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Abstract
The separation distance between humans and robots in manufacturing shop-floors has been progressively reduced, thanks 
to the modern safety functionalities available in robot controllers. However, the activation of these safety criteria usually 
stops the production or reduces the productivity of machines and robots. With the aim of improving this situation, this paper 
presents a real-time trajectory optimisation method for collaborative robots. The robot trajectory is parameterised at instruc-
tion level, i.e. through the parameters characterizing the robot motion instruction. A genetic algorithm randomly modifies 
the parameters of the nominal trajectory of the robot, thus obtaining new sets of candidate trajectories. Each trajectory is 
simulated on a digital twin of the collaborative workspace, which allows to reproduce and simulate the robot motion, and 
to represent the volume of the work-cell occupied by the human operator. A lexicographic optimization is used to evaluate 
online the optimal robot trajectory that simultaneously minimizes the risk of collision with the human operator and the 
trajectory traversal time. The method is validated in an industrial scenario involving the ABB YuMi dual-arm robot for a 
small parts assembly task.

Keywords  Collaborative robotics · Intelligent and flexible manufacturing · Trajectory optimization · Genetic algorithm · 
Collision avoidance

1  Introduction

Collaborative robots are endowed with safety function-
alities allowing them to safely share the workspace with 
human workers. ISO Technical Specification 15,066 (ISO 
TC184/SC2 2013) introduces two criteria to enforce safety 
in human-robot coexistence: Speed and Separation Monitor-
ing (SSM) and Power and Force Limiting (PFL). The for-
mer prescribes how to maintain a minimum safety distance 
between the robot and the human operator, so as to ensure 

cooperative human-robot coexistence while avoiding harm-
ful contacts (Hamid et al. 2017).

The latter allows the robot to work even in close proxim-
ity with a reduced energy, so that a possible impact, which 
will eventually stop its motion, would not cause any injury to 
the human. No matter which safety criterion is implemented 
by the robot controller, the possibility of executing trajec-
tories that minimise the probability of triggering a safety 
countermeasure is of paramount importance to guarantee the 
highest level of productivity. In fact, the two safety criteria 
force the robot to slow down or to eventually stop along the 
path, thus reducing its efficiency. For this reason, research-
ers are looking for effective models to describe the human 
behaviour in the shop-floor with the ultimate goal of using 
this information to plan optimal trajectories for the robot.

The problem of adapting the robot trajectories to dynamic 
environments is a longstanding one, (Brock and Khatib 
2000). In the field of Human-Robot Collaboration (HRC), 
researchers are trying to include prediction of human motion 
in the trajectory generation or adaptation, (Balan and Bone 
2006; Ragaglia et  al. 2015; Koppula and Saxena 2016; 
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Lasota et al. 2017; Zanchettin and Rocco 2017; Zanchettin 
et al. 2019).

When it comes to use models of human motion in tra-
jectory planning, several examples can be reported. For 
example (Ziebart et al. 2009) used a navigation strategy to 
avoid pedestrians. Ding et al. (2011) adopted a Mixed Inte-
ger Linear Programming (MILP) algorithm to avoid colli-
sions. The work in Mainprice et al. (2016) minimises the 
intersection of robot and human workspaces. Pellegrinelli 
et al. (2016) uses a probabilistic representation of human 
occupancy to select a trajectory within an offline generated 
set. The work by Pereira et al. (2018) adopts reachable sets 
gathered from human archetypal movements and uses them 
online in safety-oriented strategies such as stopping the robot 
or performing a local avoidance manoeuvre. By interleaving 
online planning and execution, the work in Unhelkar et al. 
(2018) proposed an adaptation strategy for robot trajecto-
ries to avoid humans and minimise the stopping time of the 
robot. Similarly to (Lasota et al. 2017; Wang et al. 2018) 
adopts time series to predict human motion and develops 
a local avoidance strategy. Collected occupancy patterns 
of the human, which are typically represented using voxels 
(Antāo et al. 2019), are used in Zhao et al. (2018) to gener-
ate a trajectory that possibly avoids the region previously 
occupied by the human. The prediction method in Ragaglia 
et al. (2015) has been used in Ragaglia et al. (2018) within 
a Quadratic Programming (QP) problem to locally deform 
a given trajectory, and in Zanchettin et al. (2019) for a local 
obstacle avoidance strategy. In Casalino et al. (2019) a path 
deformation strategy minimising the intersection between 
human and robot spaces is proposed. Finally, in Park et al. 
motion prediction is used to locally detour the robot trajec-
tory, (Park et al. 2019).

This paper proposes a strategy for the adaptation of the 
robot motion profiles based on an occupancy model of the 
human fellow operator. Collecting long-term occupancy 
data of the human operator, the proposed algorithm evalu-
ates the optimal trajectory for the robot that simultaneously 
minimises the probability of collisions and the duration of 
the motion profile. The optimisation is based on a digital 
twin, (Tao et al. 2018; Arne Bilberg and Ali Ahmad Malik 
2019), of the robot motion controller as well as of its safety 
strategy. In this way the optimization strategy can take into 
account how the robot behaves during its nominal opera-
tions, and how its speed is reduced in close proximity of the 
human. The general architecture of the developed strategy 
is shown in Fig. 1.

The remainder of the paper is organised as follows. Sec-
tion 2 reports a review of state of the art methods that are 
relevant for the problem handled in this work. Section 3 for-
malises the problem of generating minimum-time trajectory 
allowing the robot to reach a certain goal configuration from 
a starting one, while guaranteeing minimum intervention 

of safety functionalities. Section 4 details the optimisation 
algorithm introduced to optimally solve the trajectory plan-
ning problem. Section 5 describes the software architecture 
that implements the method and the layout of the experimen-
tal setup adopted for the verification. Finally, the outcome of 
the experimental campaign is discussed in Sect. 6.

