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Abstract
In this paper, we present a bilevel optimal motion planning (BOMP) model for autonomous parking. The BOMP model 
treats motion planning as an optimal control problem, in which the upper level is designed for vehicle nonlinear dynamics, 
and the lower level is for geometry collision-free constraints. The significant feature of the BOMP model is that the lower 
level is a linear programming problem that serves as a constraint for the upper-level problem. That is, an optimal control 
problem contains an embedded optimization problem as constraints. Traditional optimal control methods cannot solve the 
BOMP problem directly. Therefore, the modified approximate Karush–Kuhn–Tucker theory is applied to generate a general 
nonlinear optimal control problem. Then the pseudospectral optimal control method solves the converted problem. Particu-
larly, the lower level is the J

2
-function that acts as a distance function between convex polyhedron objects. Polyhedrons can 

approximate objects in higher precision than spheres or ellipsoids. As a result, a fast high-precision BOMP algorithm for 
autonomous parking concerning dynamical feasibility and collision-free property is proposed. Simulation results and experi-
ment on Turtlebot3 validate the BOMP model, and demonstrate that the computation speed increases almost two orders of 
magnitude compared with the area criterion based collision avoidance method.

Keywords  Autonomous parking · Optimal control · Bilevel optimal motion planning (BOMP) · J2-function

1  Introduction

Real-time collision-free motion planning and control for 
autonomous vehicles have received a considerable amount 
of attentions, and share many research methods with robot-
ics literature (LaValle 2006; González et al. 2016; Nilsson 
et al. 2016; Rasekhipour et al. 2016; Ye et al. 2018; Voro-
bieva et al. 2015; Du and Tan 2015; Upadhyay and Ratnoo 
2018; Muller et al. 2007; Xu et al. 2018; Dolgov et al. 2010; 
Likhachev and Ferguson 2009; Tazaki et al. 2017; Liu et al. 
2017; Robinson et al. 2018; Li and Shao 2015; Li et al. 2016; 

Zips et al. 2016; Khatib 1986; Oetiker et al. 2009). Typically, 
autonomous parking is a critical maneuver especially in big 
narrow cities. Separated methods (Vorobieva et al. 2015; 
Du and Tan 2015; Upadhyay and Ratnoo 2018; Muller et al. 
2007; Xu et al. 2018; Dolgov et al. 2010; Likhachev and 
Ferguson 2009; Tazaki et al. 2017) are common approaches 
for parking problems, that vehicle path planning and path 
tracking are handled separately. Direct learning (Liu et al. 
2017) is a novel and simple approach that learns the map-
ping relation between control inputs and parking trajecto-
ries. However, for complex high-precision parking problems, 
combined approaches (Li and Shao 2015; Li et al. 2016) are 
more effective, that vehicle motion planning and control are 
treated as a unified optimal control problem. In this paper, 
we also treat the parking problem as a combined optimal 
control problem.

Optimal control (Betts 2010; Bryson 2018; Ross and 
Karpenko 2012) is a remarkable method to generate high-
quality trajectories for robots and has achieved great suc-
cess in practical applications. It considers robot dynamics 
and other trajectory constraints in a compact and unified 
form, and it can deal with any predefined optimization 
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objectives. The application of the optimal control method 
in robot motion planning involves two essential constraints, 
robot dynamics constraint, and geometry collision-free con-
straint. And the application challenges lie in how to rep-
resent the geometry collision-free constraints effectively. 
The point-point distance of circles in Robinson et al. (2018) 
and area criterion of rectangles in Li and Shao (2015) are 
both straightforward collision avoidance methods. However, 
circle bounding volume approximation is too conservative 
to realize motion in complex and high-precision scenarios. 
And area criterion of rectangles is nonlinear and redundant, 
such that the optimal control problem is difficult to solve. 
In addition, the collision-free constraints for high-precision 
motion planning problems in 3D environment are still dif-
ficult to be built. We will show in this paper the J2-func-
tion (Xiong 1987; Xiong and Ding 1989) settles these chal-
lenges, and achieves fast high-precision motion planning for 
autonomous parking. The J2-function is linear programming 
for collision checking between convex polyhedrons in any 
dimensional space, and it behaves as a distance function that 
J2 > 0 indicates collision free. Treating J2 ≥ � ( � is a posi-
tive safety distance, and J2 is a function of robot trajectory) 
as a constraint for the overall optimal control problem, a 
special J2-function based bilevel optimal motion planning 
(BOMP) model for autonomous parking is obtained.

1.1 � Previous work

Before reviewing the various parking motion planning 
approaches in the literature, we first show a typical three-
point maneuver in parallel parking, as shown in Fig. 1. At 
first, the vehicle moves forward from an initial point to an 
intermediate point (maneuver A). Subsequently, it follows 
a collision-free path or trajectory backward to the destina-
tion point (maneuver B). If the process only contains one 
maneuver that connects the initial and terminal configura-
tions without changing moving direction, then it is called a 
single maneuver process; otherwise, it is a multi-maneuver 
parking process.

Using the theorems from Dubins (1957), Reeds and 
Shepp (1990), Wang et al. (2009), many geometric path 
planning methods (Vorobieva et al. 2015; Du and Tan 2015; 
Upadhyay and Ratnoo 2018) were proposed in which the 
path is composed of concatenating arcs and line segments. 

