
ORIGINAL PAPER

Information Theory to Assess Relations Between Energy
and Structure of the U.S. Economy Over Time

Carey W. King1

Received: 14 May 2016 / Accepted: 26 September 2016 / Published online: 31 October 2016

� Springer International Publishing Switzerland 2016

Abstract This paper describes the changing structure of

the United States’ (U.S.) domestic economy by applying

information theory-based metrics to the U.S. input–output

(I–O) tables from 1947 to 2012. Here the I–O tables are an

economic network where the sectors are the nodes. The

value of these metrics is that they describe the balance or

trade-off between efficiency and redundancy of network

flows as well as equality and hierarchy of flows through

nodes in a network. I relate these metrics to the U.S. gross

power consumption and annual intermediate spending by

the food and energy sectors, the latter being a proxy for the

inverse of the net power ratio (or net energy) of the

economy, to test hypotheses of energy–economy structural

linkages. The results of this paper show that increasing

gross power consumption, as well as a decreasing share of

intermediate expenditures of the food and energy sectors,

correlates with increased distribution of money among

economic sectors, and vice versa. The information theory

metrics indicate two time periods at which major structural

shifts occurred. The first was between 1967 and 1972, and

the second was around the turn of the twenty-first century

when food and energy expenditures no longer continued to

decrease after 2002. In response to the latter, it is clear that

the U.S. economy did trade off structural reserves (e.g.,

decreasing metrics of conditional entropy, redundancy, and

equality) for structural efficiency (e.g., increasing metrics

of efficiency, mutual constraint, and hierarchy) after food

and energy expenditures increased post-2002. I also test the

structural trends with increasingly simpler (e.g., fewer

sectors) representations of the I–O tables, and the results

are more consistent for I–O representations that account for

inputs and outputs (e.g., value added and gross domestic

product) rather than only the intermediate transactions

among sectors. The findings of this paper have important

implications for economic modeling in at least two ways.

First, the paper helps explain how fundamental shifts in

resources costs relate to economic structure and economic

growth. Second, the paper shows that the number of sectors

used to represent economic transactions influences the

systemic metrics themselves.
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Introduction

The consumption of energy, or more precisely power, the

rate of consumption of energy, is a major factor in driving

economic growth (Hall and Klitgaard 2012). Since the

Industrial Revolution began in the UK in the late 1700s,

humans have continued to annually consume more primary

energy than the year before. Before the Industrial Revo-

lution civilization was largely limited to energy technolo-

gies that harnessed solar-driven resource flows (sunlight,

rivers, and wind) and stocks. Food and fodder, effectively

storing sunlight via trees, plants, and crops, were the major

fuels of the time for both human and animals to perform

physical work.
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Many academic fields have a desire and role in under-

standing the role of energy, and energy-driven technology,

in economic production and societal organization.

Accordingly, this paper is motivated by the varying per-

spectives from these fields of inquiry.

Econometric and Growth Modeling Perspective

A multitude of econometric analyses collectively seem

inconclusive as to the critical importance of energy in

driving economic growth (Kalimeris et al. 2014). For

example, approximately one-quarter of analyses fall into

each of four possible causal domains between energy and

gross domestic product (GDP): Growth in energy causes

growth in GDP, growth in GDP causes growth in energy,

no causality, and mutual causality. However, those studies

that find a more pivotal and influential role for energy

consumption in causing economic growth do so by

including increasingly mechanistic and physically based

views of how energy and technology work together.

Stern and Kander (2012) show that energy-driven capital

plays the main role in describing Sweden’s economic growth

as it went through the industrial transition. Kümmel, Ayres,

and Warr show that by including energy (or exergy) and its

efficiency of conversion to useful (physical) work one creates

significantly more accurate relationships linking energy,

labor, and capital to economic output (Ayres and Warr 2005;

Ayres 2008; Kümmel 2011). More recently, Santos et al.

(2016) find that a further refinement considering useful exergy

and labor as an input to capital (e.g., energy-driven machines)

is a promising method for linking the role of energy to the

economy that satisfies the need to describe economic output

dependence upon energy while preserving mathematical

requirements of economic aggregate production functions.