2 � Survey on existing methods 
and comparison

Prediction of human occupancy volumes tends to be 
overconservative, (Pereira and Althoff 2018), especially 
for long-time predictions. It follows that strict avoidance 
constraints might limit the performance of the robot. In 
this work, the SSM criterion is relaxed according to the 
occupancy probability (refer to Sect. 3.2 for more details), 
allowing the robot to achieve better performance. Several 
works are related to the problem handled in this paper. In 
the following, detailed comparisons between the proposed 
solution and state of the art methods is given. Table 1 at 
the end of this Section summarises the analysis.

In Balan and Bone (2006), a simple model-based pre-
diction of the human motion is used in the robot control-
ler to search for collision-free paths by moving the end-
effector along a set of pre-defined search directions while 
balancing between the attraction to the goal and repulsion 
from the human.

Ding et al. (2011) adopted a Hidden Markov Model 
(HMM) for the prediction of human reaching motion to 
be used in a MILP strategy for motion planning. Based 
on a long-term prediction, the trajectory generation is 

Fig. 1   Highlights of the method: the algorithm generates feasible tra-
jectories for the robots that simultaneously minimise the probability 
of collisions with the human operator and the traversal time. The risk 
of collisions is evaluated based on a probabilistic representation of 
the space occupied in the long-term by the operator. As the optimi-
sation algorithm runs continuously, the robots automatically adapt to 
operator
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handled in a robust manner, allowing the robot to avoid 
collisions within a specified confidence level. The work 
in Pellegrinelli et al. (2016) also presents a long-term 
occupancy representation of the human worker based on 
probability grids. A pre-trained set of trajectories is made 
available to the robot at run time. The planner decides 
online which trajectory to execute within the finite set in 
order to minimise the variability in the execution time, 
knowing that the robot might have to slow down or stop 
due to the proximity of the operator. Though being highly 
correlated to the problem addressed in this paper, no adap-
tation capabilities are reported. In Mainprice et al. (2016) 
a prediction of human occupancy in terms of swept vol-
umes is used by a motion planner to generate robot tra-
jectories minimising the penetration of the robot in the 
space possibly occupied by the human. The behaviour of 
the robot is obtained by interleaving planning and execu-
tion during the motion. In Pereira and Althoff (2018), the 
authors gathered data from a motion capturing campaign 
to predict any possible future spatial occupancy of human 
arm movements. This model of the human arm occupancy 
is used to anticipate a safety countermeasure of the robot. 
The work detailed in Unhelkar et al. (2018) adopts the 
multiple-predictor method inLasota et al. (2017) to feed a 
robotic planner that interleaves online planning and execu-
tion. Prediction based on time-series has been also used 
in Wang et al. (2018) together with a local optimal detour 
strategy. Zhao et al. (2018) constructed a map of the space 
previously occupied by human which is then used to feed 
standard trajectory optimisation solvers. In Zanchettin 
et al. (2019), the robot is informed of the short-term pre-
diction of human occupancy gathered using the method 
in Ragaglia et al. (2015) and implements a SSM criterion. 
A dodging trajectory is executed before the robot velocity 
has to be reduced due to the proximity of the operator. A 

path planning system that adapts during its execution has 
been presented in Casalino et al. (2019). The system incre-
mentally learns the occupancy of the human arm while 
reaching a certain goal and adapts the path of the robot 
to optimally handle the trade-off between the length of 
the path and the possible interference with the human. 
The intended goal of the human operator has been used in 
Park et al. (2019) to estimate the corresponding reaching 
motion and its velocity which is used to locally detour 
the trajectory of the robot in the vicinity of the estimated 
occupied volume.

Most of the reported works adopt a short-term prediction 
of the human motion, either based on the intended goal to be 
reached, or using reachable sets within a predefined predic-
tion horizon. Consistently, the trajectory generation problem 
is typically handled locally (i.e. based on a reactive strategy 
that deforms a pre-planned trajectory or path) or globally, 
but focusing only on short-terms prediction. When it comes 
to consider the long-term occupancy prediction, the problem 
of generating a suitable trajectory for the robot is mainly 
handled offline, (Pellegrinelli et al. 2016), or based on the 
minimisation of multi-objective cost functions, (Zhao et al. 
2018). In particular, the work in Kalakrishnan et al. (2011) 
uses the Stochastic Trajectory Optimisation for Motion Plan-
ning (STOMP) library to minimise both the acceleration and 
the number of voxels occupied by the robot that are also 
likely to be occupied by the human.

This paper addresses the problem of generating a trajec-
tory that globally minimises the risk of collision with the 
operator, based on long-term occupied volume. The trajec-
tory generation module embeds a model of the SSM func-
tionality the robot adopts to reduce its speed in case of close 
proximity with the operator and tries consistently to avoid 
the intervention of the safety functionality which will inevi-
tably reduce the productivity of the robot.