However, the curvature at the transition point between seg-
ments is discontinuous, and this implies stopping the vehicle 
and steering the wheel that can wear the tires and waste 
time. For single maneuver parking, a function y = f (x) exists 
in the plane coordinate system, and many approaches use 
a high-order differentiable function to smooth the planned 
path. Whereas, the feasibility conditions for single maneuver 
parking are critical, such as conditions on minimum parking 
slot length, initial vehicle configuration relative to the park-
ing slot, and the surrounding obstacles. In Vorobieva et al. 
(2015), the detailed comparisons between single maneuver 
and multi-maneuver parallel parking using geometric meth-
ods were carried out. In Du and Tan (2015), the autonomous 
vertical parking maneuvers were classified by the segments 
number and steering direction, and this planning approach 
achieves high efficiency and high parking success rate. 
Focusing on the issue that the vehicle may not stop exactly at 
the prescribed intermediate point in the three-point maneu-
ver process, Upadhyay and Ratnoo (2018) proposed a four 
parameter logistic curve to connect the terminal point to a 
neighborhood of the intermediate point.

Graph searching is another type of approach for autono-
mous parking. At first, the discretization of the environment 
is applied to construct a graph. Then informative heuristics 
are used to guide the search to generate a feasible path to 
the parking spot. Dolgov et al. (2010) applied a variant of A∗ 
search in vehicle state space to generate a feasible path first, 
then took advantages of the numerical optimization method 
to shorten and smooth the planned path. Likhachev and Fer-
guson (2009) utilized multi-resolution discretization method 
and anytime dynamic A∗ search to obtain long dynamically 
feasible maneuvers in real time. In Tazaki et al. (2017), a 
new multi-resolution discretization on manually predefined 
guidelines was proposed, then a graph-like roadmap was 
created to connect each guideline partition. However, this 
method heavily relies on guidelines that may cause unnec-
essary maneuvers. A common precomputation technique is 
used in these searching methods to reduce online path plan-
ning computation complexity. Such as the shortest path from 
a point to its neighborhood points (Dolgov et al. 2010), the 
occupied space of the vehicle after taking an action (Likh-
achev and Ferguson 2009), and the path from guideline par-
tition to partition (Tazaki et al. 2017) are all precomputed.

In Zips et al. (2016), a fast optimization method was used 
for narrow environment parking, but the heuristic informa-
tion leads to a non-optimal solution. Artificial potential field 
(APF) method (Khatib 1986) has made great achievements 
for robot motion planning in static and dynamic environ-
ments. Moreover, a recent application in autonomous 
parking (Oetiker et  al. 2009) demonstrates its capabil-
ity for nonholonomic systems. However, the APF method 
is likely to get stuck in a sub-optimal path, and it cannot 

Fig. 1   Typical three-point maneuver in parallel parking
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handle the multi-maneuver parking because of local plan-
ning characteristic.

Previous approaches only solve vehicle path planning 
problem, but at some times, vehicle trajectory planning con-
cerning vehicle kinematics and dynamics constraints is more 
useful and important. Kant and Zucker (1986) decomposed 
the trajectory planning as a combination of path planning 
and velocity planning, and the decomposition demonstrates 
apparently that trajectory planning problem is more diffi-
cult than path planning problem. In Muller et al. (2007), a 
two-step method was applied for trajectory planning. In the 
first step, a collision-free path is generated using sampling 
based method without considering the kinematics constraint. 
Then in the second step, a local trajectory planner solved the 
nonholonomic constrained problem. In Liu et al. (2017), a 
neural network based parking trajectory planning was pro-
posed with constant speed input and discretized steering 
angle outputs. In this method, the steering angle is discon-
tinuous. Moreover, obstacle avoidance and multi-maneuver 
parking cannot be treated easily. In Haddad et al. (2010), 
an optimization approach along with trapezoidal velocity 
constraints simplification solved the trajectory planning 
problem, and the simulation results showed considerable 
computation time reduction without losing much quality of 
the solution. In Li and Shao (2015) and Li et al. (2016), 
the optimal control method is applied to solve the optimal 
trajectories for autonomous parking. In Li and Shao (2015), 
rectangular obstacles together with area criterion were used 
to check collisions, and eight nonlinear constraints are gen-
erated between a pair of rectangles. In Li et al. (2016), col-
lision avoidance in regular parallel parking was realized by 
restricting the vehicle between two function boundaries (red 
lines in Fig. 1).

1.2 � Contributions and organization

In this paper, we present a general BOMP model in which 
the upper level is an optimal control problem designed for 
vehicle nonlinear dynamics, while the lower level is the J2
-function linear programming for geometry collision-free 
constraint (in Sect.  2). The BOMP model contains am 
embedded linear programming problem as constraint for 
the overall optimal control problem. This hierarchy prop-
erty makes the problem complicated to solve, and traditional 
optimal control methods cannot solve the BOMP problem. 
Hence, the modified approximate Karush–Kuhn–Tucker 
theory (Dutta et al. 2013) is used to simplify the model to a 
traditional optimal control problem. Then the pseudospec-
tral optimal control method (Ross and Karpenko 2012) is 
used to solve the converted problem, and an iterative BOMP 
algorithm is obtained (in Sect. 3). Twelve representative 
complex parking problems are designed to evaluate the effi-
ciency of the BOMP algorithm, and they can be regarded as 

benchmarks for future parking approaches. The highlights 
of this paper are:

1.	 The BOMP model combines both advantages of the flex-
ibility of optimal control and the simplicity of linear 
programming, which makes optimal control a fast and 
high-precision method for complex motion planning 
problems.

