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Abstract
We have developed an imitation learning approach for the image-based control of a low-cost low-accuracy robot arm. The 
image-based control of manipulation arms is still an unsolved problem, at least under challenging conditions such as those 
here addressed. Many attempts for solutions in the literature are based on machine learning, generally relying on deep neural 
network architectures. In typical imitation approaches, the deep network learns from a human expert. In our case the network 
is trained on state/action pairs obtained through a Belief Space Planning algorithm, a stochastic method that requires only 
a rough tuning, particularly suited to unstructured and dynamic environments. Our approach allows to obtain a lightweight 
manipulation system that demonstrated its efficiency, robustness and good performance in real-world tests, and that is repro-
ducible in experiments and results, despite its inaccuracy and non-repeatable kinematics. The proposed system performs 
well on a simple reaching task, requiring limited training on our quite challenging platform. The main contribution of the 
proposed work lies in the definition and real-world testing of an efficient controller, based on the integration of Belief Space 
Planning with the imitation learning paradigm, that enables even inaccurate, very low-cost robotic manipulators to be actu-
ally controlled and employed in the field.

Keywords  Inaccurate lightweight manipulator · Imitation learning · Belief space planning · Soft robotics

1  Introduction

Many different control strategies have been proposed in the 
literature for robotic manipulation, mainly dealing with a 
specific problem and environment. Still, the proposed solu-
tions often fail to achieve the necessary robustness and dex-
terity, especially with lightweight arm structures operating 

in open-ended environments and/or with inaccurate or soft 
bodies, noisy sensing and actuation, as in our case. Fur-
thermore, many of the systems proposed in the literature 
are only simulated or very few tests in real-world environ-
ments have been performed. This is very limiting since the 
transition from simulation to reality always strongly reduces 
the system nominal performance (which are usually difficult 
to realistically evaluate in simulation). This appears very 
clearly in Bonsignorio and Zereik (2021), which explicitly 
demonstrated that, for lightweight, inaccurate robotic struc-
tures like H 2Arm, classic control algorithms are not robust 
enough whenever a substantial number of real-world tests 
are performed. In fact, the behaviour of a classic PID (Pro-
portional Integral Derivative) control was there evaluated 
against a stochastic BSP (Belief Space Planning) methodol-
ogy; conclusions drawn from such comparison highlighted a 
twofold important result: the BSP has a success rate remark-
ably higher than the PID (93.3 vs 40.0% ), but in the mean-
time it is much slower ( 31.5 s vs 109.6 s as mean execution 
time throughout all the experiments).

Recent approaches to the manipulation problem in 
unstructured and uncertain environments rely on machine 
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learning techniques. Such methods typically exploit the 
reinforcement learning (RL) paradigm to derive controllers 
able to learn and adapt in order to successfully execute the 
required tasks. In most proposed approaches a deep neural 
network is employed, trained either on datasets featuring 
state variables or directly on images.

In our paper an imitation learning approach is proposed 
to train a low-accuracy low-cost arm to perform a simple 
reaching task, a critical and necessary step in every manipu-
lation problem.

The adoption of the imitation learning strategy allows 
to cope with the effort required to perform experiments 
with a real robot. In fact, with respect to approaches based 
on reinforcement learning, exploiting the experience of an 
expert teacher avoids the need for a very large number of 
experiments before the controller starts learning something 
meaningful. Indeed, a very large number of experiments 
would be impossible in practice with a low-accuracy arm 
and uncertain setting such as those here considered. In par-
ticular, we implemented the behavioral cloning paradigm 
(Bain and Sammut 1999), which involves setting the prob-
lem of imitation as a supervised learning problem.

However, while in the typical imitation learning paradigm 
the controller learns from a human expert, we follow the 
less common approach of training from an algorithmically 
generated dataset, like for example in Seita et al. (2020) 
and train a deep neural network on datasets coming from 
a Belief Space Planning (BSP) algorithm, representing the 
teacher to be imitated by the network. The BSP belongs 
to the class of stochastic algorithms, which provide better 
performance with respect to deterministic ones in unstruc-
tured and dynamic environments. It is able to concurrently 
drive the manipulator to the goal and reduce uncertainty; 
hence, it is very suitable for manipulation in open-ended 
environments. The main drawback of the BSP approach is 
the computational burden to obtain the next action, which 
severely limits its real-time applicability. The introduction of 
a neural controller that learns to imitate its behavior is thus 
aimed at providing a controller that yields, in real-time, the 
same control action that the BSP would compute in the cur-
rent conditions. In our case, the data obtained from the set 
of system trajectories corresponding to state-control action 
pairs computed through the BSP method are used to learn 
a mapping able to associate to each control the correspond-
ing output.

In this context, the main objective of the work is not 
only to define an imitation learning technique for inac-
curate structures, but also to support the analysis through 
real-world experimentation. To this purpose, a particularly 
difficult test architecture has been selected, consisting in 
a very inaccurate and non-repeatable structure, namely  
H 2Arm (Bonsignorio and Zereik 2021). Such system is an 
ad hoc designed, 3D-printed open-source tendon-driven 

robotic arm, with a total cost of less than 200 € overall and 
a weight of less than 1 kg. Its intrinsic unknown dynamics 
and uncertainties make it very suitable to simulate errors 
and non-modelled effects, in order to stress and test the algo-
rithmic approach. H 2Arm motors are not endowed with any 
sensor (e.g. encoders) providing current position. The only 
feedback signal is produced by a simple low-quality camera 
mounted on the arm wrist. Hence, the robotic platform turns 
out to be very challenging for controllers, in terms of both 
uncertainties and unknowns: it is not possible to compute 
inverse and forward kinematics from measurements, and a 
model-free controller should be applied.

As in the previous work Bonsignorio and Zereik (2021), 
also the work reported here aims at the assessment and 
validation of the proposed control strategy through the con-
ducted experimental real-world test campaign on H 2Arm.

In our experiments performed under various conditions 
the neural BSP-based controller yielded a strong improve-
ment in the execution time with respect to the original BSP: 
overall, the neural controller turned out to be about 10 times 
faster than the BSP one, making it actually exploitable for 
real-time robust manipulation. Moreover, a great advantage 
of this system is its high experimental reproducibility: dif-
ferent controllers may be applied and their performance 
compared.