Table 1   Summary of the 
comparison with existing 
methods

Paper Human prediction Trajectory 
optimisation

Model-based Intended goal Occupied space Reachable set Local Global

Balan and Bone (2006) ✓ ✓ ✓

Ding et al. (2011) ✓ ✓

Mainprice et al. (2016) ✓ ✓

Pellegrinelli et al. (2016) ✓ Offline
Pereira and Althoff (2018) ✓ ✓

Unhelkar et al. (2018) ✓ ✓

Wang et al. (2018) ✓ ✓

Zhao et al. (2018) ✓ ✓

Zanchettin et al. (2019) ✓ ✓

Casalino et al. (2019) ✓ Path
Park et al. (2019) ✓ ✓

This paper ✓ ✓
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3 � Trajectory optimisation method

The method developed in this work allows the robot to plan 
and adapt its trajectories based on the occupancy data of 
the human operator. An optimisation algorithm is developed 
with the aim of simultaneously minimising the risk of col-
lisions and the traversal time of the trajectory. In particular, 
the trajectory is obtained considering that, according to the 
SSM criterion, the closer the manipulator is to the operator, 
the slower its motion must be. A trade-off between shorter 
cycle times and vicinity of the operator (hence shorter paths) 
is achieved by the optimisation algorithm that accounts for 
the safety of the operator as a constraint on the velocity of 
the robot. The presence of the operator in the work-cell is 
accounted for in terms of an occupancy probability grid, 
hence the safety constraint is handled in a probabilistic man-
ner and the collision avoidance criterion is relaxed according 
to the occupancy probability, as will be carefully described 
in Sect. 3.2.

3.1 � Parameterisation of robot trajectories

There are several available ways to describe a trajectory: 
path and timing law, interpolating polynomials, splines, etc. 
(Siciliano et al. 2010). In order to be compatible with most 
of the robot controllers, in this paper the problem is solved 
directly at instruction level, i.e. the trajectory is parameter-
ised by means of motion instructions. The clear benefit of 
this approach is that the outcome of the trajectory generation 
algorithm can be directly executed by the robot controller. 
Regardless of the particular syntax that depends on the robot 
manufacturer, a motion instruction usually looks like to fol-
lowing one: 

 where MoveL is a motion instruction requiring the robot to 
move linearly (along a straight line) from its current posi-
tion to the specified position, ToPoint specifies the position 
and orientation that the robot shall reach at the end of the 
motion, Speed specifies the maximum speed of the robot 
along the path, while Zone specifies how much the path can 
cut corners when close to ToPoint.

In the light of the discussion above, we assume the trajec-
tory planner to be parameterised through the following set 
of parameters:

where mi is the interpolation type (Cartesian or joint space, 
Siciliano et al. 2010), p1,… , pn indicate the intermediate 

� =

[

m1, p1, v0,1,R1

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
,… ,mn, pn, vn−1,n,Rn

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
,mn+1, vn,n+1

]T

∈ �

via points, vi,i+1 stands for the maximum velocity along the 
segment connecting two consecutive targets, Ri contains the 
blending radii to be applied when close to via point pi . The 
first four parameters are the typical parameters of a motion 
instruction. Finally, symbols p0 and pn+1 denote the first and 
the last target points for the robot trajectory which are not 
subject to optimisation. Given the set of parameters � , we 
assume that the trajectory planner is capable of evaluating 
the joint position of the robot q at a given time instant t as 
qt = q(t,�) , together with its time derivatives q̇t = dqt∕dt 
and q̈t = d2qt∕dt

2 . Moreover, given the traversing velocity 
along the path, which is also computed by the planner, it is 
relatively easy to evaluate the traversal time T = T(�).

3.2 � Strategy for speed and separation monitoring

As described previously, the proposed optimisation methods 
aims at adapting the parameters of the robot trajectory based 
on the occupancy of the human fellow operator. The optimisa-
tion procedure also takes into account the SSM criterion, as 
will be described in the following.

Consider an obstacle occupying the cell (i.e. a volumetric 
unit) centred in r and assume that the SSM constraint can be 
specified as follows (see Ragaglia et al. (2015) for an explicit 
example of the derivation of such a constraint and the defini-
tion of the related variables):

Basically, as explained in Ragaglia et al. (2015), the SSM 
criterion is applied between each point along the links of the 
robot and the obstacle located in r . By elaborating such con-
straints, sufficient conditions can be expressed in terms of 
the joint velocities q̇t as in eq. (1), where E

(

qt, r
)

 is a matrix 
and f

(

qt, r
)

 is a vector of suitable dimensions.
The occupancy is however non deterministic and can be 

regarded as a Bernoulli distributed stochastic variable:

where Pr indicates the occupancy probability of the cell cen-
tred in r . The occupancy probability Pr is here considered as 
an almost-stationary quantity, as it will be used to represent 
the long-term occupancy pattern of the human operator. The 
constraint can be then rewritten as follows:

Notice that whenever Br = 1 , Eq. (2) coincides with Eq. (1), 
whilst when Br = 0 , the constraint is automatically satisfied, 
being f

(

qt, r
)

≥ 0 , (Ragaglia et al. 2015). In order to get rid 
of the stochasticity of variable Br , the left hand side of Eq. 
(2) is replaced by its expected value:

(1)E
(

qt, r
)

q̇t ≤ f
(

qt, r
)

.

Br ∈ {0, 1},Br ∼ B
(

Pr

)

(2)BrE
(

qt, r
)

q̇t ≤ f
(

qt, r
)
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which allow us to introduce the following deterministic 
constraint:

From a geometric perspective, the deterministic constraint 
in Eq. (4) allows for a higher velocity of the robot q̇t , with 
respect to the one satisfying the original constraint, if the 
corresponding cell centred in r has a low probability of 
being occupied. Finally, notice that at time t the position 
qt and the velocity q̇t of the robot depend uniquely on the 
trajectory parameters � . For the development of the method 
it is then convenient to explicitly highlight this dependency 
and rewrite the constraint in Eq. (4) as follows:

where a(t,�, r) and b(t,�, r) stand for E
(

qt, r
)

q̇t and f
(

qt, r
)

 , 
respectively.