2.	 The BOMP algorithm benefits by the iterative conver-
gence strategy. At each iterative, the approximate prob-
lem is easy to solve an approximate optimal trajectory 
to initialize the next iterative. Simulations in autono-
mous parking demonstrate that the computation speed 
increases almost two orders of magnitude compared 
with the area criterion based method (in Sect. 4).

Finally, concluding remarks are given in Sect. 5 and the 
issues to be researched in this field are also pointed out.

2 � Bilevel optimal motion planning

Optimization problem finds an optimal point, while optimal 
control problem finds an optimal trajectory. So it is a natural 
question: how to use the optimal control method to solve 
vehicle trajectory generation and optimization problem in 
complex and high-precision scenarios? As stated in Sect. 1, 
the geometry collision-free constraint is the crucial matter. 
In this section, we will present the BOMP model with an 
embedded J2-function linear programming constraint.

2.1 � Vehicle kinematics and basic parking 
constraints

Vehicle is a typical nonholonomic constrained system, and 
its motion planning is very complicated. Without loss of 
generality, the front steering wheels vehicle is considered 
and the following kinematics model is used:

where q = (x, y, �) ∈ ℜ2 × S is the configuration of the 
vehicle coordinate {C} with respect to the world coordi-
nate {W} which origins at one corner point of the parking 
spot, see Fig. 2. The vehicle coordinate {C} origins at the 
mid-point of the rear wheel axis, (x, y) describes the vehicle 
position, and � denotes the orientation. � denotes the linear 
velocity of point (x, y) , � denotes the steering angle of the 
front wheel and � denotes the steering velocity.

As the parking process is in low speed and to bound the 
trajectory curvature and its derivative (Li and Shao 2015), 

(1)

{
ẋ(t) = 𝜐(t) cos 𝜃(t), ẏ(t) = 𝜐(t) sin 𝜃(t)

𝜃̇(t) = 𝜐(t) tan 𝛼(t)∕l, 𝛼̇(t) = 𝜔(t)
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the following mechanical and physical constraints are 
considered.

And the initial and the final state constraints are treated as:

where (x0, y0, �0) is the vehicle initial configuration, (Ax, Ay) 
is the coordinate of vehicle corner point A described in {W} , 
(Bx, By) , (Cx, Cy) and (Dx, Dy) have the similar meanings, 
�p ≥ 0 and �� ≥ 0 denote the position deviation and the ori-
entation deviation of the vehicle central axis with respect to 
the parking spot central axis, respectively.

2.2 � Simple collision avoidance constraints

The performances of robot collision-free motion planning 
algorithms depend highly on the geometry collision avoid-
ance methods used between robot and the environment. 
In real-world, vehicles are always abstracted as rectangles 
(cubes) or overlapping circles (spheres) to simplify the col-
lision avoidance problem. In this section, the general point-
point distance constraints between circles (or spheres) and 
area criterion constraints between convex polygons are 
summarized.

Suppose obstacle A is approximated by a circle or sphere 
of radius ra that covers it, and robot B is approximated by a 
circle or sphere of radius rb . The centers of the approximate 
objects are a and b , respectively. Then the geometry colli-
sion-free constraint between A and B is approximated as:

(2)|�(t)| ≤ �max, |�(t)| ≤ �max, |�(t)| ≤ �max

(3)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x(0) = x0, y(0) = y0, �(0) = �0

�(0) = 0, �(tf ) = 0, ��(tf )� ≤ ��

�(Ay(tf ) + By(tf ) − SW)∕2� ≤ �p

�(Cy(tf ) + Dy(tf ) − SW)∕2� ≤ �p

�(Ax(tf ) + Dx(tf ) − SL)∕2� ≤ �p

�(Bx(tf ) + Cx(tf ) − SL)∕2� ≤ �p

where d(a, b) denotes the Euclidean distance between the 
two points, and � is a positive constant safety distance ( � has 
the same meaning in the whole paper). Usually, the robot 
and the obstacles are approximated by several overlapping 
circles or spheres to increase approximate precision, in 
this case, the geometry collision-free constraints are still 
straightforward.

Suppose plane obstacle A and plane robot B are approxi-
mated by convex polygons with na vertexes and nb vertexes, 
respectively. The vertexes coordinates of the polygons are 
{ai}, i = 1, 2,… , na and {bj}, j = 1, 2,… , nb , respectively. 
Then the area criterion can describe the geometry collision-
free constraints between A and B:

where S△ is the area of a triangle, SA and SB are the areas of 
the two approximate polygons. Moreover, for convex poly-
hedrons in 3D environment, the volume criterion can derive 
the collision avoidance constraints for.

As we can see, for a pair of polygons, there are na + nb 
nonlinear constraints in (5), and this number is usually larger 
than the circle approximation method. However, in theory, a 
complex geometry can be incorporated by several polygons 
or polyhedrons in any precision and low overlapping rate 
with fewer approximate objects than the circle or sphere 
approximation method. And to achieve planning and control 
in scenarios with long and thin obstacles, the polygon or 
polyhedron approximation is more efficient. Therefore, the 
convex polygon or polyhedron approximation method will 
play an important role in complex and high-precision robot 
motion planning problems. However, the constraints in (5) 
are high nonlinear and redundant. Therefore, neither colli-
sion avoidance methods (4) and (5) can be used to general 
fast high-precision motion planning problems.