The implications of the work described in the previous

paragraph are profound for modeling a transition to a low-

carbon energy system. Most macroeconomic models, such as

those used to perform economic projections by federal

governments and inform climate change mitigation, use a

modeling framework that considers economic output as a

function of capital, labor, and technological productivity

(e.g., total factor productivity, TFP). This idea is usually

derived from the so-called Solow growth model, or aggre-

gate production function, developed in the 1950s (Solow

1956). However, most macroeconomic models assume TFP

progresses into the future, at similar rates of the last several

decades, while defining TFP only as all factors that are not

otherwise described by capital and labor. The studies high-

lighted in the previous paragraph show that TFP is largely

described by how efficiently energy is converted to useful

energy services. Thus, for modeling the economy during an

energy transition (e.g., to renewables and low-carbon

energy) it is imperative that we no longer assume TFP is

independent of feedbacks from the rate, cost, and efficiency

implied by the energy system transition itself. I previously

described how results of the Fifth Assessment of the Inte-

grated Panel on Climate Change acknowledge yet neglect

this important consideration [see Sect. 4.2 of King (2015a)].

In this paper, I take the perspective that energy, or

power, is a requirement and can be a constraint, on eco-

nomic growth because capital (e.g., machines in all sectors

of the economy) requires energy carriers to operate. As

such, if power constrains some economic possibilities, the

structure of the economy might change with changes in

power consumption.

Net Energy Perspective

Intuitively, energy carriers, or fuels, are needed to perform

economic activity. Energy consumption is required to

operate machines, drive cars and trucks, and refine metal

ores into raw materials and final products. In fact, over the

last fifty years, global real economic output (GDP) is

approximated very closely as a linear function of primary

energy consumption. The World Energy Council states that

‘‘As energy is the main fuel for social and economic

development,...’’ (Council 2013). However, economic

growth does not occur if energy is too expensive. Only two

times since World War II has the world had energy

expenditures greater than 8 % of gross world product (late

1970s and 2008), and both were times of recession that

spurred significant change and questions regarding eco-

nomic growth (King et al. 2015b).

While many economists have used econometric methods

to statistically relate energy consumption and technological

factors to economic output, some ecologists and systems

modelers take a different approach. This approach con-

siders the intuitive notion that animals must obtain more

energy in their food than they use in obtaining that food.

That is to say that animals must have sufficient net energy

from their food to survive when not feeding. If animals do

not do this, then they die. The term ‘‘net energy’’ refers to

the amount of energy left over after an energy production

(e.g., gathering, refining, and distributing) process has

consumed energy for its own operational purposes.

The net energy concept extends to describe the energy

(and food) production systems within human-constructed

industrial economies. Odum, Georgescu-Roegen, Hall,

King and many others have applied this concept to describe

energy production systems and technologies within the

context of the overall economy (Odum 1971; Georgescu-

Roegen 1971, 1979; Hall and Klitgaard 2012; Hall et al.

1986; King and Hall 2011; King 2010; King et al.

2015a, b; King 2015a). In particular, Hall has promoted the

idea that ‘‘net energy’’ is an important metric that relates to

societal structure and economic growth (Hall et al. 2009).
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Lambert et al. (2014) show that a net energy factor, com-

bined with factors of gross power (GJ/capita/year) and

inequality (Gini coefficient), seems to characterize average

country-level health and welfare indices rather well. They

also speculate on how much net energy is required from the

energy system to support a given societal structure and

attainment along a hierarchy of needs. The idea of relating

gross and net energy to socioeconomic structure seems

intuitive, yet it is poorly quantified for modern society.

Hence, this lack of quantification is a motivation for this

paper.

It is useful to take a historical perspective to understand

the notion of net energy over the long term. Consider that

the vast majority of preindustrial workers were part of the

energy sector as agricultural labor. Thus, the size of energy

sector relative to all non-energy sectors of preindustrial

economies was much larger than today. Society was also

highly unequal with a small number of landowners owning

most of the wealth. Non-energy sectors and their workers

are the consumers that purchase the net output (e.g., of

food and fuels) from the energy and food sectors and

workers. Preindustrial energy and food workers consumed

much of their own production, and there was little to sell to

others. Thus, there were relatively few ‘others’ in non-

energy sectors. Consequently, energy carriers were rela-

tively expensive, and preindustrial economies spent large

shares of total expenditures in producing food and energy.