The SSM criterion prescribes that the robot reduce its 
velocity according to the closeness of the human. Since the 
information about the human position is only available in 
a statistical manner by means of a probabilistic occupancy 
grid, the prescription of the SSM criterion is rendered in 
a probabilistic way. In particular, the robot is allowed to 
traverse an area which is possibly occupied by the human 
with a speed which is in turn proportional to the prob-
ability of such area being not occupied. The constraints in 
Eq. (4) clearly express this property: the higher the occu-
pancy probability Pr of the cell centred in r , the lower the 
velocity of the robot q̇t when passing in the vicinity of r . 
Therefore, it should be further clarified that, during the 
actual execution of whatever collaborative task, the SSM 
criterion is always active to limit the robot speed accord-
ing to the distance from the human, thus enforcing the 
safety of the cooperation. However, during the evaluation 
of the proposed trajectory optimisation algorithm, since 
the information related to the actual human occupancy 
can only be stochastically estimated, the SSM criterion is 
evaluated according to Eq. (3).

3.3 � Long‑term occupancy model of the human

In the following a recursive law to update the occupancy 
probability Pr is developed. For the long-term prediction 
purposes of this work, it is reasonable to assume that the 
long-term occupancy probability is a stationary distribu-
tion. Given N occupancy samples, the Maximum Likeli-
hood Estimator (MLE) at discrete time t of the parameter 
Pr = �

[

Br

]

 of a Bernoulli process is:

(3)�
[

BrE
(

qt, r
)

q̇t
]

≤ f
(

qt, r
)

(4)�
[

Br

]

E
(

qt, r
)

q̇t = PrE
(

qt, r
)

q̇t ≤ f
(

qt, r
)

(5)Pra(t,�, r) ≤ b(t,�, r)

where Bt
r
∈ {0, 1} represents the value of the Bernoulli pro-

cess at discrete time t. In turn, at discrete time t + 1 , i.e. 
when a new sample is available, we have:

Therefore, an Infinite Impulse Response (IIR) or Exponen-
tially Weighted Moving Average (EWMA) filter can be 
adopted as a recursive MLE of Pr , meaning that, whenever 
a new sample is available, the occupancy probability of the 
cell centred in r can be updated as follows:

where 0 < 𝛼 ≪ 1 is a tunable parameter. Particularly small 
values of � guarantee a severe low-pass behaviour of the 
filter, and are thus suitable to represent the long-term occu-
pancy volume of the human operator.

3.4 � Constrained trajectory optimisation

We are now in position to introduce the minimum time 
trajectory generation problem to be solved. Assume that n 
intermediate waypoints have to be used to generate the cor-
responding trajectory, then the optimisation of the param-
eters �n can be handled in terms of lexicographic optimisa-
tion as follows:

where the cost function includes the two prioritised 
objectives: the former, with higher priority, accounts 
for the minimisation of the risk, which in turn is 
expressed in terms of the worst case slack variable 
s
(

t,�n, r
)

= P̂ra
(

t,�n, r
)

− b
(

t,�n, r
)

 associated to the obsta-
cle avoidance constraints in Eq. (5), while the latter accounts 
for the traversing time. In the following, the higher prior-
ity objective in Eq. (8) will be also referred to as ‘penalty’, 
while the other one will be also indicated as ‘cost’.

The reason why a lexicographic optimisation has been 
adopted is that completely eliminating the risk of collisions 
is practically impossible. In realistic scenarios, especially 
when parts of the workspace are shared between the human 
and the robot, it is impossible to guarantee the existence of 
a collision-free path for the robot. In particular, in scenarios 

P̂
t,N

r
=

1

N

N−1
∑

i=0

Bt−i
r

(6)
P̂
t+1,N+1

r
=

1

N + 1

N−1
∑

i=−1

Bt−i
r

=
1

N + 1

(

NP̂
t,N

r
+ Bt+1

r

)

(7)P̂
t+1

r
= 𝛼P̂

t

r
+ (1 − 𝛼)Bt+1

r

(8)n,�n∈�n

{

max
t,r

[

0, P̂ra
(

t,�n, r
)

− b
(

t,�n, r
)]

, T
(

�n

)

}
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where the target point of the robot can be also occupied by 
the human, the absence of a collision-free path is obvious. 
Nevertheless, one would still want to minimise the risk of 
collisions between the human and the robot. To this end, 
the optimisation algorithm in Eq. (8) first tries to minimise 
the risk of collisions, which is proportional to the worst-
case slack variable s . Then, for the same amount of risk, the 
algorithm prefers trajectories with a shorter traversal time T.

4 � Trajectory optimisation algorithm

The algorithmic functionalities adopted to solve the optimi-
sation problem in Eq. (8) deserve a particular attention. The 
optimisation problem, in fact, is highly nonlinear, non-con-
vex and non-smooth since some parameters of the robot tra-
jectory are taken from discrete sets. For example, the inter-
polation type mi can be represented in terms of a boolean 
variable (0 indicates interpolation in the joint space, while 
1 indicates interpolation in the Cartesian space). Differently, 
the maximum velocity along the path vi,i+1 (expressed in 
mm/s) as well as the blending radius Ri (expressed in mm) 
are both represented by continuous values defined within the 
specific robot admissible ranges.

In turn, the position (and orientation) of each waypoint 
pi lies in SE(3) , which is not a Euclidean space. In gen-
eral, solving-partly combinatorial optimisations results in a 
NP-hard problem. Moreover, the relationship between the 
parameter space � and the cost function T(�) , i.e. the model 
of the trajectory planner, is far from being smooth or at least 
differentiable.