2.3 � BOMP model

Consider vehicle state variable x as x = (x, y, �, �) and the 
control input u = (�, �) , then vehicle kinematics model (1) 
can be abstracted as ẋ(t) = f (x(t), u(t)) . The optimal control 
problem tries to solve an optimal smooth trajectory corre-
sponding to this differential equation constraints and with 
respect to a specified performance index. Consider a convex 
polyhedron robot B moves around a static convex polyhe-
dron obstacle A (a case that a rectangular vehicle moves 

(4)d(a, b) − ra − rb ≥ �

(5)

nb−1∑
j=1

S△aibjbj+1
+ S△aibnb

b1
− SB ≥ �, i = 1, 2,… , na

na−1∑
i=1

S△bjaiai+1
+ S△bjanaa1

− SA ≥ �, j = 1, 2,… , nb

Fig. 2   The coordinate systems attached to the vehicle and the parking 
spot
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around rectangular vehicle obstacles). Since the J2-func-
tion (Xiong 1987; Xiong and Ding 1989) acts as a distance 
function between A and B , J2 ≥ � is added as an embedded 
constraint, the BOMP model is obtained:

Equation (6a) represents vehicle dynamics constraints. 
Equation (6b) describes constraints on vehicle state and con-
trol variables, e.g., constraints (2). And Eq. (6c) corresponds 
to the parking initial and final state constraints (3), where 
x0 and Xf  are vehicle initial state and final stopping region, 
respectively. J2(x) represents collision avoidance constraint 
on vehicle state. To simplify the understanding of the BOMP 
model, the exact J2-function form is omitted here and can 
be found in the appendix. The readers just understand that 
the constraint (6d) acts the same role as (4) or (5), but J2 is 
the optimal value of a linear programming problem. The 
cost function g(x(0), x(tf ), tf ) depends only on the initial 
state x(0) , final state x(tf ) and the completion time tf  , while 
L(x(t), u(t)) describes some objective along the trajectory 
such as the energy consumption and 0 ≤ � ≤ 1 is the weight. 
A particular performance index is to minimize the weight 
sum of completion time and energy consumption, and it’s 
used in Sect. 4.1.

3 � The BOMP model solution

3.1 � BOMP model analysis

The BOMP model contains an optimization problem within 
the constraints of the upper optimal control problem. Moreo-
ver, the lower optimization problem depends on the continu-
ous robot state trajectory such that it is also infinite dimen-
sional. To our knowledge, this particular model has not 
appeared in the literature, but the complexity of this model 
can be seen indirectly from some other problems. In Benita 
and Mehlitz (2016), a relative simple bilevel optimal control 
problem is considered. The upper level is an optimal control 
problem concerning ordinary differential equations, control 
constraints, initial and final state constraints, and the lower 

(6)min �g(x(0), x(tf ), tf ) + (1 − �)∫
tf

0

L(x(t), u(t))dt

(6a)s.t. ẋ(t) = f (x(t), u(t))

(6b)h(x(t), u(t)) ≤ 0

(6c)x(0) = x0, x(tf ) ∈ Xf

(6d)J2(x) ≥ �

(7)tf + ∫
tf

0

�2(t)dt

level problem depends only on the final state of the physical 
system and is finite dimensional. In this case, nonsmooth 
analysis, optimization in Banach spaces and bilevel optimi-
zation (Sinha et al. 2017, 2018) are used to derive the neces-
sary linearized Pontryagin-type optimality conditions. By 
nonconvex, non-differentiable or possibly disconnected, the 
hierarchical bilevel optimization problem is intrinsically dif-
ficult. Even for the most straightforward linear-linear bilevel 
optimization problem, it was proven to be strong NP-hard 
(Hansen et al. 1992) and that merely evaluating the optimal-
ity is also NP-hard (Vicente et al. 1994).

Two significant challenges are classified from the BOMP 
model, the bilevel problem, and the optimal control problem. 
Optimal control has experienced considerable development 
in mathematics and engineering. In particular, pseudospec-
tral optimal control (PSOC) method (Ross and Karpenko 
2012) satisfies the differential equations globally and treats 
integral by an implicit Runge–Kutta method, such that this 
method achieves high order accuracy, high order stability, 
and exponential convergence speed. Therefore, the PSOC 
method is selected. For the bilevel optimization problem, 
the Karush–Kuhn–Tucker (KKT) reformulation of the lower-
level optimization problem is always used to construct a tra-
ditional single level optimization problem (Albrecht et al. 
2012). The KKT reformulation can not be applied to the 
BOMP model seemingly since the BOMP problem is an opti-
mal control problem rather than an optimization problem. 
However, the PSOC algorithm discretizes the whole variables 
and approximates them as polynomials, such that it actually 
solves a large scale sparse nonlinear optimization problem 
(NLP). In this case, the KKT reformulation can be directly 
used to the discretized NLP. Furthermore, differential equa-
tions do not occur in the lower level of the BOMP model, 
the continuous KKT reformulation (the Lagrange multipliers 
are also trajectory functions of time) concept can be utilized 
unambiguously.