In preindustrial UK energy expenditures were equal to

35–45 % of economic output (King 2015a), and in Sweden

in 1800 they were over 90 % (Kander and Stern 2014). The

net energy of the energy system had been low for several

centuries, and thus, the structure of society had conformed

its structure to that situation.

Coal-fired steam engines, introduced in the late 1700s,

changed the net energy equation. They enabled coal to

effectively power its own extraction by operating steam-

powered pumps to remove water from coal mines (Smil

2008; Fouquet 2008). This resource and technology com-

bination began a 200? year trend of fossil-fuel-driven

machines powering a growing economy and population by

enabling increasingly cheaper food and energy. Increas-

ingly abundant and high net energy (i.e., abundant and

affordable coal) energy enabled the technological changes

that transformed the structure of economies from bases in

agriculture to industry and services.

Today, the size of energy sectors relative to non-energy

economic sectors is significantly smaller than 200 years

ago, and this is largely because the energy system trans-

formed from a low to a high net energy state. Conse-

quently, post-World War II industrial economies usually

spend less than an equivalent of 8 % of gross domestic

product (GDP) on primary energy (King et al. 2015b), and

relative food expenditures declined until the around the

turn of the millennium (King 2015b). It is this shift (rather,

the tail end of it since 1947 in the USA) from a low to a

high net energy system that I explore in this paper.

Anthropological Perspective

One anthropological perspective is provided by Joseph

Tainter who has also posited the role of net energy in

societal organization. He postulates that a society with an

energy system (e.g., life cycle or supply chain) providing

more energy relative to its own needs (e.g., higher net

energy) has cheaper energy that enables more societal and/

or economic growth and complexity, ceteris paribus

(Tainter 1988, 2011). Tainter (2011) states: ‘‘Our societies

have changed from egalitarian relations, economic

reciprocity, ad hoc leadership, and generalized roles to

social and economic differentiation, specialization,

inequality, and full-time leadership. These characteristics

are the essence of complexity, and they increase the cost-

liness of any society.’’ Economists term this the division of

labor. He further elaborates that ‘‘When human societies do

have surplus energy, as industrial societies have over the

past two centuries, it interacts with problem-solving to

generate still more complexity. I term this the energy–

complexity spiral,’’ and ‘‘While there are many concepts of

complexity in various sciences, the term is used here to

mean (a) differentiation in structure (i.e., more parts to a

system, and more types of parts); and (b) variation in

organization, defined as constraints on potential ranges of

behavior (Tainter 1988).’’

Thus, the energy–complexity spiral of Joseph Tainter

postulates that societies become more complex over time to

solve problems, and more resources (e.g., energy) are

required to create and maintain that complexity. Most of

his insight comes from agrarian societies (e.g., Roman

Empire), but this paper explores the possibility of mea-

suring any structural characteristics of ‘‘complexity’’

within the modern economy (e.g., economic differentia-

tion, specialization, and inequality).

Economic Structure Perspective

While Ulanowicz historically applied his methods to

ecosystems and food chains, he recently ventured into the

domain of economics in a recent paper considering mon-

etary flows within sectors of Beijing, China (Huang and

Ulanowicz 2014). The structure of input data and analysis

of this paper is very similar to that of (Huang and

Ulanowicz 2014). Also, McNerney and Fath (2013) have

previously applied information theory and other network

metrics to I–O matrices of multiple countries. However,

McNerney and Fath (2013) were limited to either one or

two years of I–O tables for any given country.
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Another relevant analysis considers the ‘‘ubiquity’’ and

‘‘diversity’’ of imports and exports of countries to calculate

a ranking of economic complexity (Hidalgo and Hausmann

2009). Hidalgo and Hausmann (2009) calculate metrics of

economic complexity based only upon trade data by

inferring that ‘‘...connections between countries and prod-

ucts signal the availability of capabilities in a country ...’’

