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Abstract
The weakness of the lower leg muscles due to nerve damage or muscle weakness can result in foot drop, a change in gait 
that manifests as an inability to lift the toes of the foot when walking. Foot drop results in a decreased quality of life, with 
unassisted movement becoming difficult or impossible. The increased risk of falls is particularly problematic as foot drop 
often affects the elderly or infirm for whom falling already presents a great danger. Current treatment options include fixed 
ankle–foot orthosis (AFO) aiming to provide rigid support to the foot if the impairment is mild or surgical intervention and 
functional electrical stimulation (FES) devices if the weakness is more severe. FES intervention is effective for providing 
a non-invasive treatment in even severe cases of foot drop. Limitations of current models relate to the non-naturalistic rec-
reation of gait in the affected leg and its unsuitability for patients with extensive peripheral nerve damage. Although there 
are attempts to enhance integration of sensory information and mimic natural stimulation patterns, the focus on restoring a 
natural feedback loop is still amiss. Without such a closed loop feedback, restoration of a natural gait pattern is unlikely to 
occur. We here recommend, integration of motor output from multiple muscles, information about the inputs from higher-
order controllers, recorded from the intact leg with a closed loop system to improve the effectiveness of FES.
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Abbreviations
AFO  Ankle-foot orthosis
CNS  Central nervous system
FES  Functional electrical stimulation
EMG  Electromyography
ODFS  Odstock dropped foot stimulator
ANN  Artificial neural network

1  Introduction to foot drop

The weakness of the dorsiflexor muscles of the leg and foot 
resulting in gait abnormality is commonly referred to as 
“foot drop” (Stewart 2008; Stevens et al. 2015). Foot drop is 
usually unilateral, with bilateral symptoms indicating a more 
serious injury to the lower spinal segments (Kertmen et al. 
2015). It presents during walking as a dragging of the foot or 

an unusually high stepping motion as a coping mechanism 
to avoid dragging. The severity and the cause of the condi-
tion vary, affecting the effectiveness of treatment options. 
Temporary or reversible foot drop is often associated with 
external nerve compression due to poor occupational prac-
tices and work environment resulting in prolonged pressure 
to the back of the knee, such as when crossing the legs or 
work requiring frequent and prolonged squatting (Woltman 
1929; Berry and Richardson 1976; Koller and Blank 1980). 
Removing the source of pressure often alleviates symptoms, 
although the recovery can be delayed from days to months. 
Permanent cases of foot drop are instead due to damage to 
the peroneal nerve, including injury at a more proximal site 
to the sciatic nerve, or the muscles these nerves innervate as 
is the case with muscular dystrophy.

Treatment options depend on the severity and nature of 
the condition. Following a diagnosis sometimes a simple 
change in behaviour can remedy the symptoms. For cases 
of intermittent or very mild foot drop a change in shoes to 
a flatter sole or a pair of stiff boots can provide all treat-
ment required (Stewart 2008). Traumatic injury to the leg, 
including direct laceration, occlusion of the nerve due to 
bone fracture, dislocation, displacement and entrapment of 
the nerve, can all result in permanent or more severe foot 
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drop. Foot drop is very commonly caused by a severe and 
sudden sprain or twisting of the ankle due to damage from 
the immense torsional force acting on the nerve at the back 
of the knee (Nobel 1966). Increased internal pressure caused 
by swelling, internal masses can also result in permanent 
foot drop, although reversible depending on the swiftness of 
intervention. Benign masses at the level of the knee, such as 
Baker’s cysts, outgrowth of nerve ganglia at the tibiofibular 
joint (Brooks 1952; Nakano 1978), malignant tumours can 
all result in nerve compression is located at a vulnerable site, 
like the fibular head (Suh et al. 1992) leading to foot drop. 
Impairment of the central nervous system (CNS) because 
of injury, swelling or stroke can also result in foot drop 
but is usually one of many symptoms of the more complex 
pathophysiology of the injury. These cases require a device 
capable of more pronounced gait correction. The options 
offered to patients in the UK via the NHS are physiotherapy, 
ankle–foot orthosis (AFO), surgery to fuse ankle and foot 
bones, tendon transfer surgery from lower leg muscles that 
are still sufficiently active and functional electrical stimula-
tion devices (FES).

