controller able to
successfully execute the task. In fact, we can see that, even if

it takes a few more steps, the neural controller always yields
convergence almost 10 times faster than the original BSP
algorithm in terms of execution time.

Fig. 10 Mean over the 20 test trajectories of the number of steps required to reach decreasing error levels, without (left) and with (right) injected
noise - Cartesian control

Fig. 11 Norm of the error and corresponding component-wise behavior in two example trajectories - motor control without injected noise.
Notice that trajectory 9 starts from Ref1, while trajectory 16 starts from Ref4

Fig. 12 Norm of the error and corresponding component-wise behavior in two example trajectories - motor control with injected noise. Notice
that trajectory 1 starts from Ref2, while trajectory 19 starts from Ref4

25An imitation learning approach for the control of a low‑cost low‑accuracy robotic arm for…

1 3

Concerning the Cartesian control, Figs. 8 and 9 report
the norm and corresponding component-wise behavior of
the error in two example trajectories, without and with
injected noise, respectively.

Figure 10 illustrates the mean (over the 20 test trajec-
tories) number of steps required to reach decreasing error
levels, both for the noise-free and the noisy tests. These
graphs show how relaxing the final error threshold require-
ment (e.g., setting it to 0.05 m) the system would reach the
goal in a considerably smaller number of steps.

Regarding the motor control, Figures 11 and 12 report the
norm and corresponding component-wise behavior of the
error in two example trajectories, without and with injected
noise, respectively.3

Figure 13 illustrates also for this control scheme the mean
(over the 20 test trajectories) number of steps required to
reach decreasing error levels, both for the noise-free and
the noisy tests.

Fig. 13 Mean over the 20 test trajectories of the number of steps required to reach decreasing error levels, without (left) and with (right) injected
noise - motor control

Fig. 14 System behaviour while facing variation in: neural controller parameter l (left) and additional noise magnitude (right)

3 Please note that all the trajectories (and the corresponding error
norm) of the 80 performed test experiments are reported in a Supple-
mental Material file to this article.

26 F. Bonsignorio et al.

1 3

5.3 Additional experiments

After the first test campaign, a series of ad-hoc additional
tests have been performed to investigate the robustness of
the controller. In particular, we investigated how changing
the value of parameter l in the neural controller affects the
system behavior, as well as testing the performance of the
controller in presence of larger noise. For these tests we
focused on the MDL scheme, which is the most interesting
one. In fact, it does not require the pseudo-inversion of the
robot Jacobian matrix that, in case of more complex robots,
can generally be of large size or, in case of soft and compli-
ant robots, could be highly inaccurate. In the first round of
additional experiments we performed the same tests as in the
previous experimental campaign using l = 2 and l = 5 . For
each parameter value, 40 experimental runs were performed,
20 with and 20 without additional noise, and with the blob
starting position equally distributed among the 4 image cor-
ners. Performance of the system when using l = 2 and l = 5
are reported in Fig. 14 (left); the system behavior is quite
similar in all the cases, with a slight improvement in the case
l = 3 , showing that the parameter l is not a crucial factor for
the success of the method, which is 100% in all cases.

Then we conducted a last case study aimed at assessing
the MDL system behavior while facing additional noise with
a larger magnitude. Thus, 20 more runs (5 with the red blob
initial position in each image corner) were performed inject-
ing in the system the already described Pierson-Moscowitz

distributed spectrum with w = 0.05 . Success rate is again
100% ; the system behavior is depicted in Fig. 14 (right).
From the plots, it is clear how the system behavior remains
quite the same when facing a larger noise (the number of
required steps is slightly higher but the difference is very
small), thus underlining the system robustness to environ-
mental disturbance.