However, due to the nonconvexities in the KKT condi-
tions, even the upper-level problem is also convex, the con-
verted problem is still hard to solve. Besides, the comple-
mentary constraint is intrinsically combinatorial and makes 
the extent of violation of KKT conditions in a small neigh-
borhood of the KKT point nonsmooth (Dutta et al. 2013). 
Hence, the convergence peoperty in the neighborhood of the 
optimal value is poor, and it cannot provide efficient infor-
mation to determine whether current value is close enough 
to the optimal value. Dutta et al. (2013) proposed a modified 
approximate KKT (MAKKT) theory that the KKT condi-
tions are relaxed and the violation in the neighborhood is 
smooth enough. Since the KKT conditions are relaxed, an 
iterative strategy is used to decrease the relaxation factor to 
approach the optimal value. Therefore, the MAKKT theory 
and iterative convergence strategy are selected in this paper.
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3.2 � The BOMP algorithm

Given the problematic nature of the BOMP model, it is help-
ful to reduce the overall bilevel optimal control problem to a 
traditional single level optimal control problem. According 
to the optimality conditions of linear programming (Wright 
and Nocedal 1999), the continuous MAKKT form of the 
lower problem (12) is:

where the Lagrange multipliers �(t) ∈ ℜn� and v(t) ∈ ℜm� 
correspond to the constraints p(t) ≥ 0 and Q(x)p(t) = b , 
respectively. Equations (8a) are feasible conditions, (8b) 
are equilibrium and complementary conditions and 𝜖 > 0 
is the approximate relaxation. A point p statisfing these 
constraints is called an �-MAKKT point (or � approximate 
optimal point), and when � = 0 it’s actually the KKT point 
(or optimal point).

Since in the BOMP model the optimal value J2(x) of the 
lower level optimization problem is also restricted, the rela-
tion between the optimal value and the approximate opti-
mal value also needs to be considered. The Theorem 3.5 
in (Dutta et al. 2013) helps the analysis, that is, at an �-
MAKKT point, the objective value cTp(t) is at least � larger 
than J2(x) . Consequently, the converted single level opti-
mal motion planning problem for (6) can be formulated as 
follow:

(9)min �g(x(0), x(tf ), tf ) + (1 − �)∫
tf

0

L(x(t), u(t))dt

(9a)s.t. ẋ(t) = f (x(t), u(t))

The relationship between the MAKKT and the exact KKT 
optimality conditions is as follow: if a sequence of points 
{pk} converge to a point p̄ where the Mangasarian Fromovitz 
constraint qualification is also satisfied, each point pk is an 
�k-MAKKT point, and �k → 0 as k → ∞ , then the point p̄ 
is a KKT point. Therefore, in order to solve problem (6), a 
decreasing sequence � should be applied to problem (9) and 
a sequence of approximate optimal trajectory is solved to 
converge to the exact optimal trajectory.

Combining the above theories, an iterative BOMP algo-
rithm framework is formulated for robot trajectory gen-
eration and optimization mission. The algorithm details 
are shown in Algorithm 1, where the trajectory � is com-
posed of state trajectory x(t) , control trajectory u(t) , and 
p(t), �(t), v(t) in the J2-function. The PSOC method solves 
problem (9). To limit the length of this paper, the PSOC 
method details are omitted, and readers can consult the refer-
ence paper (Ross and Karpenko 2012). The IPOPT (Wächter 
and Biegler 2006) algorithm of version 3.12.9 is used to 
solve the discrete NLP. The IPOPT algorithm is designed 
with special options, such as convergence tolerance 1e−12 , 
MA86 linear solver and the acceptable termination condi-
tions are more strict than the desired ones to avoid algorithm 
early termination. The IPOPT algorithm options are listed 
in Table 1.

(9b)h(x(t), u(t)) ≤ 0

(9c)x(0) = x0, x(tf ) ∈ Xf

(9d)cTp(t) ≥ � + �

(9e)Q(x)p(t) = b, p(t) ≥ 0, �(t) ≥ 0

(9f)‖c − �(t) + QT(x)v(t)‖ ≤ √
�, �

T(t)p(t) ≤ �

Table 1   The IPOPT algorithm 
options

Parameter Description Setting

tol Desired convergence tolerance 1e−12

a_tol Acceptable convergence tolerance 1e−16

cv_tol Desired/acceptable threshold for the constraint violation 1e−12

acv_tol
c_tol Desired/acceptable threshold for the complementarity conditions 1e−4

ac_tol
d_tol Desired/acceptable threshold for the dual infeasibility 1
ad_tol
solver Linear solver used for step computation MA86
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initial configurations of the vehicle (see Table 2, the abbre-
viations S, O, C represent the scenario, the obstacle and the 
case, respectively). For simplicity, each obstacle is the same 
size as the vehicle and collision avoidance is equivalent to 
the plane rectangle pair is collision free. The transforma-
tion parameters (x, y, �) of the obstacle coordinate system 
(it is originated at the blue corner point of the obstacle) rela-
tive to the world coordinate system are used to represent 
each obstacle compactly. These transformation parameters 
(x, y, �) are listed in Table 2.

The specified parameters for the parking spot, the vehicle 
and the Algorithm 1’s input are listed in Table 3, where the 
vehicle size parameters, mechanical and physical constraints 
parameters are originated from Li and Shao (2015). As for 
the initial trajectory guess �0 in Algorithm 1, it is speci-
fied very easily. Guess the parking completion time arbi-
trarily, then �0 is composed of x(t) = x

0
, y(t) = y

0
, �(t) = �

0
,

�(t) = 0, �(t) = 0,�(t) = 0, p(t) = 0,�(t) = 0, v(t) = 0 for any 
t. Under these conditions, the BOMP algorithm solves all 
these 4 × 3 problems. The computation results are shown in 
Table 4 and Figs. 4, 5, 6 and 7.