We remark that we tested our system in a laboratory con-
text but we target the underwater environment for H 2Arm 
final application; this is one of the strongest motivations that 
justify the employment of a stochastic control framework 
integrated with a neural controller. In fact, the unstructured 
environment poses great challenges in terms of control per-
formance and decisional autonomy, and is one of the major 
reasons why robots are not really employed in everyday 
tasks in close contact with humans, yet.

Concerning the proposed controller, although more 
advanced imitation learning strategies could be applied 
(such as, for instance, inverse reinforcement learning), 
behavioral cloning was chosen for our preliminary tests 
due to its simplicity. In fact, this basic imitation scheme 
proved to be good enough to yield suitable performance in 
our experiments. The developed deep learning controllers 
have been able to execute the required task successfully in 
all the tests; they showed good extrapolation properties and 
robustness also in case of noise, injected to stress the system 
and draw conclusion about its robustness.

The paper is organized as follows: in Sect. 2 a comprehen-
sive literature overview is provided, while the experimental 
robotic platform is described in Sect. 3. The proposed con-
trol strategy is detailed in Sect. 4 and the obtained results are 
presented in Sect. 5. Finally, Sect. 6 draws conclusions and 
depicts the foreseen future research activities.
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2 � Related works

H2Arm is a specific example of compliant robot arm. It is a 
common opinion that soft structure robots could, in princi-
ple, make the manipulation task easier, therefore, a number 
of partially compliant robots has been proposed. In particu-
lar tendon-driven manipulators have been proposed to imi-
tate human arms driven by muscles. Traditional approaches 
to robotic manipulation control rely on linearized models 
and accurate sensing and actuation. Reducing weights and 
increasing compliance, as with H 2Arm and typically in soft 
robotics applications, leads to a dramatic increase in non-lin-
earities and uncertainties both in the dynamics and the meas-
ures, thus making most widely used methods unsuitable. The 
most promising approaches are based on stochastic plan-
ning and control methods such as BSP, or through Machine 
Learning (ML) and in particular Deep Learning (DL). These 
approaches will be discussed later in this section. The Gum-
miArm is an example of compliant robotic manipulator, 
similar to ours, 3D-printed and driven by a combination of 
accurate (and expensive) digital servos with encoders and 
viscoelastic composite tendons. It has been used to test sev-
eral advanced bio-mimetic control strategies (Stoelen et al. 
2016). A non-linear robust control strategy for a tendon-
driven manipulator is presented in Okur et al. (2015). The 
proposed approach considers, like in our work, uncertainties 
and external disturbances. However, such control strategy 
needs to know actuator positions and velocities, and also 
forces generated on tendons; moreover, it has been tested 
only in simulation. A visual-servoing control for a cable-
driven soft manipulator is reported in Wang et al. (2016), 
where the authors discuss the effect of system linearization 
and approximation, reducing system complexity but also 
sacrificing accuracy. A planning algorithm for a soft planar 
arm is proposed in Marchese et al. (2014), where a series of 
constrained optimization problems is solved to find a locally 
optimal inverse kinematics, introducing errors and limita-
tions. The environment is supposed to be known a priori , 
which is a very strict and limiting hypothesis. In Subudhi 
and Morris (2009), soft computing techniques are applied to 
the control of a multi-link flexible manipulator. Such meth-
odology is suited to control systems that are particularly 
difficult to be modelled, and provides a greater tolerance 
to imprecision. An overview of soft robotics approaches is 
presented in Rus and Tolley (2015), whose conclusion is 
that an effective control of such structures needs new models 
and algorithms to iteratively learn the necessary manipula-
tion skills.

While, for example, advanced solutions leveraging on 
the group regularities in the movement and local displace-
ments of mechanical systems (Bonsignorio 2013), have 
been proposed for the control of systems like ours, we have 

focused on a simpler and more widely used approach, i.e., 
BSP (Zereik et al. 2015; Agha-Mohammadi et al. 2014; Platt 
et al. 2010). Belief Space Planning belongs to the family of 
stochastic control approaches, aimed at increasing the effec-
tiveness and robustness of control methods on ‘real-world 
robots’. In Bonsignorio and Zereik (2021) authors report 
on the performance comparison of a standard PID (Propor-
tional Integral Derivative) and Belief Space Planning control 
implemented on H 2Arm. That work clearly demonstrates the 
capability of the BSP, with very rough tuning, to perform 
a simple reaching task. However, this method is too slow 
for real-time control. This motivated us, as told above, to 
find more effective solutions based on an imitation learning 
approach exploiting deep neural networks.

Machine Learning approaches have focused on the iden-
tification (and composition) of ‘atomic’ chunks of motion 
trajectories, ‘motion primitives’ and related planned tasks, 
‘motor skills’ through Reinforcement Learning, for example 
based on policy gradients and various policy search tech-
niques (more on this point later in the section). To cope with 
the real-time requirements of robots, other approaches have 
developed incremental online learning schemes suitable for 
high dimensional spaces. Similar methods have been applied 
to the learning of the inverse kinematics – the joint trajec-
tories corresponding to the desired end-effector trajectories 
– of the robot itself. An adaptive neural network controller 
is proposed in Xie et al. (2010), but only simulation has been 
used to evaluate the approach, without any experimental val-
idation. Other approaches that exploit neural networks are 
in Rolf et al. (2015), which is based on learning the inverse 
kinematics/statics of soft manipulators and Thuruthel et al. 
(2017), where the forward dynamics of the model is learned 
using a RNN (Recurrent Neural Network) in order to enable 
predictive control.