5.4 Discussion

All the performed tests were successful and had quite good
performance in terms of convergence and execution time.
Regarding the CDL-BSP, all 20 test trajectories without
noise are such that the goal is reached in few steps; only in
some cases it shows some oscillations. These oscillations are
mainly due to the camera estimation error and, in any case,
they do not prevent task completion, even if the threshold
below which the task is considered completed is quite low
(0.03 m). Not surprisingly, the most oscillating component is
the one along axis z of frame < c > , namely the distance of
the end-effector from the red blob along the camera optical
axis. The trajectories with noise exhibit more sever oscilla-
tions, and such behavior is again mostly due to the noise and
the estimation error on axis z of camera frame < c > . The
MDL-BSP scheme turns out to yield similar performance,
with respect to the Cartesian one, in the noise-free case; only
it takes on average some more steps and some more time (the
mean time difference is 0.55 s). Instead, in the noisy case

Fig. 15 Comparison among the proposed H
2
Arm visual-servoing

task and the “Reacher” task of the DeepMind Control Suite. The
main characteristics of each task are: a) DeepMind Reacher – a 2-link
planar structure that has to reach a target, executed only in simula-
tion, with known proprioceptive measures, known target location,
simulated scenario with known noise structure, many training data
needed, AI directly on image pixels. Tasks are strongly observable,
position and velocity observations depend only on the current state.
Sensor readings only depend on the previous transition, see Tassa

et al. (2018). Courtesy of DeepMind. b) H
2
Arm – 4-link 3D manipu-

lator, experimented in real world, without proprioceptive information
(the only sensor on-board is the wrist-mounted camera), additional
noise injected in some of the experiments, very few needed training
data (97 BSP trajectories logged in previous tests where the arm was
controlled by the BSP algorithm only, without any neural control-
ler), images are pre-processed by a vision algorithm and AI works on
measures estimated by vision

27An imitation learning approach for the control of a low‑cost low‑accuracy robotic arm for…

1 3

the motor deep-learning controller employs, on average, less
steps and less time with respect to the CDL-BSP (the mean
time difference is 2.33 s).

This difference is probably due to the fact that the CDL
controller relies on a classical inverse kinematics approach
to achieve the transition between the Cartesian and the joint
operative spaces, while the MDL controller directly gener-
ates reference velocity for motors, without the need of an
inverse kinematics computation. The first case likely implies
a higher sensitivity to noise, since this last is filtered by the
pseudo-inverse of the Jacobian matrix, while in the MDL
case the reference commands are directly generated and sent
to motors.

As already hinted, we computed the mean time per each
step. As expected, this value is constant for both neural con-
trollers, both with and without noise. On the contrary, it
varies in the case of the standard BSP approach. This is
due to the difference in terms of execution time between the
neural and standard control strategies: the time employed by
neural controllers to compute the next command to be sent to
the robot is negligible with respect to the motion execution
time, where as the BSP computation time (needed to solve
the optimization problem at each sample time) is in general
greater than the motion execution time (and potentially even
higher in case of replanning).

For the sake of providing an example of comparable task,
Figure 15 illustrates the DeepMind “Reacher” task (Tassa
et al. 2018) along with our visual-servoing one, highlighting
the main differences.

6 Conclusions and future work

The proposed deep neural controllers turned out to be quite
effective for the considered visual-servoing blob centering
task. DL-BSP allowed to obtain 100% success rate in all
our tests both with Cartesian and motor control schemes,
proving to be robust towards both camera estimation errors
(above all on depth z component wrt frame < c >) and addi-
tional Pierson-Moskowitz noise directly injected on the red
blob 3D position measurement at each sample time. This
confirms that the combination of H 2Arm structure and the
proposed control schemes is a good candidate for the control
of light inaccurate arms. Both controllers exhibited the capa-
bility to extrapolate the tasks learned by imitation. In fact,
in all the trajectories starting in the Ref3 and Ref4 corners,
the arm end-effector always reached the desired final posi-
tion in front of the red blob, even if no trajectory starting
in those corners was provided in the training set. Looking
at Table 1, we can notice that the controller trained on the
Cartesian dataset is faster than the one trained on the motor
velocity dataset in tests without noise, while the latter is
faster in tests with noise; the same alternate behavior can

be reported analysing the required steps for both control-
lers (the Cartesian control scheme needs less steps than the
motor one for the case without additional noise, while it
takes more steps when additional noise is injected into the
system). The performance of both controllers slightly dete-
riorates when additional noise is injected into the system,
but the times remain remarkably smaller than the standard
BSP control scheme behavior.

The motor control strategy, by directly generating
commands to the arm motors, can result more efficient in
terms of online computational burden, since it does not
require the pseudo-inversion of the robot Jacobian matrix,
as already hinted. Overall, in our experiments the deep
learning imitation approach allowed to retain the optimal-
ity and strong robustness properties of the BSP algorithm,
while allowing fast execution times that make it actually
applicable to real-time operations. Thus, it appears to be
a quite promising option to enable the successful opera-
tion of low-cost, modular, inaccurate and non-repeatable
robotic structures such as H 2Arm.