In the light of the above, the classical gradient-based opti-
mization methods are unsuitable to search an optimal solu-
tion for the optimisation problem in Eq. (8), while genetic 
algorithms (GA) can be efficiently used to solve these opti-
mization problems (Nia et al. 2009). Indeed, GA are a fam-
ily of a gradient-free metaheuristic models whose easiness, 
accuracy and adaptable topology allows them to efficiently 
find the global minimum or maximum of non-linear opti-
mization problems (Nia et al. 2009). Hence, similarly to 
the work in Abo-Hammour et al. (2011), we here adopt a 
gradient-free metaheuristic optimisation method (i.e. a GA) 
to solve the optimization problem in Eq. (8). In the follow-
ing, the main phases of the GA are detailed.

4.1 � Initialization

The first step of the proposed genetic algorithm is repre-
sented by the initialization phase. At this stage, the starting 
nominal trajectory is designed and its fitness in terms of risk 
of collision and traversal time T is evaluated (see Eq. (8)). 
Then, N clones of this trajectory are created to produce the 
initial population of candidate trajectories.

4.2 � Reproduction

This phase consists in the selection of the individual (trajec-
tory) of the population which the modification (i.e. muta-
tion) will be applied to. To perform reproduction, a random 
integer value is sampled from a uniform distribution defined 
over the interval (1, N), where N is the population size.

4.3 � Modifications of trajectories

In the following, the adopted strategy to modify a given tra-
jectory is detailed.

Cartesian or joint space interpolation The trajectory 
between two consecutive waypoints can be defined and inter-
polated in the joint space or in the operational (or Cartesian) 
space. The present binary operator applies a modification 
on a certain segment of a trajectory by simply swapping the 
interpolation type.

Waypoint position, speed and blending adjustment
The trajectory between two consecutive waypoints is 

defined in terms of a path and a velocity profile. The velocity 
profile, in turn, is usually specified in terms of the maximum 
cruise velocity along the path. The velocity is randomly 
modified by exploiting a normal distribution:

To ensure that the velocity value remains limited within 
an arbitrary minimum robot speed, vmin , and the prescribed 
maximum allowed speed for the considered robot, vmax , the 
following check is applied:

Moreover, a geometric parameter is usually introduced to 
specify the blending radius of the parabolic blend. Another 
operator applies a random modification to the blending 
radius according to a normal distribution N

(

0, �2

b

)

 (an exam-
ple is given in Fig. 2).

Another possibility is to modify the position of a way-
point. In this case a waypoint is randomly selected and its 
position1 is modified by applying a random displacement 
generated by the normal distribution N

(

0, �2

p
I3

)

.
Waypoint insertion and removal
Another important operator allows the algorithm to insert 

or remove waypoints. In case of insertion of a new way-
point, the algorithm first randomly selects two consecutive 
and existing waypoints pj and pj+1 . The position of the new 

N

(

vj + vj+1

2
, �2

v

)

min

{

max

{

N

(

vj + vj+1

2
, �2

v

)

, vmin

}

vmax

}

1  The orientational part is handled in a similar way. Details are omit-
ted.
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waypoint is generated according to the following normal 
distribution:

Figure 3 reports an example of a modification produced by 
this operator.

Notice that the variances ( �2
v
, �2

p
, �2

b
 ) of the aforementioned 

normal distributions used to modify the trajectories are all tun-
able parameters.

4.4 � Policy for selection of the genetic operator

At each iteration of the genetic algorithm only one of the 
above-mentioned mutation operators is applied. Let m(i)

k
 , 

i = 1,… , 7 denote the i-th mutation operator used at iteration 
k. Even though, typically, the selection of mutation operator is 
performed according to a randomised procedure, in this work 
we propose to exploit a knowledge-based criterion to improve 
the effectiveness of the mutation phase. The ultimate goal of 
this approach is to increase the frequency of selection of those 
mutation operators that turned out to produce more efficient 
trajectories with respect to the optimisation in Eq. (8) as well 
as improving the convergence rate of the genetic algorithm.

In order to evaluate the efficiency of mutation m(i)

k
 , the dif-

ference in terms of fitness between the offspring trajectory and 
its parent is computed over non-overlapping windows con-
taining k̄ iterations, Tw . Hence, if the fitness of the offspring 

N

(

pj + pj+1

2
, �2

p
I3

)

trajectory improves its parent’s one, mutation mi is considered 
efficient. Otherwise, it is considered inefficient.

Based on the above, the probability P of selecting mutation 
m(i) in the next time window is computed as follows:

where �m(i) is the number of trajectories where mutation mi 
was efficient within Tw and �m(i) is the number of iterations 
where mi was applied. Eventually, the probability of the 
mutations are normalized to one.

Notice that the dynamic variation of mutation prob-
abilities might entail an excessive decrease for low-fit-
ness mutation, thus preventing their selection. To solve 
this problem, a lower bound pmin is set for each mutation 
operator:

4.5 � Exploration vs. exploitation

Due to the complexity of the problem at hand and its non-
convex structure, it is beneficial to first explore the space 
of parameters before attempting to find the (possibly local) 
optimum. The optimisation procedure is therefore divided 
into two subsequent parts: exploration and exploitation.