Reinforcement Learning and especially Deep Reinforce-
ment Learning (DRL) methods have been adapted to various 
planning, grasping and manipulation problems. Efforts have 
been dedicated to make learning faster – implementing asyn-
chronous and parallelization processes – and to develop real-
istic simulation – and appropriate simulation trial randomi-
zation procedures – to reduce the needed time-consuming 
learning runs on ‘real robots’, (Kober et al. 2013; Rusu et al. 
2016). In Bonsignorio et al. (2020) some key theoretical 
issues are discussed, such as: how to exploit the manifold 
structure of data, how to characterise temporal features, how 
to implement unsupervised learning, and multifidelity rein-
forcement learning as well as the assurance and verification 
of autonomous operations, see Bonsignorio et al. (2020). 
Reference DL implementations of Reinforcement Learning 
approaches can be found in the DeepMind Control Suite 
(Tassa et al. 2018) and OpenAI Gym (OpenAI 2020). Both 
platforms implement a number of test cases in simulation 
in a partially reproducible way. New approaches based on 
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Contrastive Unsupervised Learning have shown some prom-
ise, see Srinivas et al. (2020). Deep reinforcement learning 
is exploited in more recent research, as in Gu et al. (2017), 
which proposes the utilization of many different robots to 
gather data to train the neural network; this reduces the train-
ing time, but increases complexity (for instance, it is difficult 
to integrate different experiences learnt by different robots 
and to obtain a generalizable policy) and costs (many robots 
needed). A similar approach is adopted in Ebert et al. (2018), 
where a Model-Predictive Control (MPC) is combined with 
a retrying option to learn manipulation skills; as in previ-
ous work, a really huge amount of training data is collected 
and employed, using two different robots. A lower amount 
of training demonstrations is needed in Zhu et al. (2018), 
where a model-free deep reinforcement learning algorithm 
is applied to visuomotor tasks. However, a quite low success 
rate is obtained, when simulation results are transferred to 
real-world experiments.

The imitation learning framework, that we merge in our 
work with BSP for H 2Arm control, consists of a heteroge-
neous set of techniques able to emulate a control scheme 
through the imitation of the controlled system itself during 
its operating phase. The first techniques studied in this field 
are those referring to behavioral cloning (Bain and Sam-
mut 1999). Some behavioral cloning methods make use of 
local models based on kernel functions and also provide 
notions of convergence to the reference controller (Macciò 
2016; Macciò and Cervellera 2012); others use different 
approximators and are more application-oriented (Bojar-
ski et al. 2016; Sammut et al. 1992). In order to overcome 
the issue of having a not enough representative dataset, 
some behavioral cloning methods have evolved further by 
introducing techniques to artificially increase the available 
dataset (Pomerleau 1989; Giusti et al. 2016). In particular, 
the method known as Dataset Aggregation (DAgger) (Ross 
2011), which has recently shown promising performance 
in several applications (such as, e.g., Ross 2012), is note-
worthy. These techniques, however, show limitations when 
applied in contexts where the specific target is complex and 
the control scheme to be imitated is implemented by one or 
more human operators. In this case, techniques that try to 
infer the latent reward that is at the base of the policy gener-
ated by the reference controller are preferred. Probably, the 
best known methods in this case are the Inverse Reinforce-
ment Learning (Abbeel and Ng 2004) and its derivative, 
the Apprenticeship Learning (Ng and Russell 2000), which, 
as mentioned, propose to use the trajectories generated by 
the controlled system to infer the reward signal. This, in 
turn, allows to reconstruct the reference controller. Other 
methods belonging to this category are the (Deep) Maxi-
mum Entropy Inverse Reinforcement Learning (Ziebart et al. 
2008; Wulfmeier et al. 2015), the Guided Cost Learning 

(Finn et al. 2016) and the Generative Adversarial Imitation 
Learning (Ho and Ermon 2016).

The imitation learning paradigm, for tasks similar to the 
one we study, has been proposed by several authors. In Rah-
matizadeh et al. (2018) a cheaper manipulator is considered, 
being endowed with rigid links and better sensors w.r.t. H 2
Arm. A behavioral cloning approach is applied to such plat-
form in order to learn some manipulation tasks; again, a 
huge amount of data (acquired through demonstration by 
a human operator) is needed to train the system. A virtual 
reality-based teleoperation approach is employed for collec-
tion of (again, a lot of) training data in Zhang et al. (2018). 
In Odetti et al. (2020), a behavioral cloning approach based 
on reservoir computing, trained by inexperienced human 
teachers during a festival, was successfully implemented 
for the control of a marine Unmanned Surface Vessel (USV).

Almost all of the cited works exploiting machine learning 
techniques employ robots with quite complex and expen-
sive structures (that can be easily modelled starting from 
the mechanics), with precise and accurate sensors and a rea-
sonably repeatable behavior. We follow an approach simi-
lar to the one described in Seita et al. (2020). However, in 
comparison to that study, where the authors train the imita-
tion learning systems on a synthetic dataset generated by 
a fabric simulator and an algorithmic supervisor that has 
access to complete state information, there are significant 
differences. In our case we use the data calculated by a sto-
chastic planner.

3 � H
2
Arm

In this section we present H 2Arm, the reference soft robotic 
structure we consider for the proposed methodology. Both its 
hardware and software architectures are described, as well 
as its “standard” controller based on BSP.

3.1 � Hardware and software architecture

H2Arm, depicted in Fig. 1, is a 3D-printed low-cost and 
inaccurate manipulator designed and developed within the 
Joint Lab between the Institute of Marine Engineering of 
the Italian National Research Council and Heron Robots. 
It has 4 degrees of freedom (DOFs), J1 − J4 ; the first three 
are rotational joints, while the last one is a prismatic joint. 
Each rotational joint is equipped with two counteracting 
motors winding up a tendon-like rope. The last prismatic 
joint is directly moved by one motor, without the need of 
tendons. The joint configuration allows to perform vis-
ual-servoing tasks consisting in reaching by tracking and 
centering objects with respect to the image plane. H 2Arm 
is equipped with a commercial low-cost and inaccurate 
webcam, mounted on top the mobile part of J4 , and hence 
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moving integrally with the last prismatic joint. H 2Arm low-
level is driven by a Pololu Mini Maestro 12-Channel USB 
Servo Controller (Pololu 2020), suitably generating PWM 
(Pulse Width Modulation) signals to drive the motors.

The software architecture is composed by two differ-
ent modules: i) the vision-based recognition algorithm, in 
charge of measuring the red blob 3D position, and written 
in C++; ii) the neural controller (that will be introduced in 
Sect. 4), in charge of driving H 2Arm to track and center the 
blob in the image plane, and written in Python. This last 
module receives the measurements about the red blob 3D 
position with respect to frame < c > (refer to Fig. 1) from 
the recognition algorithm through a standard TCP socket. 