The approach of the present paper is in some sense the

exact opposite. I calculate structural metrics of a single

economy by considering the internal structure of monetary

flows (.e.g, I–O tables) rather than the import and export

flows of the country along with those of all other countries

to achieve a relative ranking. The advantage of my

approach is that I only need data for a single country to

assess that country. The disadvantage is that I–O tables are

less available for many countries than are the international

trade data as used in Hidalgo and Hausmann (2009).

Contribution and Organization of this Paper

The contribution of this present paper is the analysis of the

internal structure of a large economy over a long-term time

series. It describes the structure of the U.S. economy as it

relates to gross power input, economic output, and the

expenditures of the energy and food sectors as economic

proxies for net energy, or more specifically, net power. In

performing this analysis, I investigate concepts of interest

in many fields: ecological systems, economics, energy

analysis, information theory, and anthropology. Further, a

major contribution of this paper is to avoid speculating as

to structural changes in society or an economy that might

come with changes in net energy, but to measure them in a

systematic manner and with minimal predetermined

assumptions or modeling constructs.

This paper analyzes the flows among industries of the

U.S. economy and quantifies the historical structural evo-

lution for the largest economy in the world. To the

knowledge of this author, this is only the second calcula-

tion of this type using information theory to characterize

economic input–output tables [after Huang and Ulanowicz

(2014)] and the first that characterizes a large economy

over more than three decades. In addition, this paper con-

tributes a new and more systematic quantification of ‘‘ef-

ficiency’’ and ‘‘redundancy’’ of network flows (see

‘‘Interpretive Quantifications of Distribution of I-O

Table Entries’’ section) based upon the ‘‘phase space’’

described by the two major information theory calculations

(see ‘‘Information Theory to Quantify Structure of Network

Flows’’ section).

The first question pursued in this research was ‘‘Is there

a changing structure of the U.S. economy from 1947 to

2012?’’ Upon answering this question affirmatively, I then

asked more interesting questions. What are the trends and

distribution patterns of that changing structure? Does the

structure change in relation to gross or net power inputs

and/or characterizations of the economy?

The U.S. economy structure is measured using the

information theory framework of ecologist Ulanowicz, to

be discussed further in ‘‘Information Theory to Quantify

Structure of Network Flows’’ section. I apply Ulanowicz’s

calculations to the network of monetary flows among

economic sectors of the U.S. input–output (I–O) tables as

the base data that characterize the structure of the economy

from 1947 to 2012. While the I–O tables do not measure all

societal and cultural aspects that might relate to ‘‘com-

plexity,’’ they are one valuable characterization of structure

as much as the flow of money among economic sectors is

one way to describe our society.

The remainder of this article is organized as follows:

‘‘Methods’’ section describes the data and methods with

subsections as follows: ‘‘I-O Data and Harmonization’’

section the process for harmonizing the I–O tables, ‘‘En-

ergy and Net Energy’’ section a background on net energy

and interpretation for this analysis, ‘‘Information Theory to

Quantify Structure of Network Flows’’ section the infor-

mation theory metrics, and ‘‘Interpretive Quantifications of

Distribution of I-O Table Entries’’ section derivation of

some additional metrics for interpreting the phase space of

the information theory calculations. ‘‘Results’’ section

describes results in several forms, and finally ‘‘Interpreta-

tion of Trends’’, ‘‘Implications of Modeled Number of

Sectors’’ and ‘‘Organization and the Energy-Complexity

Spiral’’ sections place the results into context of energy and

the background material of this introducti on before

‘‘Concluding Remarks’’ section concludes the paper.

Methods

I–O Data and Harmonization

The core data for the analysis come from the U.S. input–

output (I–O) tables of the Bureau of Economic Analysis

(BEA). I use the summary tables rather than the full

detailed tables. For the years 1947, 1958, 1963, and 1967,

there is only a single I–O table (e.g., no Make and Use

tables). For all other years, I base the calculations on the

Use tables (rather than Make or Total Requirements

tables). The harmonized I–O tables are kept in nominal

dollars. I focus on the structure of the I–O tables by

dividing all values by the total economic activity (or sum

of all monetary flows in the tables). For these calculations,

keeping the tables in nominal dollars poses no problems

with inflation. I also perform calculations that scale with

the total monetary flows in the I–O tables. For those
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calculations (Eqs. 12, 17), I scale the results by a constant

dollar index of chained real $2009 using the GDP deflator

from BEA Table 1.1.3 (BEA 2016).