Moreover, according to preliminary experiments that
we additionally performed by manually displacing the
red blob in the scene, we expect that the same approach
will work for moving targets too, only relying on the same
dataset and without further training. In fact, the system
showed good performance also in such preliminary tests,
whose results are comparable to the previously conducted
experiments.

Future work will be aimed at performing more complex
tasks, investigate the robustness to different training dataset,
testing in unstructured environments (and marine contexts
in particular) also comparing against more advanced imita-
tion learning schemes (e.g., inverse reinforcement learning).
From an experimental point of view, the middle-to-long term
objective of the present research activity will focus on test-
ing the proposed control strategy on a marinized manipula-
tor (possibly with a more accurate structure allowing for
ground-truth) in a relevant underwater environment, to com-
pare system performance.

An interesting issue is to get a better understanding of the
reduced training effort of the imitation deep learning net-
work when the training sets are obtained through an applica-
tion of an optimized algorithm such as the belief space plan-
ning (whether we consider the Cartesian or motor velocities
approach). We have implemented our learning and control
strategy on an open-source real-world arm performing a
task similar to that of the ‘reacher’ scenario in Tassa et al.
(2018) with a more complex robot on a very low-cost low-
accuracy platform with no proprioceptive sensors and very
basically actuated motors. We will investigate if and how
our approach can be scaled to more complex tasks, in order
to determine the real reach of the proposed methodology.

28 F. Bonsignorio et al.

1 3

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s41315- 022- 00262-y.

Declarations

 Conflict of interest The authors declare that they have no conflicts of
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Abbeel, P., Ng, A.Y.: Apprenticeship learning via inverse reinforce-
ment learning. In: Proceedings of the Twenty-First International
Conference on Machine Learning, pp. 1–8 (2004)

Agha-Mohammadi, A.A., Chakravorty, S., Amato, N.M.: Firm: Sam-
pling-based feedback motion-planning under motion uncertainty
and imperfect measurements. The International Journal of Robot-
ics Research 33, 268–304 (2014)

Bain, M., Sammut, C.: A framework for behavioural cloning. In: Furu-
kawa, K., Michie, D., Muggleton, S. (eds.) Machine Intelligence
vol. 15, pp. 813–816 (1999)

Betts, J.T.: Practical methods for optimal control and estimation using
nonlinear programming, vol. 19, pp. 132–134 (2010)

Bojarski, M., Testa, D.D., Dworakowski, D., Firner, B., Flepp, B.,
Goyal, P., Jackel, L.D., Monfort, M., Muller, U., Zhang, J., Zhang,
X., Zhao, J., Zieba, K.: End to End Learning for Self-Driving
Cars (2016)

Bonsignorio, F.: Quantifying the evolutionary self-structuring of
embodied cognitive networks. Artif. Life 19(2), 267–289 (2013)

Bonsignorio, F., Zereik, E.: A simple visual-servoing task on a low-
accuracy, low-cost arm: an experimental comparison between
belief space planning and proportional-integral-derivative con-
trollers. IEEE Robot. Autom. Mag. 28(3), 117–127 (2021)

Bonsignorio, F., Hsu, D., Johnson-Roberson, M., Kober, J.: Deep learn-
ing and machine learning in robotics [From the Guest Editors],
Special Issue. IEEE Robot. Autom. Mag. 27(2), 20–21 (2020)

Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares,
F., Schwenk, H., Bengio, Y.: Learning phrase representations
using RNN encoder–decoder for statistical machine translation.
In: Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 1724–1734 (2014)

Ebert, F., Dasari, S., Lee, A.X., Levine, S., Finn, C.: Robustness via
retrying: Closed-loop robotic manipulation with self-supervised
learning. arXiv preprint arXiv: 1810. 03043 (2018)

Finn, C., Levine, S., Abbeel, P.: Guided cost learning: Deep inverse
optimal control via policy optimization. In: Proceedings of the
33rd International Conference on Machine Learning - Volume
48, pp. 49–58 (2016)