The same simple vision-based recognition algorithm imple-
mented and exploited in Bonsignorio and Zereik (2021) was 
employed to retrieve the red blob position in 3D space with 
respect to the arm camera. This allows to directly compare 
system performance with respect to different trials and con-
trollers. H 2Arm introduces many uncertainties in the control: 
first of all, its tendon-based structure produces unwanted 
forces that affect motion; furthermore, the (very low-cost 
and inaccurate) motors do not provide reliable and repeat-
able motion, and the only available feedback comes from the 
camera, measuring the arm distance from the center of the 
object of interest. The camera itself introduces an error on 

Fig. 1   3D-printed H 
2
Arm and 

related reference frames: < c > 
is the camera frame centered 
on the webcam, and < w > is 
the world frame, assumed to be 
placed in the center of the first 
joint (the big yellow horizon-
tal disk). The main defined 
kinematic quantities for H 

2
Arm 

control are also depicted (color 
figure online)

Fig. 2   H
2
Arm architecture
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the object estimation. A block diagram summarizing the H 2
Arm architecture is depicted in Figure 2.

3.2 � Reference BSP controller

The reference control scheme under which H 2Arm operates 
is based on the Belief Space Planning algorithm. For details 
on theory and experiments of the BSP technique applied to 
H2Arm, the interested reader can refer to Bonsignorio and 
Zereik (2021) and related supplemental material (https://​
ieeex​plore.​ieee.​org/​ielx7/​100/​95353​19/​91862​01/​supp1-​
30142​79.​pdf?​arnum​ber=​91862​01).

BSP is a stochastic control strategy able to concurrently: 
(i) optimize the goal-reaching probability, and (ii) reduce 
uncertainties acting on the system. The disturbance affecting 
the observations is represented by the algorithm with a linear 
Gaussian model and the assumption of maximum likelihood 
observations is made. As proved in Platt et al. (2010), this 
assumption allows to apply non-linear optimization tech-
niques in the belief space (that is the juxtaposition of the 
mean and the covariance matrix columns of the state). The 
actual system state is, in fact, not directly measured and only 
its (Gaussian) probability density function (pdf) is assumed 
to be known (the pdf mean is close to the current arm posi-
tion and the covariance matrix represents the confidence of 
this information).

In brief, the algorithm works as explained in the 
following:

•	 a trajectory moving the end-effector from the current 
point to the next one is planned;

•	 such trajectory is linearly approximated by Direct Tran-
scription with a series of segments1;

•	 the algorithm moves piecewise on the trajectory. The 
transition between segment extremes is accomplished 
through LQR that computes the needed control action, 
namely the Cartesian velocity �∗(t) to be followed by the 
end-effector. This procedure is iterated until the final goal 
is reached;

•	 from the current reference point, the reference arm joint 
velocities q̇∗(t) are computed through inverse kinemat-
ics. Then, the reference motor velocities u∗(t) are esti-

mated by the robot Low-Level Control (LLC), applying 
the motor model. The LLC is in charge of managing the 
physical interaction with the robot hardware;

•	 at each step, the algorithm checks how much the com-
puted plan contributes to the final goal reaching. If the 
planned trajectory deviates too much from the desired 
one, re–planning occurs.

The BSP algorithm is graphically summarized by the flow-
chart of Fig. 3.

Notice that the joint velocities q̇∗(t) are obtained exploit-
ing a model of the robot equations. In our case, due to the 
inaccurate structure of H 2Arm, the resulting values are 
expected to be very noisy. Yet, the BSP algorithm is able to 
cope with these uncertainties. In fact, since the BSP control 
actions balance the objective to reach the goal with the one 
to reduce the covariance matrix of the observations, they 
can also be considered as information-gathering actions. 
Note that the planning is performed in a higher dimensional 
space (with respect to the state space), even in case of a 
coarse-grained approximation of the belief space. Further-
more, the belief state dynamics is non-linear, stochastic and 
inherently under-actuated (the number of control inputs for 
the physical system is lower than the belief space dimen-
sion). To this aim, it is possible to simplify this very com-
plex problem through the already mentioned assumption of 
maximum likelihood observations. This assumption means 
that the current system state is supposed to be the most likely 
state according to the past observations and the performed 
actions; this is equal to state that the control actions are able 
to achieve their intended purpose, thus leading the system 
to the desired state.

4 � DL‑BSP control

Despite the robustness and efficiency of BSP, obtaining the 
optimal action for the current state requires a computational 
effort that is, in general, unfeasible in real-time tasks. Here, 
we trained a deep neural network to imitate (clone) the BSP 
controller behavior, and be able to replicate it in real-time 
without the aforementioned computational burden. We refer 
to this controller as DL-BSP.

We assume that all the notation in the following is referred 
to frame < c > (see Fig. 1). Let us assume the time horizon 
during which the task is performed is divided in T discrete 
intervals at which actions are performed and measurements 
are collected. Denote by r∗ = [r∗

x
, r∗

y
, r∗

z
]� the desired final 

position of the end-effector with respect to the target object. 
Define, for t = 0,… , T − 1 , r(t) = [rx(t), ry(t), rz(t)]

� as the 
current end-effector position with respect to the object, 
estimated by the camera at time t. Finally, define the error 
e(t) = r(t) − r∗ = [ex(t), ey(t), ez(t)]

� at time t. Figure  1 

1  Direct transcription is a method of trajectory optimization (in our 
case in the belief space) used together with non linear optimization 
techniques, in our case Linear Quadratic Regulation (LQR). Direct 
Transcription methods translate a continuous optimization problem, 
like in our case that of optimizing a trajectory in the belief space, 
into a discrete one by evaluating the problem in a finite set of nodes 
obtained by time discretization. The set of differential equations gov-
erning the motion in the belief space is ‘transcribed’ into a finite set 
of equality constraints. This allows to solve the optimal trajectory 
problem with the degree of accuracy of the numerical optimizer used 
(the interested reader can refer to Betts (2010) for details).

https://ieeexplore.ieee.org/ielx7/100/9535319/9186201/supp1-3014279.pdf?arnumber=9186201
https://ieeexplore.ieee.org/ielx7/100/9535319/9186201/supp1-3014279.pdf?arnumber=9186201
https://ieeexplore.ieee.org/ielx7/100/9535319/9186201/supp1-3014279.pdf?arnumber=9186201
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provides an overview of the defined kinematic vectors r∗ , r(t) 
and e(t) for H 2Arm in the execution of the required visual-
servoing task.