2  Current treatment options

Physiotherapy focuses on exercises to strengthen specific 
muscles when foot drop is relatively limited and suspected 
to be due to muscle weakness (Potenza et al. 2012). The 
advantages of physiotherapy are it’s low-cost, and a lack 
of negative impact on patient life; with long-term efficacy 
as the patient can continue exercising the foot at home eas-
ily, past the initial consultation. Limited physiotherapy is 
advised for most patients with the moderate to severe foot 
drop, but its effects are limited by the patient’s ability to 
exercise the muscles in question. Muscle weakness due to 
nerve damage is unlikely to see significant improvements 
due to the general inability for the peripheral nervous system 
to regenerate (Ding et al. 2005).

Ankle Foot Orthosis is the most commonly prescribed 
treatment, being relatively cheap and effectively alleviating 
most gait abnormalities (Kluding et al. 2013). The precise 
design of the orthotic varies but generally consists of a fixed 
cuff, around the ankle or mid-shin, attached to braces cra-
dling the sole of the foot. These devices are designed to 
provide mechanical support and physically prevent the foot 
from dragging during the gait cycle as seen in Fig. 1a.

In combination with exercise, frequent use of AFO can 
reduce the risk of falls while improving mobility. Despite 
this, AFO is not an ideal solution as most AFOs are large and 
difficult to conceal completely under clothing. The weight 
of these devices increases proportionally to the support the 
device offers making them bulkier and less appealing to 
wear, and with an increased likelihood of painful rubbing of 

the skin. Furthermore, whilst these devices correct the initial 
abnormality, preventing the foot from dropping, the foot is 
forced into a 90° position, an equally unnatural position for 
normal walking. AFO treats the symptom of foot drop but 
not the cause. A variety of products are currently available, 
which help cover some of these flaws, however, the existence 
of the large market for orthoses suggests that no one product 
adequately addresses these flaws successfully.

Tendon transfer surgery can prove very effective in cer-
tain cases but requires that some ankle function is still intact. 
A portion of the remaining active muscles tendons is trans-
ferred to another attachment point, typically towards the 
front of the foot. This inherently only alters where the site 
of weakness is, as the transferred muscles are now unable 
to perform their original function. Although this does cor-
rect the foot drop it comes at the cost of weakness in other 
areas. The unpredictability of the outcome of the surgery 
means that some patients will still require AFO even after 
their surgery.

Midfoot fusion of the bones that make up the arch of the 
foot can also help correct foot drop. This option is largely 
a choice of last resort where the foot has lost most of the 
motion or when the condition additionally presents with 
severe pain, as the surgery is invasive and eliminates any 
hope of normal recovery.

Functional electrical stimulation involves stimulating the 
weakened muscle alone or combined with the associated 
peroneal nerve using surface or implanted electrodes, to 
recruit more muscle fibres to overcome the weakness (Bar-
beau et al. 1999; Embrey et al. 2010; Kesar et al. 2011; Melo 
et al. 2015; Ferrante et al. 2016). Fibres are recruited by 
electrical stimulus pulses delivered through the electrodes. 
The timing of this stimulus pulse is controlled in a variety of 
ways; by the user with a handheld switch, pressure sensors 
in the shoe or by electromyography (EMG) signals recorded 
from the leg. In all cases, the aim is for stimulation to start 
when the foot lifts off the ground and cease when the device 
detects the foot strike phase during the gait cycle as shown 
in Fig. 1a (Melo et al. 2015). The device design is usually 
simple, with a single cuff situated just below the knee, and 
is, therefore, smaller and easier to conceal. Electrodes can 
be built into the device or can be separately situated to better 
target the stimulation site.