P(m(i)) =
�m(i)

�m(i)

P(m(i)) = max

{

pmin,
�m(i)

�m(i)

}

Fig. 2   Trajectory before and 
after the adjustment (increase) 
of a blending radius

(a) Before (b) After

Fig. 3   Trajectory before and 
after the insertion of a new 
waypoint

(a) Before (b) After
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The exploration tries to diversify as much as possible 
the population of trajectories, thus exploring the space of 
parameters. When a new trajectory is obtained, it is added 
to the population by replacing its parent trajectory. A small 
percentage of best individual trajectories (elite) is however 
preserved in this procedure (substitution occurs only if an 
improvement in the fitness is registered). The exploitation 

part, in turn, tries to improve as much as possible the overall 
fitness of the population. After the application of an opera-
tor, the new trajectory replaces the worst one in the popula-
tion. The overall optimisation algorithm is further detailed 
in the flow chart of Fig. 4.

Fig. 4   Flow chart of the optimi-
sation procedure

yes no

yes

yes

no

no

yes no

no

yes
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5 � Use‑case and implementation

As introduced in Sect. 3, the objective of the work detailed 
in this paper is to derive an optimal trajectory for a collab-
orative robot, based on the space occupied by the human 
operator. The occupancy of each cell in each discrete time 
instant is returned by a smart 3D camera commercialised 
by Smart Robots.2

When invoked, the optimisation algorithm described in 
the previous Section is fed with the most updated occupancy 
probability of each cell. Its execution runs on a dedicated 
server (Intel i7-3770 4-Core 3.4 GHz, 16 GB RAM). The 
fitness of a trajectory is evaluated based on a digital twin 
of the work-cell containing a custom replica of the robot 
controller (running in the ABB RobotStudio simulation 
environment), together with the long-term occupancy model 
recursively updated using Eq. (7). The simulations run on 
another dedicated server (Intel i7-960 4-Core 2.67 GHz 8 
GB RAM). The two PCs constitute an edge computing ser-
vice that communicates with the shop-floor.

The simulation of each trajectory on the Digital Twin 
requires on average 2.5 s. Clearly, this time depends on the 
trajectory duration and on the computational capacity of the 
server for the digital twin.

Conversely, the evaluation of the fitness of each simulated 
trajectory on the main server requires on average 0.64 s, 
thanks to a multithread computing process.

The Smart Robots device is in dialog with the server 
and implements the SSM functionality described in Ragaglia 
et al. (2015). The trajectory obtained by the optimisation 
algorithm is then translated into the proprietary code of the 
robot manufacturer and saved in a text file. This file is finally 
sent to the robot via FTP connection. The overall architec-
ture of the system is sketched in Fig. 5.

For the verification, a collaborative assembly station 
has been setup, as illustrated in Fig. 6, where the ABB 
IRB14000“YuMi” robot and the human operator perform 
a set of activities to assemble an emergency stop button 

Fig. 5   Architecture of the sys-
tem: the smart 3D camera pro-
duces the occupancy grid which 
is sent to the edge computing 
device. Such a device elaborates 
the grid and produces the occu-
pancy probability which is used 
by the optimisation algorithm 
to produce an optimal trajectory 
for the robot. The trajectory 
is returned to the robot, in the 
form of an executable text file, 
via FTP connection

Smart
3D camera

Collaborative
robot(s)

Human
operator(s)

Edge
computing

Occupancy

Traje
cto

ry

Occupancy

Trajectory

Speed and separation
monitoring

Simulate

Evaluate

Modify

Fig. 6   Layout of the experimental setup

Fig. 7   Emergency stop button assembled by the human operator

2  Smart Robots web site: http://​smart​robots.​it/.

http://smartrobots.it/
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(see Fig. 7). The station is always supervised by the Smart 
Robots device, see again Fig. 6. The main parameters of the 
use-case are reported in Table 2.

The proposed task exemplifies a typical assembly activity 
performed in an industrial scenario by a human operator and 
a cobot. In this specific framework the human and the robot 
execute simultaneously different sets of actions during which 

their working regions may overlap. The human activity con-
sists in assembling all the components of the emergency stop 
button illustrated in Fig. 7. As can be noticed, the button is 
composed by several small parts that require high cognitive 
skill and accuracy to be assembled. The assembly is performed 
by the human (see Fig. 8) in a prescribed location of the shared 
workspace and requires a relatively large amount of time. Dur-
ing this phase, the human occupancy can be considered quasi-
static. Once the human operator has completed the assembly 
of one unit, he/she has to place the button in the R3 loading 
buffer. After that, he/she can start a new assembly cycle.

As mentioned previously, the interaction is synchronous. 
Hence, for each button completed by the human operator, the 
robot has to perform a motion trajectory to reach location 
R3, pick the just completed button, and unload it in buffer 
R1 (see Fig. 6). More specifically, the robot nominal trajec-
tory (i.e. the initial robot motion trajectory provided to the 
genetic algorithm) consists in a linear motion from position 
R1 to R3 passing through a waypoint (R2) that is located 
approximately in an intermediate position between the seg-
ment connecting R1 and R3.

As it is apparent from this description, positions R1 and 
R3 are assumed to be constrained (fixed) target locations 

Fig. 8   An operator assembling the button in the shared workspace

(a) (b) (c)

Fig. 9   Different regions of the shared workspace are occupied by the human operator during the assembly: a H1; b H2; c H3

(a) (b) (c)

Fig. 10   Robot nominal trajectory (blue) and optimized trajectory 
(green) according to the volume occupied by the human during the 
assembly: a H1; b H2; c H3. pLW and pRW represent the position of 
the centre of the human left wrist and right wrist, respectively. The 

occupancy associated with the human hands in assembly position H1, 
H2 and H3 is depicted through two spheres centered in pLW and pRW , 
respectively
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for the task. Differently, the human operator is allowed to 
perform the assembly in one of the following three regions: 

1	 H1, as reported in Fig. 9a and in Fig. 10a: in this case, 
the human operator, during the assembly, occupies a vol-
ume of the workspace (H1) slightly intersected by the 
nominal trajectory of the robot;

2	 H2, as reported in Fig. 9b and in Fig. 10b: in this case, 
the human operator does the assembly by occupying a 
region of the workspace (H2) located in closed proxim-
ity to the robot unloading position (R1).