In order to train the deep neural controller, the first step 
consists in defining the training set of pattern/targets for 
a supervised learning procedure. As said, the patterns are 
derived from the arm trajectories obtained by BSP, while the 
targets are derived from the corresponding actions.

To this purpose, recall that u∗(t) is the vector of the 
velocities assigned by BSP to the various motors at stage t. 
In particular, we write u∗(t) = [v∗

1
(t),… , v∗

M
(t)]� , where M 

is the total number of motors. At each stage t, the optimal 
Cartesian velocity reference �∗(t) given the error e(t) is 
computed by the BSP algorithm, to which correspond the 
motor velocities u∗(t) obtained as described in Sect. 3.2.

We consider two setups, corresponding to two different 
training sets for the behavioral cloning procedure:

•	 Cartesian Deep Learning (CDL) control: the deep 
learning model provides, at every temporal stage t, an 
approximation of the optimal Cartesian velocity �∗(t) ; 
then, the corresponding motor velocities are computed 
through inverse kinematics and the LLC model.

Fig. 3   Flowchart of the BSP algorithm and its relation with the neu-
ral controllers MDL and CDL. Note that m

0
 and mgoal are the initial 

and final belief state mean, respectively; m̂
1∶s and û

1∶s are the planned 
trajectories for the belief state mean and the related control actions; 
�∗(t) is the Cartesian reference velocity for the end-effector, q̇∗(t) and 
u∗(t) are the reference joint trajectories and the motor velocity com-
mands, respectively. Finally, q̄j are the joint positions and �

1
 , �

2
 are 

pre-defined thresholds related to the belief state and the Cartesian 
error, respectively. DT, LQR and EKF stand for Linear Quadratic 
Regulator, Direct Transcription and Extended Kalman Filter; IK and 
LLC denote Inverse Kinematics computation and Low-Level Control 
of the robot. The blocks whose behavior is incorporated in the CDL-
BSP and MDL-BSP are highlighted in green and violet, respectively.
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•	 Motor Deep Learning (MDL) control: the deep learning 
model directly estimates the vector of motor velocities 
u∗(t).

The Cartesian control involves the approximation of a 
generally smoother and lower-dimensional function with 
respect to the motor velocities. On the other hand, the 
motor control avoids the need to compute the pseudo-
inverse of the Jacobian matrix that, in case of robots with 
many links and joints, can be very large and lead to numer-
ical issues. Further, for some kinds of robots, the structure 
exact kinematic model could be unavailable.

Consider a set of N successful trials obtained with the 
BSP, i.e., tasks in which the robot successfully reached the 
target within a maximum number of steps. In the case of 
Cartesian control, for j = 1,… ,N , define the j-th trajectory 
as

where the subscript j in e and e∗ denotes the j-th trajectory 
and Tj is the final time before trajectory j converged to the 
target. Similarly, we define the j-th trajectory in the case of 
motor control as

According to the definitions above, a trajectory is the collec-
tion of the observed errors, paired with the corresponding 
feature of the BSP control scheme that we want to imitate 
with the learning model.

The aim of the imitation controller is to learn from these 
sets of trajectories a mapping from the observed errors and 
the desired BSP output feature, in order to estimate online 
the action that would be yielded by the BSP approach for 
the current state.

For the sake of introducing the imitation learning scheme, 
let us focus on the motor control setting and denote by u(t) 
the vector of motor velocities produced by the imitation 
controller at stage t. Notice that in the case of Cartesian 
control it is sufficient to replace u(t) with �∗(t) in the rest of 
the section.

For the generation of the closed-loop control u(t), due to 
the dynamic nature of the robotic system, we consider as 
approximating architecture a neural network of the recur-
rent kind (RNN), i.e. a structure endowed with memory (see 
Goodfellow et al. 2016 for a detailed description of these 
models). The generic mathematical form is given by

where �1 is a set of parameters to be optimized, g is the 
output function (e.g., a linear function), and h(t) is an inter-
nal state vector (usually called ”hidden state”) that keeps 

�j = {(ej(0), �
∗
j
(0)),… , (ej(Tj − 1), �∗

j
(Tj − 1))}

�j = {(ej(0), u
∗
j
(0)),… , (ej(Tj − 1), u∗

j
(Tj − 1))}

(1)u(t) = g(h(t), �1)

track of the evolution of the input, thus, implementing the 
memory mechanism. In particular, we have

where f is the state equation ruling the internal state and �2 is 
the set of parameters devoted to the internal state evolution. 
In general, a RNN typically receives as input a regressor that 
contains the last l states, i.e., �l(t) = [e(t),… , e(t − l + 1)]� , 
and applies recursively the equations (1) and (2) l times 
determining the output u(t). Figure 4 provides a graphi-
cal representation of a RNN as described by equations  (1) 
and (2).

The optimization of the sets of parameters �1 and �2 cor-
responds to the training procedure of the approximating 
architecture. This operation relies on the minimization of 
an empirical cost defined on the basis of the observed (error/
BSP control) pairs from the successful trajectories. More 
specifically, we define the following mean squared error

where uj(t) is the output of the RNN in correspondence to 
the regressor �(j)

l
(t) = [ej(t),… , ej(t − l + 1)]� . The optimal 

parameters �∗
1
 and �∗

2
 are determined by minimizing the cost 

J; this can be done using standard training procedures rely-
ing on the well-known backpropagation algorithm applied 
to the RNN structure (Goodfellow et al. 2016).