FES is particularly appealing as it is the one treatment 
option besides physiotherapy that can help correct the cause 
of the condition to a stage where treatment may no longer 
be required. Whilst it is uncommon, a proportion of patients 
using FES devices report their foot drop improving to the 
point where they no longer require any treatment at all. 
Furthermore, the gait correction that FES provides can be 
tuned to produce more natural movement and can result in 
recovery of additional function, such as raising of the toe, 
which AFO and surgery do not address (Ridding et al. 2000). 
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Randomised control trials show that footfall patients using 
an FES device walk 16% faster, and have improved quality 
of walking, with decreased risk of falling and a significant 
increase in quality of life, compared to other therapies (Kot-
tink et al. 2007).

However, FES is not an option in patients with wide-
spread or severe neural degeneration such as patients with 
mid-stage-MS, as it requires residual nerve connections 
to recruit. Another major drawback to FES devices is the 
cost of the device. Whereas AFO cost varies around ~ £80, 
not including fitting and assessment, FES devices can cost 
thousands of pounds over their significantly short lifespan 
(Taylor et al. 2007; NICE 2016). This is why only some 
health authorities provide FES by default for patients with 
foot drop despite the guidelines published by the National 
Institute for Health and Care Excellence (NICE), often quot-
ing cost and insufficient evidence of improvement compared 
to AFO devices (Cambridgeshire and Peterborough Clinical 
Commissioning Group 2013). NICE calculate that over the 
5-year lifespan of the device the total cost of an FES device 
and consumables will reach £3320 not including consulta-
tion or repairs required. Table 1 provides a direct compari-
son between the effectiveness of FES and AFO devices. The 
main findings demonstrate significant increases in walking 
speed for both FES and AFO but few studies demonstrate a 
conclusive advantage between either device (Kottink et al. 
2007; Everaert et al. 2013; Kluding et al. 2013). Despite this, 
patients express a clear preference for FES devices primarily 
due to the ease of concealment (Kottink et al. 2007; Bul-
ley et al. 2011; Kluding et al. 2013). Improvements outside 
walking speed are more difficult to measure and have largely 
been neglected in other reviews on the topic. Clearly current 
devices provide an effective treatment option, however, there 
is a missed potential in targeting motor recovery as a means 
of providing a meaningful advantage over AFO.

There are a variety of suppliers of FES devices for foot 
drop to the NHS in England and Wales, but the largest 
distributor is Odstock and the most commonly provided 
device is the Odstock Dropped Foot Stimulator (ODFS) 
Pace (NICE 2009, 2016). ODFS Pace uses a sensor in the 
shoe to detect foot lift off, with the stimulation parameters 
determined during initial consultation by a clinician. The 
tunable parameters include pulse amplitude (10–100 mA), 
pulse frequency (0–60 Hz), pulse width (0–360 μs) total 
output time (0–6 s) and time from zero to max amplitude 
(0–2 s). This provides a wide variety of pulses within a safe 
working range which are representative of the capabilities of 
most FES devices; repeating trapezoidal stimulation pulses 
to generate tetanic contraction (Melo et al. 2015). Whilst 
this method can achieve a close to normal walking pattern 
compared to an AFO device its key flaw is that it does not 
incorporate any information regarding the muscle activity 
produced. The aim of these devices is limited to alleviating 