3	 H3, as reported in Fig. 9c and in Fig. 10c: in this case, 
the operator, during the execution of the task, occupies a 
volume (H3) that is located far away from the manipula-
tor nominal trajectory.

6 � Results and discussion

The purpose of the validation framework is to analyse 
how the robot adapts its motion trajectory from R1 to R3 
according to the volume occupied by the human during the 
assembly, by optimizing Eq. (8).

To test the effectiveness of the trajectory optimisation 
algorithm, each volunteer (1 male and 1 female) was asked 
to perform three different use-cases. In the following, the 
volunteers will be referred to as ‘operator 1’ and ‘operator 
2’, respectively.

The use-cases performed by the subjects were charac-
terized by the same setup, same assembly task and by the 
same robot initial (nominal) path. However, each use-case 
was associated with a different human occupancy. Hence, 
in use-case UC-H1 the operator performed the assembly 
task in H1, in UC-H2 he/she worked in H2 and in UC-H3 
he/she did the assembly in H3. Each volunteer performed 
the use-case with his/her natural timing and posture.

To evaluate the effectiveness of the adaptation of the 
robot motion trajectory to the different work-cell human 
occupancies, the following performance metrics have been 
considered:

•	 the distance between the operator assembly position 
and the robot end-effector during its motion along the 
optimal trajectory with respect to the nominal one;

•	 the trend of the average penalty and cost of the popula-
tion of trajectories over the iterations performed by the 
algorithm;

•	 the relative average time saved during the execution 
of the optimised trajectory with respect to the nominal 
one, when the speed of the robot is scaled according to 
the vicinity to the human operator.

6.1 � Results

Figure 10 shows the approximate volumetric occupancies 
of the operator’s hands during the execution of assembly 
task as well as the position of the centres of his/her left 
and right wrists with respect to the robot base frame. This 
figure also illustrates the robot nominal path (blue) and 
the path resulting by the optimisation procedure (green) 
for each use-case.

Hereafter, a more detailed comparison between the per-
formance metrics achieved for each use-case is proposed.

UC-H1: Fig. 11 shows the voxel-based occupancy grid 
associated with H1: the darker the voxel, the higher the 
human occupancy probability of the work-cell. The voxels 
traversed by the nominal robot trajectory (Fig. 11a) and 
by the optimised trajectory (Fig. 11b) have been coloured 
according to a stoplight-coloured scale where green indi-
cates a negligible probability of collision with the human 
and red denotes a high risk of collision.

Figure 14 reports the distance between the centre of the 
human assembly position (H1) and the robot end-effector 
during its motion along the nominal trajectory (blue), the 
optimal trajectory for operator 1 (red) and for operator 2 
(green).

Eventually, Fig. 17 illustrates the trend of the average 
penalty and cost of the population of trajectories over the 
iterations of the genetic algorithm for operator 1 (Fig. 17a 
and b) and for operator 2 (Fig. 17c and d).

UC-H2: Figs. 12, 15 and 18 report the same content of 
Figs. 11, 14 and 17, respectively, when the human per-
forms the assembly task in region H2.

UC-H3: Figs. 13, 16 and 19 illustrate the same results 
depicted in Figs. 11, 14 and 17, respectively, when the 
human occupies region H3 during the assembly.

In Table 3 the average time saved by the optimised 
trajectory with respect to the nominal one are reported 

Table 2   Parameters of the use-case

Parameter Description Value

N Population size 20
E Elite size 20% of N
k̄ Maximum number of iterations 100
dt Trajectory sampling time 100 ms
L ×W × H Cell size 1.2 × 1.2 × 1.2 m
M Number of cells 20 × 20 × 20

Δ Cell resolution 6 × 6 × 6 cm
� IIR filter parameter 0.005
fs Sampling frequency of IIR filter ∼ 25 Hz
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for each use-case. Notice that these outcomes have been 
obtained taking into consideration the effective execution 
of the trajectories during the task, when the robot speed 
scaling might be triggered according to the proximity to 
the operator.

6.2 � Discussion

By inspecting Fig. 11 it is possible to notice, even from a 
qualitative perspective, the effectiveness of the proposed 
optimisation method. Indeed, the optimized trajectory is 
compliant with the different human occupancies associated 
with UC-H1, UC-H2, UC-H3 and adapts to them. More spe-
cifically, by observing Fig. 11a it is apparent that, since the 
region occupied by the human partially intersects the robot 

(a) (b)

Fig. 11   Probabilistic occupancy grid and probability of collision associated with robot trajectories when the human operator works in H1: a 
nominal trajectory; b optimized trajectory

(a) (b)

Fig. 12   Probabilistic occupancy grid and probability of collision associated with robot trajectories when the human operator works in H2: a 
nominal trajectory; b optimized trajectory
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nominal trajectory, the genetic algorithm favours the modi-
fication of the position of waypoint R2, by both adjusting its 
height and applying a lateral displacement. A similar behav-
ior can be noticed in Fig. 11b, even though this time, since 
the critical region is closer to position R1 (fixed), the genetic 
algorithm applies only a variation of the height of R2, so 
as to allow the robot arm to quickly move far away from 
the human. Differently, as illustrated in Fig. 11c, since the 
robot nominal trajectory is sufficiently far from the human, 
waypoint R2 is removed so as to favour the reduction of the 
trajectory traversal time.