For the imitation of the BSP scheme we consider deep 
RNNs, i.e., neural architectures obtained by a cascade of 
recurrent layers. However, we employ a more sophisticated 
version of the “naive” RNN presented in equations  (1) 
and (2); it is in fact known that such neural networks suf-
fer from some structural problems, such as the vanishing/
exploding gradient (Goodfellow et al. 2016). Therefore, in 
order to implement the recurrent deep architecture, we make 
use of multiple layers of the popular Gated Recurrent Unit 
(GRU) (Cho et al. 2014) with a linear output layer, which 

(2)h(t) = f (h(t − 1), e(t), �2)

J(�1, �2) =

N�

j=1

Tj−1�

t=0

‖uj(t) − u∗
j
(t)‖2,

Fig. 4   Graphical representation of the RNN structure implementing 
the proposed controller
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is more robust in the training phase with respect to simple 
RNNs.

The parts of the standard BSP whose behavior is imitated 
by the neural controllers (CDL and MDL) are highlighted in 
the flowchart of Fig. 3.

5 � Experiments

The imitation learning strategies described above were 
implemented and tested on H 2Arm. The tests involved the 
execution of a visual-servoing task consisting in centering 
a red blob in the image plane, acquiring 3D information 
on the error through a camera. This task was chosen to 
be the same as in Bonsignorio and Zereik (2021), in such 
a way to have a basis for comparison. For details about 
H 2Arm hardware and the software implementation of the 
task, refer to Sect. 3.1.

Our tests were designed to evaluate the performance of 
the deep neural controller (introduced in Sect. 4) when used 
in place of the BSP-based one. Both kinds of neural con-
trol methods described in Sect. 4 (i.e. Cartesian and motor) 
were considered. The tests also involved additional noise 
injected in the system in such a way to evaluate system 
robustness. In the remainder of the section we provide a 
detailed description of the setup for the testing campaign, 
and present the main results of the experiments , together 
with some discussion.

5.1 � Experimental setup

The neural controllers were trained using data collected 
from N = 97 successful trajectories generated by the BSP 
approach. The training trajectories always started with the 
red blob in view (totally or partially) in two of the four cor-
ners of the image, namely the top right corner - denoted as 
‘Ref1’ - and the bottom left corner - denoted as ‘Ref2’ (the 
top left and bottom right corners are denoted as ‘Ref3’ and 

‘Ref4’, respectively). The relative position between the red 
blob and the arm wrist, estimated by the robot camera, was 
used (as the only available information about the arm end-
effector) to train the neural controllers, together with the 
corresponding commands sent to motors. As said, a noise 
was injected into the system, more specifically added to the 
end-effector position r(t) estimated by the camera at time t. 
In particular, since our long-term objective is underwater 
manipulation, the generated noise is distributed according 
to the Pierson-Moscowitz spectrum (Pierson and Moskowitz 
1964). According to this formulation, the sea elevation is 
expressed as

where for each wave j = 1,… ,W  , Aj is the amplitude, �j is 
the angular frequency, kj is the wave number and �j is a ran-
dom phase angle; x is the wave location from the origin. 
Angles �j are constant and uniformly distributed in the range 
[0, 2�] ; for deep water, the relation kj =

�2

j

g
 holds. In these 

experiments, the additional noise generated at each step 
accordingly to the Pierson-Moskowitz spectrum was of the 
form n = w� along each considered axis, where w is a scal-
ing factor. We tested our system versus two different noise 
magnitudes, namely w = 0.035 and w = 0.05 ; an example of 
the temporal behavior of such noise for each scale factor is 
shown in Fig. 5.

The scale factor values were chosen in light of the stand-
ard BSP experimental campaigns previously conducted and 
detailed in Bonsignorio and Zereik (2021). The BSP train-
ing trajectories have been executed both with or without 
additional noise injected into the system. In particular, 34 
trajectories were executed without noise, and the remain-
ing 63 were executed with added noise as described above. 
Note that in the training trajectories different scale factors 

(3)� =

W∑

j=1

Aj sin
(
�jt − kjx + �j

)

Fig. 5   Samples of generated noise for w = 0.035 and w = 0.05
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w were tested (for details please consult Bonsignorio and 
Zereik 2021). Figures 6 and 7 illustrate some examples of 
BSP training trajectories with and without injected noise.

Concerning the deep models training process, the param-
eter l, as explained in Sect. 4, was chosen equal to 3, thus 
the N trajectories yielded a total number N∗ = 1801 of input/
output pairs used to train the neural models.

The deep neural models employ GRU neural units, as said 
in Sect. 4, for the recurrent layers. In particular, for the Car-
tesian control we used a network with 2 layers of 50 GRU 
units, while for the motor control, due to the more complex 
dynamics and larger output, we employed 5 layers of 500 
GRU units. The network parameters have been optimized 
with the ADAM algorithm (Goodfellow et al. 2016), using 
batches made of 16 samples. All the network models have 
been implemented with PyTorch2.

For each neural controller, 20 tests were performed 
without noise injection and 20 with noise injection with 
w = 0.035 . Each set of 20 experiments was equally distrib-
uted among the 4 different initial conditions (i.e., red blob 
initially in view in all the 4 corners of the image). Hence, 
a total number of 80 test experiments was performed. The 
test starting points in ‘Ref1’ and ‘Ref2’ are always different 
with respect to those of the training trajectories. In general, 

“starting from Refn” actually means “starting from a random 
point in the corner area Refn”. Concerning the tests starting 
from ‘Ref3’ and ‘Ref4’ (i.e., the corners never used during 
the generation from the training trajectories), they have been 
included to evaluate the ability of the neural controller to 
learn and extrapolate, not only to imitate. After these tests, 
we conducted some in-depth analysis on the MDL control-
ler, focusing on: i) the effect of varying the value of the 
neural controller parameter l; ii) the effect of a larger noise 
( w = 0.05 ) acting on the system.

To evaluate the performance of the neural controllers, we 
employ the norm of the Cartesian error (expressed in [m] ) 
between H 2Arm end-effector current position and its desired 
final position (right in front of the red blob). This is used to 
compute two main performance indices:

•	 the number of motion steps required to reach the goal 
(here represented by the error threshold level e∗ = 0.03 
m), starting from an initial common distance (here set to 
0.18 m);

•	 the actual execution time (in seconds) required to reach 
the goal as above.