Fig. 3   Four scenarios used to conduct the simulations. Red vehicles 
are obstacles, the black vehicle denotes the initial location, the dashed 
vehicles illustrate the ideal parking and each obstacle is the same size 
as the vehicle. The first two scenarios demonstrate the parallel park-
ing and the third one demonstrates the vertical parking. While the last 
scenario is not usual in daily life, it’s just designed to show the algo-
rithm’s capability (color figure online)

Table 2   Transformation parameters (x, y, �) of each obstacle with 
respect to the world coordinate system and the vehicle initial configu-
ration (x

0
, y

0
, �

0
) in each case

The angle unit here is degree, but at other place it is radian

S1 O1 (−5.6, 0.6, −10.0) C1 (−6.0, −2.75, 0.0)

C2 (0.0, −2.75, 0.0)

O2 (5.8, −0.5, 13.0) C3 (0.0, −2.75, 180.0)

S2 O1 (−7.0, 2.8, −55.0) C1 (−6.0, −2.0, 0.0)

C2 (−8.0, 0.0, −30.0)

O2 (5.8, −0.5, 13.0) C3 (−4.0, −3.0, −36.0)

S3 O1 (−2.2, 0.4, 0.0) C1 (−6.0, −2.0, 0.0)

C2 (1.0, −2.0, 0.0)

O2 (2.3, 0.3, −5.0) C3 (−3.0, −2.0, 180.0)

S4 O1 (−6.3, 0.3, 20.0) C1 (−5.0, 7.5, 0.0)

O2 (6.8, −1.0, 40.0) C2 (−5.0, 5.0, −10.0)

O3 (2.0, 3.6, 60.0) C3 (−1.0, 6.0, 0.0)

O4 (−1.5, −2.2, −3.0)

4 � The BOMP model verifications

In this section, the simulations of the BOMP algorithm in 
autonomous parking problem are shown. The computational 
and precision benefits of the BOMP model over the area cri-
terion (AC) based model (Li and Shao 2015) and the circle 
approximation method are demonstrated. And a real experi-
ment on Turtlebot3 is conducted. C++ code is programmed 
in Linux system, and simulations are conducted on an Intel 
Core i7-7700K CPU with 8GB RAM that runs at 4.20GHz.

4.1 � Simulation in autonomous parking

In this application, four scenarios and three cases in each 
scenario are designed to reflect the generality, the robust-
ness and the advantages of the BOMP algorithm. Figure 3 
illustrates the four scenarios and one case in each scenario. 
Red vehicles are obstacles, the black vehicle denotes its ini-
tial location, and the dashed vehicle denotes the ideal park-
ing. All the four scenarios correspond to irregularly placed 
obstacles that can be encountered easily in daily life and 
the differences between cases in each scenario are only the 
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Then the computation complexity comparison between 
the BOMP algorithm and the AC algorithm is made. Given 
a point b and four corner points A, B, C, D of a rectangle 
in the plane, the AC collision avoidance constraint used in 
this paper is:

where S△ and S
◻
 denote the area of a triangle and a rectan-

gle, respectively. And there are eight nonlinear constraints 

(10)
S△bAB + S△bBC + S△bCD + S△bDA

S
◻ABCD

≥ 1.025

(10) for a pair of plane rectangles collision avoidance 
problem. Then replacing (6d) by this constraint, the AC 
based motion planning problem can be obtained. Since in 
Li and Shao (2015), the IPOPT options and the computa-
tion time were not shown, the algorithm options in Table 1 
are used. And the initial guess �0 is selected the same way 
x(t) = x0, y(t) = y0, �(t) = �0, �(t) = 0, �(t) = 0, �(t) = 0 . 
However, the AC algorithm does not solve the whole autono-
mous parking problems. The results are shown in Table 4.

From Table 4, we can see that the shortest and the longest 
time of the BOMP algorithm to find an optimal collision-free 
trajectory for the 12 problems are 2.36 and 8.60 s, respec-
tively. While for the AC algorithm in the solved problems, 
they are 127.66 and 208.51 s. The reasons why the BOMP 
algorithm has significant superiorities in computation speed 
than the AC algorithm may be:

•	 J2-function collision avoidance is linear programming, 
while the AC based collision avoidance method needs to 
calculate the distance between points, then the area of a 
triangle, such that it has a high degree of non-linearity. 
Linear programming is the most well-studied problem, 
and finding the solution of it is intrinsically much faster 
than the problem with nonlinear constraints.

•	 Variables in the J2-function make the BOMP algorithm 
only concern the closest components implicitly. How-
ever, the AC method needs to consider the eight points 
between a pair of rectangles simultaneously and explic-
itly, whose optimization direction is difficult to be deter-
mined.

•	 The BOMP algorithm finds a sequence of solution pro-
gressively approaching the optimal solution such that it 
significantly reduces the difficulty to solve the problem, 
while the AC method uses a global step to find the solu-
tion which tends to break down in complicated problems.