Giusti, A., Guzzi, J., Cireşan, D.C., He, F., Rodríguez, J.P., Fontana,
F., Faessler, M., Forster, C., Schmidhuber, J., Caro, G.D., Scara-
muzza, D., Gambardella, L.M.: A machine learning approach to

visual perception of forest trails for mobile robots. IEEE Robotics
Autom. Lett. 1(2), 661–667 (2016)

Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning, (2016)
Gu, S., Holly, E., Lillicrap, T., Levine, S.: Deep reinforcement learning

for robotic manipulation with asynchronous off-policy updates. In:
2017 IEEE International Conference on Robotics and Automation
(ICRA), pp. 3389–3396 (2017). IEEE

Ho, J., Ermon, S.: Generative adversarial imitation learning. In:
Advances in Neural Information Processing Systems 29, pp.
4565–4573 (2016)

Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics:
A survey. Int. J. Robot. Res. 32, 1238–1274 (2013)

Macciò, D.: Local linear regression for efficient data-driven control.
Knowl.-Based Syst. 98, 55–67 (2016)

Macciò, D., Cervellera, C.: Local Models for data-driven learning of
control policies for complex systems. Expert Syst. Appl. 39(18),
13399–13408 (2012)

Marchese, A.D., Katzschmann, R.K., Rus, D.: Whole arm planning
for a soft and highly compliant 2d robotic manipulator. In: 2014
IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 554–560 (2014). IEEE

Ng, A.Y., Russell, S.J.: Algorithms for inverse reinforcement learning.
In: Proceedings of the 70th International Conference on Machine
Learning, pp. 663–670 (2000)

Odetti, A., Bibuli, M., Bruzzone, G., Cervellera, C., Ferretti, R., Gag-
gero, M., Zereik, E., Caccia, M.: A preliminary experiment com-
bining marine robotics and citizenship engagement using imita-
tion learning. 21st IFAC Proceedings Volumes (2020)

Okur, B., Aksoy, O., Zergeroglu, E., Tatlicioglu, E.: Nonlinear robust
control of tendon-driven robot manipulators. J. Intell. Robot. Syst.
80(1), 3–14 (2015)

OpenAI, T.: OpenAI Gym Website. (2020). Accessed 2022/09/12
07:05:00. https:// gym. openai. com

Pierson, W.J., Moskowitz, L.: A proposed spectral form for fully devel-
oped wind seas based on the similarity theory of SA Kitaigorod-
skii. J. Geophys. Res. 69(24), 5181–5190 (1964)

Platt, R., Tedrake, R., Kaelbling, L., Lozano-Perez, T.: Belief space
planning assuming maximum likelihood observations. In: Pro-
ceedings of Robotics: Science and Systems, Zaragoza, Spain
(2010). https:// doi. org/ 10. 15607/ RSS. 2010. VI. 037

Pololu, M.: Pololu Drivers. (2020). Accessed on 2022/09/12 07:05:00.
https:// www. pololu. com/ docs/ 0J40/

Pomerleau, D.A.: ALVINN: an autonomous land vehicle in a neural
network, pp. 305–313 (1989)

Rahmatizadeh, R., Abolghasemi, P., Bölöni, L., Levine, S.: Vision-
based multi-task manipulation for inexpensive robots using end-
to-end learning from demonstration. In: 2018 IEEE International
Conference on Robotics and Automation (ICRA), pp. 3758–3765
(2018). IEEE

Rolf, M., Neumann, K., Queißer, J.F., Reinhart, R.F., Nordmann, A.,
Steil, J.J.: A multi-level control architecture for the bionic han-
dling assistant. Adv. Robot. 29(13), 847–859 (2015)

Ross, S., Gordon, G., Bagnell, D.: A reduction of imitation learning
and structured prediction to no-regret online learning. In: Gordon,
G., Dunson, D., Dudík, M. (eds.) Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics,
vol. 15, pp. 627–635 (2011)

Ross, S., Melik-Barkhudarov, N., Shankar, K.S., Wendel, A., Dey, D.,
Bagnell, J.A., Hebert, M.: Learning Monocular Reactive UAV
Control in Cluttered Natural Environments (2012)

Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots.
Nature 521(7553), 467–475 (2015)

Rusu, A.A., Večerík, M., Rothörl, T., Heess, N., Pascanu, R., Hadsell,
R.: Sim-to-real robot learning from pixels with progressive nets.