Fig. 6   Examples of BSP training trajectories (without injected noise)

Fig. 7   Examples of BSP training trajectories (with injected noise)

2  http://​www.​pytor​ch.​org.

http://www.pytorch.org
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5.2 � Results

Both the Cartesian and motor controls allowed to obtain 
100% success rate in all tests, with and without injected 
noise. Table 1 reports a summary at a glance of the obtained 
results. In particular, it reports the average number of steps 
and the average time needed to reach the goal over the 
above-mentioned sets of 20 test trajectories for both the 

Cartesian and the motor deep-learning controllers, both 
with and without noise. The mean time-per-step of the single 
trajectory, averaged over the set of test trajectories, is also 
reported. For a comparison, the average number of steps, 
the average execution time and the mean time-per-step are 
reported in the table also for the 97 trajectories used for the 
training, obtained with the BSP algorithm.

Table 1   Comparison of the 
mean number of steps, the 
mean execution time and the 
mean time-per-step between the 
training and test trajectories for 
both neural controllers, both 
with and without additional 
noise. Note that the training 
trajectories correspond to the 
97 successful BSP experiments 
described in Bonsignorio and 
Zereik (2021)

Test trajectories

Neural Controller Noise Average steps Average time [s] Av. mean time/step [s]

CDL No 18.25 6.98 0.38
MDL 19.45 7.53 0.39
CDL Yes 37.1 14.66 0.39
MDL 31.7 12.33 0.38
Training trajectories
Neural Controller Noise Average steps Average time [s] Av. mean time/step [s]
CDL No 15.74 73.83 5.29
MDL
CDL Yes 13.91 91.08 8.55
MDL

Fig. 8   Norm of the error and corresponding component-wise behavior in two example trajectories - Cartesian control without injected noise. 
Notice that trajectory 5 starts from Ref1, while trajectory 11 starts from Ref3

Fig. 9   Norm of the error and corresponding component-wise behavior in two example trajectories - Cartesian control with injected noise. Notice 
that trajectory 4 starts from Ref1, while trajectory 19 starts from Ref4
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Overall, the table shows how the proposed methodology 
proved to be quite effective in providing a controller able to 
successfully execute the task. In fact, we can see that, even if 

it takes a few more steps, the neural controller always yields 
convergence almost 10 times faster than the original BSP 
algorithm in terms of execution time.

Fig. 10   Mean over the 20 test trajectories of the number of steps required to reach decreasing error levels, without (left) and with (right) injected 
noise - Cartesian control

Fig. 11   Norm of the error and corresponding component-wise behavior in two example trajectories - motor control without injected noise. 
Notice that trajectory 9 starts from Ref1, while trajectory 16 starts from Ref4

Fig. 12   Norm of the error and corresponding component-wise behavior in two example trajectories - motor control with injected noise. Notice 
that trajectory 1 starts from Ref2, while trajectory 19 starts from Ref4
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Concerning the Cartesian control, Figs. 8 and 9 report 
the norm and corresponding component-wise behavior of 
the error in two example trajectories, without and with 
injected noise, respectively.

Figure 10 illustrates the mean (over the 20 test trajec-
tories) number of steps required to reach decreasing error 
levels, both for the noise-free and the noisy tests. These 
graphs show how relaxing the final error threshold require-
ment (e.g., setting it to 0.05 m ) the system would reach the 
goal in a considerably smaller number of steps.

Regarding the motor control, Figures 11 and 12 report the 
norm and corresponding component-wise behavior of the 
error in two example trajectories, without and with injected 
noise, respectively.3

Figure 13 illustrates also for this control scheme the mean 
(over the 20 test trajectories) number of steps required to 
reach decreasing error levels, both for the noise-free and 
the noisy tests.

Fig. 13   Mean over the 20 test trajectories of the number of steps required to reach decreasing error levels, without (left) and with (right) injected 
noise - motor control

Fig. 14   System behaviour while facing variation in: neural controller parameter l (left) and additional noise magnitude (right)

3  Please note that all the trajectories (and the corresponding error 
norm) of the 80 performed test experiments are reported in a Supple-
mental Material file to this article.
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5.3 � Additional experiments

After the first test campaign, a series of ad-hoc additional 
tests have been performed to investigate the robustness of 
the controller. In particular, we investigated how changing 
the value of parameter l in the neural controller affects the 
system behavior, as well as testing the performance of the 
controller in presence of larger noise. For these tests we 
focused on the MDL scheme, which is the most interesting 
one. In fact, it does not require the pseudo-inversion of the 
robot Jacobian matrix that, in case of more complex robots, 
can generally be of large size or, in case of soft and compli-
ant robots, could be highly inaccurate. In the first round of 
additional experiments we performed the same tests as in the 
previous experimental campaign using l = 2 and l = 5 . For 
each parameter value, 40 experimental runs were performed, 
20 with and 20 without additional noise, and with the blob 
starting position equally distributed among the 4 image cor-
ners. Performance of the system when using l = 2 and l = 5 
are reported in Fig. 14 (left); the system behavior is quite 
similar in all the cases, with a slight improvement in the case 
l = 3 , showing that the parameter l is not a crucial factor for 
the success of the method, which is 100% in all cases.

Then we conducted a last case study aimed at assessing 
the MDL system behavior while facing additional noise with 
a larger magnitude. Thus, 20 more runs (5 with the red blob 
initial position in each image corner) were performed inject-
ing in the system the already described Pierson-Moscowitz 

distributed spectrum with w = 0.05 . Success rate is again 
100% ; the system behavior is depicted in Fig. 14 (right). 
From the plots, it is clear how the system behavior remains 
quite the same when facing a larger noise (the number of 
required steps is slightly higher but the difference is very 
small), thus underlining the system robustness to environ-
mental disturbance.