Limited by the length of this paper, the optimized vehicle 
motion and the optimized trajectories of state and control 
variables by the BOMP algorithm are just partly plotted in 
Figs. 4, 5, 6 and 7. The results demonstrate that the BOMP 
algorithm is capable of handling parking motion planning 
problems successfully and efficiently. Besides, the BOMP 
algorithm can autonomously park a vehicle in a much more 
complicated scenario that needs several maneuvers like a 
skillful driver. Meanwhile, the terminal orientation devia-
tion and the position deviation are considered, so the vehicle 
stops as parallel and close as to parking spot central axis. 
It is worth emphasizing that all these 4 × 3 simulations are 
conducted without adjustment of any algorithm options, like 
� , and this shows the robustness, generality, and unification 
of the BOMP model and the BOMP algorithm. However, 

Table 3   The specified parameters for the parking spot, the vehicle 
and Algorithm 1’s input

Parameter Description Setting

SL Parking spot length 6.00 m
SW Parking spot width 2.50 m
l Wheel base length 2.800 m
l1 Front overhang length 0.960 m
l2 Rear overhang length 0.929 m
W Vehicle width 1.942 m
�max Bound of velocity 2.00 m/s
�max Bound of steering angle 0.714 rad
�max Bound of angular velocity 1.00 rad/s
�p Bound of terminal position error 0.10 m
�� Bound of terminal angle error 0.17 rad
� The safety pseudodistance of the J2-function 0.05

Table 4   The computation results of the BOMP and the AC algo-
rithms, where T is the computation time and v∗ is the optimal value

The symbol × denotes that the AC algorithm fails to solve the cor-
responding problem

BOMP AC

 T (s) v
∗  T (s) v

∗

S1

 C1 3.15 15.71 149.04 16.98
 C2 2.36 12.46 154.84 14.64
 C3 3.81 17.05 141.62 17.58
S2

 C1 4.24 15.33 144.96 15.26
 C2 4.10 19.02 × ×

 C3 3.47 15.84 127.66 14.88
S3

 C1 4.71 16.57 × ×

 C2 4.25 13.84 203.64 13.57
 C3 4.00 17.73 208.51 18.46
S4

 C1 7.01 16.40 × ×

 C2 7.20 14.54 × ×

 C3 8.60 15.84 × ×
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(a) (b) (c)

Fig. 4   Optimization results for scenario 1 case 2 by the BOMP algo-
rithm. In a, the orange rectangles represent the vehicle initial and 
final locations, and the magenta curve shows the motion trajectory of 
vehicle rear wheel axis mid-point. The state trajectories in b are very 

smooth, while the control trajectories in c are oscillating. The state 
and control trajectories in all other problems have the same character-
istics (color figure online)

(a) (b) (c)

Fig. 5   Optimization results for scenario 2 case 2 by the BOMP algorithm

(a) (b) (c)

Fig. 6   Optimization results for scenario 3 case 2 by the BOMP algorithm

(a) (b) (c)

Fig. 7   Optimization results for scenario 4 case 2 by the BOMP algorithm
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because the vehicle kinematics, mechanical and physical 
constraints in our application is similar to that of Li and 
Shao (2015), the control variables smoothness issue and ter-
minal steering angle issue also exist in the BOMP algorithm, 
readers may consult that paper for the reasons. These issues 
are inherent in the modeling process and need some unique 
but not complicated techniques to overcome. Nevertheless, 
this paper focuses on the BOMP model and the solution to 
it, so these issues are left to resolve.

4.2 � Polygon VS circle approximation

One motion planning problem in scenario 3 of the previ-
ous section is used to illustrate the different impacts of 
polygon and circle approximation methods. The planning 
task is to let the vehicle move from the initial configuration 
(1.0, −2.0, 0.0) to the final configuration (1.0, 10.0, �∕2.0) . 
Figure 8a shows the result of the BOMP algorithm, and the 
vehicle and obstacles are still represented as rectangles. Fig-
ure 8b shows the result of circle approximation method. The 
vehicle and the obstacles are approximated by three overlap-
ping circles of radius 1.3 m (the red circles), respectively. 
The results demonstrate that the circle approximation makes 
the object expanding, and the vehicle can not pass through 
narrow passages. To approximate the object exactly, there 
should be many more different radius circles, and this will 
increase the computation time dramatically. The drawbacks 
of circle approximation will become increasingly severe 
if the ratio of rectangle width and length reduces further. 
Because of the high approximation precision and low over-
lapping rate of the polyhedron or polygon approximation 
method and the simplicity of the J2-function, the BOMP 
model will compensate motion planning methods in many 
domains.

4.3 � Physical experiment

We performed a physical experiment involving a mobile 
robot (TurtleBot3) to verify the correctness and effectiveness 
of the BOMP model (see in Fig. 9). To simplify the experi-
ment, we only consider the robot kinematics, and the robot 
moved at very low speed. Using SLAM technique, the envi-
ronment geometry can be obtained and then through convex 
decomposition (Mamou and Ghorbel 2009) the polygons 
information are available. Then given an initial robot loca-
tion, the global control commands (linear and angular speed) 
are calculated by the BOMP algorithm. In this experiment, 
the time-optimal trajectory is sought, and the global control 
variables trajectories corresponding to Fig. 9 are shown in 
Fig. 10. When the robot is executing the control commands, 
the dynamic uncertainty and drift will accumulate the driv-
ing error. When this error exceeds tolerance, replanning 
process is triggered. The details of robot odometry, locali-
zation, control framework, error accumulation calculation, 
and replanning cycles will be presented in our future works. 
The videos of this experiment are available at http://www.
hust.edu.cn.