https://doi.org/10.1007/s41315-022-00262-y
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1810.03043
https://gym.openai.com
https://doi.org/10.15607/RSS.2010.VI.037
https://www.pololu.com/docs/0J40/

29An imitation learning approach for the control of a low‑cost low‑accuracy robotic arm for…

1 3

Accessed 2022/09/12 07:05:00(2016). https:// arxiv. org/ abs/ 1610.
04286

Sammut, C., Hurst, S., Kedzier, D., Michie, D.: Learning to fly. In:
Proceedings of the 9th International Workshop on Machine Learn-
ing, pp. 385–393 (1992)

Seita, D., Ganapathi, A., Hoque, R., Hwang, M., Cen, E., Tanwani,
A.K., Balakrishna, A., Thananjeyan, B., Ichnowski, J., Jamali,
N., Yamane, K., Iba, S., Canny, J., Goldberg, K.: Deep imita-
tion learning of sequential fabric smoothing from an algorithmic
supervisor. In: 2020 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pp. 9651–9658 (2020). https://
doi. org/ 10. 1109/ IROS4 5743. 2020. 93416 08

Srinivas, A., Laskin, M., Abbeel, P.: CURL: Contrastive Unsuper-
vised Representations for Reinforcement Learning. Accessed
2022/09/12 07:05:00(2020). https:// arxiv. org/ abs/ 2004. 04136

Stoelen, M.F., Bonsignorio, F., Cangelosi, A.: Co-exploring actuator
antagonism and bio-inspired control in a printable robot arm. In:
International Conference on Simulation of Adaptive Behavior, pp.
244–255 (2016). Springer

Subudhi, B., Morris, A.S.: Soft computing methods applied to the
control of a flexible robot manipulator. Appl. Soft Comput. 9(1),
149–158 (2009)

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., de Las Casas, D.,
Budden, D., Abdolmaleki, A., Merel, J., Lefrancq, A., Lillicrap,
T., Riedmiller, M.: DeepMind Control Suite. Accessed 2022/09/12
07:05:00(2018). https:// arxiv. org/ abs/ 1801. 00690

Thuruthel, T.G., Falotico, E., Renda, F., Laschi, C.: Learning dynamic
models for open loop predictive control of soft robotic manipula-
tors. Bioinspiration Biomim. 12(6), 066003 (2017)

Wang, H., Yang, B., Liu, Y., Chen, W., Liang, X., Pfeifer, R.: Visual
servoing of soft robot manipulator in constrained environments
with an adaptive controller. IEEE/ASME Trans. Mechatron. 22(1),
41–50 (2016)

Wulfmeier, M., Ondruska, P., Posner, I.: Maximum Entropy Deep
Inverse Reinforcement Learning (2015)

Xie, X., Cheng, L., Hou, Z., Ji, C.: Adaptive neural network control
of a 5 dof robot manipulator. In: 2010 International Conference
on Intelligent Control and Information Processing, pp. 376–381
(2010). IEEE

Zereik, E., Gagliardi, F., Bibuli, M., Sorbara, A., Bruzzone, G., Cac-
cia, M., Bonsignorio, F.: Belief space planning for an underwater
floating manipulator. In: Moreno-Diaz, R., Pichler, F., Quesada-
Arencibia, A. (eds.) Computer Aided Systems Theory, EURO-
CAST 2015: 15th International Conference, LNCS 9520, pp.
869–876 (2015)

Zhang, T., McCarthy, Z., Jow, O., Lee, D., Chen, X., Goldberg, K.,
Abbeel, P.: Deep imitation learning for complex manipulation
tasks from virtual reality teleoperation. In: 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 1–8
(2018). IEEE

Zhu, Y., Wang, Z., Merel, J., Rusu, A., Erez, T., Cabi, S., Tunyasuvuna-
kool, S., Kramár, J., Hadsell, R., de Freitas, N., et al.: Reinforce-
ment and imitation learning for diverse visuomotor skills. arXiv
preprint arXiv: 1802. 09564 (2018)

Ziebart, B.D., Maas, A., Bagnell, J.A., Dey, A.K.: Maximum entropy
inverse reinforcement learning. In: Proc. AAAI, pp. 1433–1438
(2008)