5.4 � Discussion

All the performed tests were successful and had quite good 
performance in terms of convergence and execution time. 
Regarding the CDL-BSP, all 20 test trajectories without 
noise are such that the goal is reached in few steps; only in 
some cases it shows some oscillations. These oscillations are 
mainly due to the camera estimation error and, in any case, 
they do not prevent task completion, even if the threshold 
below which the task is considered completed is quite low 
( 0.03 m ). Not surprisingly, the most oscillating component is 
the one along axis z of frame < c > , namely the distance of 
the end-effector from the red blob along the camera optical 
axis. The trajectories with noise exhibit more sever oscilla-
tions, and such behavior is again mostly due to the noise and 
the estimation error on axis z of camera frame < c > . The 
MDL-BSP scheme turns out to yield similar performance, 
with respect to the Cartesian one, in the noise-free case; only 
it takes on average some more steps and some more time (the 
mean time difference is 0.55 s ). Instead, in the noisy case 

Fig. 15   Comparison among the proposed H 
2
Arm visual-servoing 

task and the “Reacher” task of the DeepMind Control Suite. The 
main characteristics of each task are: a) DeepMind Reacher – a 2-link 
planar structure that has to reach a target, executed only in simula-
tion, with known proprioceptive measures, known target location, 
simulated scenario with known noise structure, many training data 
needed, AI directly on image pixels. Tasks are strongly observable, 
position and velocity observations depend only on the current state. 
Sensor readings only depend on the previous transition, see Tassa 

et al. (2018). Courtesy of DeepMind. b) H
2
Arm – 4-link 3D manipu-

lator, experimented in real world, without proprioceptive information 
(the only sensor on-board is the wrist-mounted camera), additional 
noise injected in some of the experiments, very few needed training 
data (97 BSP trajectories logged in previous tests where the arm was 
controlled by the BSP algorithm only, without any neural control-
ler), images are pre-processed by a vision algorithm and AI works on 
measures estimated by vision
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the motor deep-learning controller employs, on average, less 
steps and less time with respect to the CDL-BSP (the mean 
time difference is 2.33 s).

This difference is probably due to the fact that the CDL 
controller relies on a classical inverse kinematics approach 
to achieve the transition between the Cartesian and the joint 
operative spaces, while the MDL controller directly gener-
ates reference velocity for motors, without the need of an 
inverse kinematics computation. The first case likely implies 
a higher sensitivity to noise, since this last is filtered by the 
pseudo-inverse of the Jacobian matrix, while in the MDL 
case the reference commands are directly generated and sent 
to motors.

As already hinted, we computed the mean time per each 
step. As expected, this value is constant for both neural con-
trollers, both with and without noise. On the contrary, it 
varies in the case of the standard BSP approach. This is 
due to the difference in terms of execution time between the 
neural and standard control strategies: the time employed by 
neural controllers to compute the next command to be sent to 
the robot is negligible with respect to the motion execution 
time, where as the BSP computation time (needed to solve 
the optimization problem at each sample time) is in general 
greater than the motion execution time (and potentially even 
higher in case of replanning).

For the sake of providing an example of comparable task, 
Figure 15 illustrates the DeepMind “Reacher” task (Tassa 
et al. 2018) along with our visual-servoing one, highlighting 
the main differences.

6 � Conclusions and future work

The proposed deep neural controllers turned out to be quite 
effective for the considered visual-servoing blob centering 
task. DL-BSP allowed to obtain 100% success rate in all 
our tests both with Cartesian and motor control schemes, 
proving to be robust towards both camera estimation errors 
(above all on depth z component wrt frame < c > ) and addi-
tional Pierson-Moskowitz noise directly injected on the red 
blob 3D position measurement at each sample time. This 
confirms that the combination of H 2Arm structure and the 
proposed control schemes is a good candidate for the control 
of light inaccurate arms. Both controllers exhibited the capa-
bility to extrapolate the tasks learned by imitation. In fact, 
in all the trajectories starting in the Ref3 and Ref4 corners, 
the arm end-effector always reached the desired final posi-
tion in front of the red blob, even if no trajectory starting 
in those corners was provided in the training set. Looking 
at Table 1, we can notice that the controller trained on the 
Cartesian dataset is faster than the one trained on the motor 
velocity dataset in tests without noise, while the latter is 
faster in tests with noise; the same alternate behavior can 

be reported analysing the required steps for both control-
lers (the Cartesian control scheme needs less steps than the 
motor one for the case without additional noise, while it 
takes more steps when additional noise is injected into the 
system). The performance of both controllers slightly dete-
riorates when additional noise is injected into the system, 
but the times remain remarkably smaller than the standard 
BSP control scheme behavior.

The motor control strategy, by directly generating 
commands to the arm motors, can result more efficient in 
terms of online computational burden, since it does not 
require the pseudo-inversion of the robot Jacobian matrix, 
as already hinted. Overall, in our experiments the deep 
learning imitation approach allowed to retain the optimal-
ity and strong robustness properties of the BSP algorithm, 
while allowing fast execution times that make it actually 
applicable to real-time operations. Thus, it appears to be 
a quite promising option to enable the successful opera-
tion of low-cost, modular, inaccurate and non-repeatable 
robotic structures such as H 2Arm.

Moreover, according to preliminary experiments that 
we additionally performed by manually displacing the 
red blob in the scene, we expect that the same approach 
will work for moving targets too, only relying on the same 
dataset and without further training. In fact, the system 
showed good performance also in such preliminary tests, 
whose results are comparable to the previously conducted 
experiments.

Future work will be aimed at performing more complex 
tasks, investigate the robustness to different training dataset, 
testing in unstructured environments (and marine contexts 
in particular) also comparing against more advanced imita-
tion learning schemes (e.g., inverse reinforcement learning). 
From an experimental point of view, the middle-to-long term 
objective of the present research activity will focus on test-
ing the proposed control strategy on a marinized manipula-
tor (possibly with a more accurate structure allowing for 
ground-truth) in a relevant underwater environment, to com-
pare system performance.

An interesting issue is to get a better understanding of the 
reduced training effort of the imitation deep learning net-
work when the training sets are obtained through an applica-
tion of an optimized algorithm such as the belief space plan-
ning (whether we consider the Cartesian or motor velocities 
approach). We have implemented our learning and control 
strategy on an open-source real-world arm performing a 
task similar to that of the ‘reacher’ scenario in Tassa et al. 
(2018) with a more complex robot on a very low-cost low-
accuracy platform with no proprioceptive sensors and very 
basically actuated motors. We will investigate if and how 
our approach can be scaled to more complex tasks, in order 
to determine the real reach of the proposed methodology.
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