(a) (b)

Fig. 8   The vehicle motion obtained by the BOMP algorithm and the 
circle approximation method, respectively. The green rectangle in b 
represents the vehicle at an instant moment, and the three overlapping 
circles represent the approximation of the vehicle and the obstacles 
(color figure online)

Fig. 9   The environment setup for this experiment. There are seven 
obstacles in a very small area ( 1.5 m × 1.5 m ) and the goal of all the 
experiments is to let Turtlebot3 stop at the center of the white square 
which is 0.5 m × 0.5 m

Fig. 10   Given robot initial location, the calculated global control var-
iables trajectories by the BOMP algorithm

http://www.hust.edu.cn
http://www.hust.edu.cn
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5 � Conclusion and prospects

In this paper, we have proposed a general and unified BOMP 
model for robot trajectory generation and optimization in 
obstacles environment, which makes the optimal control 
method a practical approach for complex high-precision 
robot motion planning problems. The upper-level optimal 
control is designed for robot nonlinear dynamics, while the 
lower-level J2-function is for geometry collision-free con-
straint. Simulations in complex autonomous parking sce-
narios and experiment on Turtlebot3 demonstrate the com-
putation superiorities and efficiency of the BOMP model. 
The highlights of this paper lie in the following aspects.

1.	 The BOMP model utilizes the J2-function linear pro-
gramming to avoid collision. Because of the simplicity 
of the J2-function, the BOMP model can solve robot 
motion planning problems in very high speed and high 
precision.

2.	 The BOMP model is an open framework that can handle 
any user-specified constraints. And the BOMP model 
is dimensionality independent. Therefore, this model 
can be utilized in manipulators, vehicles and humanoid 
robots, etc.

3.	 The BOMP algorithm makes full use of the convergence 
property of the MAKKT theory which makes the BOMP 
algorithm very fast.

However, many aspects need to be studied deeply and com-
prehensively. First, one main issue is the computation effi-
ciency for robots moving in cluttered and obstacles intensive 
environment. One possible solution is to combine the previ-
ous research theory, like sampling based methods. While 
in real applications, some simple techniques can be used. 
Take the parking problem as an example (Li et al. 2016), 
make finite classifications of the parking cases and calculate 
the trajectory offline to construct a database. Then in real 
parking process, pick out a closest recorded solution to the 
current situation to initialize the algorithm and finally solve 
the problem online. Second, motion planning for robots in 
dynamical environment with moving obstacles are regarded 
as the most difficult, important and significant research field. 
Whereas the BOMP model only solves the static problem at 
present, there are still extensive works to adopt the obstacles 
movement prediction and estimation theory into the BOMP 
framwork. Third, with appropriate objectives and constraints 
in different levels, the multilevel problems have a close con-
nection to multiple objectives optimization problems. How-
ever, solving the multilevel problem is much more difficult 
than the bilevel problem, and the related theories have not 
been proposed. All these three unresolved issues are chal-
lenging and meaningful for the development of intelligent 
robots and will be discussed in our future works. Moreover, 

despite the simulation results and simple experiment on Tur-
tlebot3 in this paper, extensive work is needed to conduct 
experiments on real complex applications and to verify the 
proposed algorithm.
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Appendix

The J2-function represents one collision checking method 
between convex polyhedrons in any dimensional spaces 
including the convex polygons in 2D environment. Sup-
pose obstacle A and robot B are approximated by convex 
polyhedrons with na vertexes and nb vertexes, respec-
tively. The vertexes coordinates are {ai}, i = 1, 2,… , na 
and {bj}, j = 1, 2,… , nb . Where ai, bj ∈ ℜm and m is the 
dimensionality. Then the J2-function computes the minimum 
pseudo-distance between A and B , and J2 > 0 denotes col-
lision free:

where r = [r1 r2 ⋯ rna ]
T  ,  s = [s1 s2 ⋯ snb ]

T  ,  and 
z = [z1 z2 ⋯ zm]

T . In constraint (11a), the symbols A and 
B are actually matrixes composed of the points coordinates, 
i.e., A = [a1 a2 ⋯ ana] and B = [b1 b2 ⋯ bnb] . And the vec-
tor inequality is to be understood element-wise.

The J2-function (11) can be wrote as a standard linear 
programming problem:

where the optimization variable is p = [rT sT zT zm+1 zm+2]
T , 

and the notations Q, b, c can be constructed appropriately. 
p, c ∈ ℜn� , Q ∈ ℜm�×n� , b ∈ ℜm� where n� = na + nb + m + 2 
and m� = m + 2.

(11)J2(A,B) = min

m+2∑
k=1

zk

(11a)s.t. Ar − Bs + z = 0,

(11b)
na∑
i=1

ri + zm+1 = 1,

nb∑
j=1

sj + zm+2 = 1,

(11c)r ≥ 0, s ≥ 0, z ≥ 0, zm+1 ≥ 0, zm+2 ≥ 0.

(12)
J2(A,B) = min cTp

s.t. Qp = b, p ≥ 0.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Suppose obstacle A is static and robot B is moving, then 
the matrix A in (11a) is constant, and B depends on robot 
state x . Therefore, in robot trajectory optimization prob-
lem we can construct the collision avoidance constraint 
J2(x) ≥ � , the matrix Q depends on x and p is a time-depend-
ent variable.
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