gait deficiencies without discomfort and the long-term 
effectiveness is limited in turn. There is an opportunity to 
significantly increase the effectiveness of devices currently 
available by switching aim towards a more ambitious rec-
reation of normal motor activity. Promising advancements 
in the field of prosthetics have demonstrated dynamic con-
trol of a powered lower-limb prosthetic using EMGs (Wen 
et al. 2017; Spanias et al. 2018). A similar approach used 
to control stimulation could create a system that directly 
integrates motor output into an FES device. Stimulation 
algorithms utilizing muscle synergy information has been 
shown to produce superior walking motion than stimula-
tion based off foot strike alone (Ferrante et al. 2016). This 
concept could be extended to target synergistic muscles in 
cases of severe weakness or paralysis, causing greater activa-
tion of weakened pathways through synergistic recruitment. 
More sophisticated devices such as the WalkAide are already 
moving in this direction by incorporating tilt sensors to bet-
ter target the onset and offset of stimulation to time-points 
in the gait cycle (Stein et al. 2008; Everaert et al. 2013). The 
WalkAide has similar set-up requirements to the ODFS Pace 
requiring a clinician to initially set and program stimulation 
parameters. However, there is also the option for automated 
assessment of when to activate stimulation during the gait 
cycle, a feature which should be expanded upon in future 
iterations to include the dynamic adjustment to stimulation 
control. Whilst this inclusion of feedback regarding limb 
position through the tilt sensor is a step in the right direc-
tion, this approach is still lacking elements of a closed-loop 
control system. In the next section, we will describe a way 
in which a closed-loop system could be implemented with 
only minor changes to currently available devices.

3  Improving the efficacy of FES by changing 
the aim of treatment

Ferrante et al. (2016) showed that using FES defined by the 
muscle synergy information from healthy patients resulted in 
the recovery of a healthier muscle synergy pattern in patients 
with foot drop. However, in this study analysis of synergies 
was only performed after treatment, with no update to the 
stimulation strategy throughout the treatment. Furthermore, 
the target for the stimulation algorithm was to match the 
pulse width to that determined by the reconstructed muscle 
synergies, without any comparison of the actual motor out-
put generated by the stimulation pulse. Whilst this strategy 
has promising results without integrating motor output the 
device still falls short of a closed feedback loop. Synergy 
analysis can be computationally intensive, however, care-
ful algorithm design or implementation of an FPGA-based 
microprocessor make online analysis a possibility (Rasool 
et al. 2016; Franco et al. 2017). The method described by 
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Ferrante could be performed in real time, providing dynamic 
alteration stimulation based off observed changes in synergy 
recruitment either via online synergy prediction or through 
set training periods. By providing dynamic feedback the 

patient and device will adapt to patient recovery as well as 
providing more naturalistic movement. However, this stimu-
lation strategy is still limited to controlling just one stimula-
tion parameter, missing much of the customization provided 

Table 1  Improvement to walking speed, safety and patient’s preference for ankle foot orthotics and three popular functional electrical stimulation 
devices for the treatment of foot drop in patients with stroke

AFO and FES devices are commonly used to treat foot drop caused by peroneal nerve damage. The cost and effectiveness of these devices are 
compared in several studies. These studies investigated changes to walking speed, effects on safety and adverse events and patient’s preference 
between devices. Where possible comparison is reported for both no treatment, AFO and FES separately. Studies where FES is combined with 
AFO use is marked with asterisk. Cost is reported as the initial cost of the device and relevant consumables over a 5 year period, not including 
fitting and consultation sessions
AFO ankle foot orthotic, FES functional electrical stimulation

Device Studies covered Cost/£ Main walking findings Main safety findings

AFO Kottink et al. (2007); 
Everaert et al. 
(2013)*; Kluding 
et al. (2013);

£20-120 Kottink (26-week intervention):
 Increased walk speed over 10 m of 0.07 ms−1 

compared to no device
 No change in 6-min walk test
Everaert (12-week intervention):
 Increased walk speed through figure 8 of 

0.116 ms−1 compared to no device
 Increased walk speed over 10 m of 0.117 

compared to no device
Kluding (30-week intervention):
 Increase comfortable walk speed of 