Because the economy has changed over time (e.g.,

computers and information technology), the BEA has

changed the definitions of the economic sectors. The

Standard Industrial Classification (SIC) system was used to

categorize economic sectors until 1992. Starting in 1997

the BEA categorized the benchmark I–O tables using the

current North American Industry Classification System

(NAICS), and I use the ‘‘before redefinitions’’ version of

the NAICS Use tables.

Thus, an important step in this analysis was to create a

set of harmonized I–O sectors that have a constant defini-

tion and number of sectors from 1947 to 2012 and contain

as many sectors as possible. That is to say I wanted to keep

as much richness from the I–O summary tables as possible

(given that they are already summarized from hundreds of

subsectors into dozens of sectors).

The harmonized I–O tables were derived as a consistent

37-sector characterization of the U.S. economic I–O tables.

I present one example of the harmonization process. The

SIC-based summary tables (see Table S1) for 1947–1992

list sector numbers 5 (Iron and ferroalloy ores mining), 6

(nonferrous metal ores mining), 7 (coal mining), 9 (stone

and clay mining and quarrying), and 10 (chemical and

fertilizer mineral mining). I aggregate these into my sector

number 4 within the 37-sector I–O framework. To match

this sector number 4 using the NAICS-formatted I–O

tables from 1997 to 2012 (see Table S2), I aggregated two

of the NAICS summary table sectors: 4 (mining, except oil

and gas) and 5 (support activities for mining). Here

aggregation means that for the SIC tables and every col-

umn I added the entries for rows 5, 6, 7, 9, and 10 to create

a single row. I performed the same for those numbered

columns (for every row, I added the entries for those

numbered columns). I performed the same process for the

NAICS tables for the summary table rows 4 and 5 that are

‘harmonized’ into a new row number 4 within the 37-sector

framework. The mappings of summary sectors to each of

the 37 harmonized sectors are listed in Supplementary

Tables S1 and S2.

The aggregation of the summary table sectors into the

37-sector format was based on judgment as to the nature of

the sectors. That is to say I performed no computational

analysis, such as clustering (McNerney et al. 2013), to

group the economic sectors. To explore the implications of

the size of the network (e.g., the number of sectors) on the

calculations in this paper, I also reduce the I–O tables to 12,

7, and 2 sector versions and report on the trends (see

‘‘Information Theory Trends as a function of Network

Size’’ section for results and Tables S1 and S2 for sector

descriptions).

Modeling Inputs and Outputs (Exports and Imports)

I calculate the information theory metrics (described in

‘‘Information Theory to Quantify Structure of Network

Flows’’ section) for two boundaries of the I–O tables as

network models. One considers the intermediate demands

matrix only (e.g., only the 37 � 37 matrix of sectors). I

refer to this as the ‘‘closed’’ or ‘‘intermediate’’ boundary

because there is no concept of inputs to or outputs from this

representation. The second ‘‘open’’ boundary uses value

added and GDP per sector to model input into and output

flows from the economy.

I use value added as input to each sector. The BEA

defines value added as wages, taxes on production and

imports less subsidies, and gross operating surplus (e.g.,

profits). I also include gross imports (as a positive input

flow of money) as an input by removing that component

from gross domestic product (GDP).

I use GDP as output from each sector. The BEA defines

GDP as composed of personal consumption expenditures,

private fixed investment, changes in inventories, govern-

ment spending, and net exports (= exports–imports).

Because I use gross imports as an input, I subtract them

from GDP. I also move purchases from sectors ‘‘Federal

general government’’ and ‘‘State and local general gov-

ernment’’ to output. In the I–O tables, these two govern-

ment sectors have no sales, only purchases. The details of

calculating sectoral inputs and outputs per year are listed in

Supplementary Tables S3 and S4.

The information theory calculations are only defined for

positive flows (e.g., of money) in networks (per Equations in

‘‘Information Theory to Quantify Structure of Network

Flows’’ section). However, some I–O sectoral data (e.g.,

gross imports or exports) are presented as negative entries.