For what concerns the minimization of the risk of colli-
sion, the goodness of the proposed optimisation is demon-
strated by both Figs. 11, 12 and 13 and by Figs. 14, 15 and 

16. Indeed, from the first set of figures just mentioned, it is 
possible to observe that in UC-H1 and UC-H2 the optimized 
trajectory (Figs. 11b and 13b) shows a greater number of 
voxels with low collision probability than the ones associ-
ated with the corresponding nominal trajectory (Figs. 11a 
and 13a). Differently, in UC-H3, since the nominal trajectory 
shows a low risk of collision with the human, the optimized 
one turns out to be almost identical to the nominal in terms 
of collision probability.

These outcomes are confirmed also by Figs. 14–15, from 
which it is evident that, when the distance between the robot 
and the human becomes rather small (black dashed lines), 
the proposed algorithm tries to optimize the actual trajectory 
by increasing this distance. Clearly, the opposite occurs in 

(a) (b)

Fig. 13   Probabilistic occupancy grid and probability of collision associated with robot trajectories when the human operator works in H3: a 
nominal trajectory; b optimized trajectory
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Fig. 14   Distance between the human assembly position H1 and the 
robot end-effector during its motion along the nominal trajectory 
(blue), optimized trajectory for operator 1 (red), optimized trajec-
tory for operator 2 (green). The critical region where the robot moves 
close to the human assembly position is delimited by two dashed lines
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Fig. 15   Distance between the human assembly position H2 and the 
robot end-effector during its motion along the nominal trajectory 
(blue), optimized trajectory for operator 1 (red), optimized trajec-
tory for operator 2 (green). The critical region where the robot moves 
close to the human assembly position is delimited by two dashed lines
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UC-H3 (Fig. 16) since the human is working sufficiently 
far from the robot workspace, hence the risk of collision is 
minimal.

The increase of the distance from the human highlighted 
for the optimized trajectories is in line with our expectation. 
In fact, since the optimisation in Eq. (8) takes into considera-
tion that, the closer the robot is to the human, the lower will 
be its speed (SSM criterion), the intervention of the robot 
speed scaling is assumed to occur with a low frequency for the 
optimized trajectories. Actually, when these are applied by the 
robot during the execution of the assembly task, the interven-
tion of the SSM is significantly reduced. Indeed, as shown in 
Table 3, especially for what concerns UC-H1 and UC-H2, 
the SSM activates rarely for the optimized trajectories. This 
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Fig. 16   Distance between the human assembly position H3 and the 
robot end-effector during its motion along the nominal trajectory 
(blue), optimized trajectory for operator 1 (red), optimized trajec-
tory for operator 2 (green). The critical region where the robot moves 
close to the human assembly position is delimited by two dashed lines

Fig. 17   Trend of the average 
penalty and cost of the popula-
tion of trajectories associated 
with UC-H1. a and b Refer to 
the task involving operator 1, 
while c and d refer to operator 2
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Fig. 18   Trend of the average 
penalty and cost of the popula-
tion of trajectories associated 
with UC-H2. a and b Refer to 
the task involving operator 1, 
while c and d refer to operator 2
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entails an average reduction of the cycle time by more than 
55 % with respect to the corresponding nominal trajectory.

Eventually, the trend of penalty and cost illustrated in 
Figs. 17, 18 and 19 demonstrates the good convergence prop-
erties of the genetic algorithm: the average penalty of the popu-
lation of trajectories at the end of the iterations is significantly 
reduced with respect to the corresponding initial value. Notice 
that this outcome is achieved without considerably penalizing 
the cost (traversal time) that, in fact, over the iterations, shows 
limited oscillations around the corresponding initial value.

7 � Conclusions

In this work a trajectory optimisation method suitable for 
collaborative robots has been proposed. The goal was to 
enable the cobot to adapt online its motion trajectory based 
on long-term occupancy data collected for the human opera-
tor that works in close proximity to the cobot. The proposed 
optimisation method is based on a genetic algorithm that 
aims at simultaneously minimising the risk of collisions 

during the task execution and the traversal time of the tra-
jectory. The optimized robot trajectory is obtained consider-
ing that, according to the Speed and Separation Monitoring 
(SSM) criterion, the robot is prescribed to reduce its speed 
according to the proximity to the operator, thus poten-
tially penalizing the productivity of the co-working team. 
The presence of the human operator inside the work-cell 
is expressed in terms of probabilistic occupancy grid, thus 
the collision avoidance criterion is relaxed according to the 
human occupancy probability.

The proposed method was tested on a realistic assembly 
task that demonstrated its effectiveness: the robot was able to 
adapt its motion trajectory according to the specific human 
occupancy, by increasing the separation distance from the 
human and significantly reducing the intervention of the 
safety countermeasures, thus improving the productivity.
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Fig. 19   Trend of the average 
penalty and cost of the popula-
tion of trajectories associated 
with UC-H3. a and b Refer to 
the task involving operator 1, 
while c and d refer to operator 2
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Table 3   Relative average time 
saved during the execution of 
the optimized trajectory with 
respect to the nominal one

Notice that during the execution 
of the trajectories the velocity 
scaling might be triggered, thus 
affecting the trajectory traversal 
time

Aver-
age time 
saved

UC-H1 65%
UC-H2 56%
UC-H3 9%
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