0.15 ms−1 compared to before treatment
 Increased fast walk speed of 0.17 ms-1 com-

pared to before treatment

Kluding:
 No significant difference in falls between AFO 

and NESS L300
 50 adverse events related to device use

ODSTOCK Kottink et al. (2007); 
Bulley et al. (2011); 
Taylor et al. (2007)*

£3320 Kottink (26-week intervention):
 Increased walk speed over 10 m of.21 ms−1 

compared to AFO with FES and without 
(p = 0.01)

 Improvement of 23% in 6-min walk test over 
26 weeks (p = 0.097)

Taylor (11-year medical record review):
 Continued use of FES device increased walk 

speed over 10 m of 0.11 ms−1 with the 
device turned off and a further increase of 
0.08 ms−1 with FES turned on (significant 
increases compared to start of treatment 
p < 0.001 and p < 0.001 respectively)

 38% of patients increased their functional 
walking category over 16.5 months with 
FES and 26% patients improved their walk-
ing category with the device turned off

Taylor:
 3 stroke patients discontinued use of the 

device due to direct problems with the device 
(“found stimulus painful” and “too much 
bother” being the listed reasons)

NESS L300 Kluding et al. (2013) £4550 Kluding (30-week intervention):
 Increase comfortable walk speed of 

0.14 ms−1 (non-significant improvement 
compared to AFO p = 0.78)

 Increased fast walk speed of 0.13 ms−1 (non-
significant improvement compared to AFO 
p = 0.78)

Kluding:
 130 adverse events related to device use, with 

skin irritation accounting for 51 of these 
events (significant increase in adverse events 
compared to AFO p < 0.01)

WalkAide Everaert et al. (2013)* £3470 Everaert (12-week intervention):
 Increased walk speed through figure 8 of 

0.119 ms−1 compared to no device (non-
significant improvement compared to AFO 
p = 0.21)

 Increased walk speed over 10 m of 
0.140 ms−1 compared to no device (non-
significant improvement compared to AFO 
p = 0.32)

Everaert:
 WalkAide users felt significantly safer 

after 12 weeks than those who used AFO 
(p = 0.037)
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by clinicians currently in terms of stimulation amplitude 
etc. A more in-depth strategy that could control for mul-
tiple stimulation parameters could produce more specific 
responses and better recreate the desired synergies.

Artificial neural networks (ANN) can be trained to learn 
and predict complex non-linear relationships, Unpublished 
data from this lab has demonstrated the capability for neu-
ral networks to learn stimulation parameters for generating 
specific EMG signals in the rat hind limb, if extended to 
the FES devices could theoretically be capable of predicting 
stimulation parameters in real time on a low power device 
(Schrauwen et al. 2008). Although this requires recording 
from a large patient cohort to provide enough generalization 
across subjects and conditions, combining this with mus-
cle synergy prediction previously described would provide 
advanced stimulation control in a true-closed loop device. 
Due to the flexibility of training these networks as the net-
work updates to the observed EMG parameters generated 
it can generate novel stimulation strategies relying on the 
simultaneous contraction of separate muscle groups. This 
could allow for better recruitment of remaining connections 
in more extensively damaged networks. In the same manner 
that the network can update to match recovery, the network 
will also continue to adapt to the degradation of the nervous 
system thus providing a longer period of improved mobility 
and quality of life for patients with chronic conditions.

4  Conclusions

Due to the diverse causes of foot drop, the optimal treat-
ment plan for the best functional outcome in patients should 
be personalized. For any given patient combinations of 
physiotherapy, surgical options, AFO or FES allow clini-
cians to provide patients with a treatment that suits their 
specific needs, but all current treatment options emphasise 
symptomatic treatment with the recovery of motor function 
being incidental. A change in the perceived purpose of FES 
devices towards motor recovery could have the potential to 
provide more curative treatment with positive effects beyond 
just those experienced during walking. Future development 
of these devices can take advantage of the great strides being 
made in machine learning and low powered computation. A 
closed-loop device with dynamic feedback affecting motor 
output is more flexible to changes in patient condition, 
potentially encouraging recovery.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.
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