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Fabio Bonsignorio is the ERA
Chair in AI for Robotics and
head of the AIFORS Lab, in
LAMOR at FER at the Univer-
sity of Zagreb. AIFOR lab aims
to take intelligent soft robotics to
the next stage. He is CEO and
Founder of Heron Robots
(advanced robotic solutions),
see www. heron robots. com. He
has been Visiting Professor at
the Biorobotics Institute of the
Scuola Superiore Sant’Anna in
Pisa in the period 2014–2019.
He has been professor in the
Department of System Engineer-

ing and Automation ofthe University Carlos III of Madrid until 2014.
In 2009 he was awarded the Banco de Santander Chair of Excellence
in Robotics at the same university. He is a Founding Director of euRo-
botics aisbl, the private part of SPARC, and now part of ADRA. He is
a past elected member of the Research Board of Directors of SPARC.
He coordinated and has been the main teacher of the ShanghAI Lec-
tures (www. shang haile ctures. org) since the 2013 edition. The Shang-
hAI Lectures are an advanced network MOOC teaching initiated sev-
eral years ago by Rolf Pfeifer. He has pioneered and introduced the
topic of Reproducible Research and Benchmarking in Robotics and AI,
where is one of the leading experts, if not the leading one. He is a
pioneer in the applications of Blockchain technologies in Robotics.

Cristiano Cervellera received the
M.Sc. Degree in electronic engi-
neering and the Ph.D. Degree in
electronic engineering and com-
puter science from the Univer-
sity of Genoa, Genoa, Italy, in
1998 and 2002, respectively. He
is currently a senior researcher at
the Genoa branch of the Institute
of Marine Engineering of the
Italian National Research Coun-
cil, Genoa, Italy. He is author of
several works in journals and
international conferences in the
fields of machine learning, intel-
ligent systems, operations

research and automation. His current research interests include com-
putational intelligence methods for decision systems, robotics, approxi-
mate dynamic programming, optimal control, number-theoretic meth-
ods for optimization and learning, intelligent transportation systems.

https://arxiv.org/abs/1610.04286
https://arxiv.org/abs/1610.04286
https://doi.org/10.1109/IROS45743.2020.9341608
https://doi.org/10.1109/IROS45743.2020.9341608
https://arxiv.org/abs/2004.04136
https://arxiv.org/abs/1801.00690
http://arxiv.org/abs/1802.09564
http://www.heronrobots.com
http://www.shanghailectures.org

30 F. Bonsignorio et al.

1 3

Danilo Macciò received the M.Sc.
degree in telecommunication
engineering and the Ph.D.
degree in mathematical engi-
neering from the University of
Genoa, Genoa, Italy, in 2005 and
2009, respectively. He is cur-
rently a Researcher with Institute
of Marine Engineering, National
Research Council of Italy,
Genoa. His current research
interests include machine learn-
ing, optimization of transporta-
tion systems, statistical estima-
tion, and numeric solutions of
functional optimization prob-

lems. He serves as Associate Editor of the Neurocomputing journal.

Enrica Zereik received the M.Sc.
degree in information technol-
ogy engineering and the Ph.D.
degree in electronic and com-
puter engineering, robotics and
telecommunications from the
University of Genoa, Genoa,
Italy, in 2006 and 2010, respec-
tively. She is currently a
Researcher with the Genoa
branch of the Institute of Marine
Engineering (INM), National
Research Council of Italy
(CNR), focusing her research
activity on underwater manipula-
tion, computer vision, advanced

algorithms for navigation guidance and control of marine vehicles and
intelligent systems, evaluation indices and metrics for the experimental
assessment of marine platforms performance, reproducibility of experi-
ments, and coordination and control algorithms for cooperative multi-
robot systems. She is the PI for CNR of the Joint Lab heron@cnr,
constituted between CNR-INM and Heron Robots. She has authored
one monograph and several papers in international journals and confer-
ences. She serves as Associate Editor for the IEEE Robotics and Auto-
mation Magazine.

	An imitation learning approach for the control of a low-cost low-accuracy robotic arm for unstructured environments
	Abstract
	1 Introduction
	2 Related works
	3 HArm
	3.1 Hardware and software architecture
	3.2 Reference BSP controller

	4 DL-BSP control
	5 Experiments
	5.1 Experimental setup
	5.2 Results
	5.3 Additional experiments
	5.4 Discussion

	6 Conclusions and future work
	References