In the case of each negative value for an input (e.g., gross

imports), I convert it to a positive value and add it to an

appropriate output (e.g., export) vector. Similarly, negative

output entries (e.g., exports) are converted to positive

inputs.

Energy and Net Energy

There are a multitude of studies discussing and analyzing

the net energy of various energy technology and resource

combinations. Usually, one or more energy return ratios

(ERRs) or power return ratios (PRRs) are calculated for a

given technology or system. The most common ERRs are

energy return on (energy) invested (EROI) (Murphy et al.

2011), gross energy ratio (GER), net energy ratio (NER),

and net external energy ratio (NEER) equal to EROI (King

2014; Brandt et al. 2013; King et al. 2015a). These ERRs

characterize the total energy output divided by energy

inputs over a life cycle or system under study.
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These energy inputs and outputs are the time integrals of

the instantaneous power flows (often listed as annual power

flows in data sets) during the life cycle. Thus, one can

specify corresponding power return ratios (PRRs) as power

output divided by power inputs (King et al. 2015a). In

effect, the integral of a PRR over time achieves its

respective ERR. For example, the integral of net power

ratio (NPR) equals NER. For summaries of net energy

analysis approaches and conceptual constructs, I direct the

reader to the literature (Murphy et al. 2011; King 2014;

Brandt et al. 2013; King et al. 2015a; Bullard and Heren-

deen 1975; Mulder and Hagens 2008; Modahl et al. 2013).

One goal of this analysis is to relate the changing

structure of the U.S. economy over time to both net and

gross energy consumption. More specifically, I concentrate

on net and gross power (= energy/time) as the data in the I–

O tables are also per unit time (= dollars/year). Thus, I need

to consider an economy-wide PRR. Individual resource

(e.g., coal) or technology-specific (e.g., wind turbines)

ERRs and PRRs will not suffice at this macro-system scale.

Also, in order to holistically characterize the long-run role

of energy in the economy it is necessary to simultaneously

consider indicators of both food and what is usually meant

by ‘‘modern’’ energy today.

I use an economy-wide PRR proxy in this paper that is

the inverse of the energy and food sector expenditures

divided by GDP (see Eq. 1) (King et al. 2015b). Funda-

mentally, ERRs are inversely related to cost, and PRRs are

inversely related to price (King et al. 2015a). For example,

if the U.S. food and energy sectors’ spending is equivalent

to 20 % of GDP, then one can approximate the economy-

wide NPR of the economy as 1/(0.20) = 5. This metric is an

economic proxy, hence subscript ‘‘economic,’’ for a cal-

culation using pure power units. For a pure energy system,

the NPR is the net output of power (e.g., energy per year)

divided by all intermediate system inputs needed to pro-

duce that power output (King et al. 2015a).

NPReconomic ¼
Annual energy and food expenditures

GDP

� ��1

¼ GDP

Annual energy and food expenditures

ð1Þ

For this paper, I calculate energy and food expenditures

as the sum of purchases of five of the 37 sectors derived

during the I–O harmonization process: 1 = Farms, 3 = Oil

and Gas extraction, 5 = Utilities, 18 = Food Products,

Stores, and Services, and 23 = Petroleum and Coal Prod-

ucts. Certainly some activities that are not energy and food

are included in this aggregation (e.g., utilities includes

water-related activity). However, the general trends are

well characterized by these sectors.

For each year, there are two sums for energy and food

expenditures, one for each of the closed and open-model

formulations. Because the closed-model only considers the

intermediate I–O matrix, the associated energy and food

sector purchases are only those within the intermediate I–O

table. For the open-model, I additionally include expendi-

tures from the inputs (as defined in ‘‘Modeling Inputs and

Outputs (Exports and Imports)’’ section).

Information Theory to Quantify Structure

of Network Flows

Over last few decades, Ulanowicz has established a body of

work that uses information theory to describe the organi-

zation of ecological networks (Ulanowicz and Wolff 1991;

Ulanowicz and Hannon 1987; Ulanowicz 2002; Ulanowicz

et al. 2009; Ho and Ulanowicz 2005; Goerner et al. 2009).

The value of this work is that it provides a method to

understand the structure and organization of flows within

networked systems from the standpoint of the trade-off

between redundancy (via diversity of options) versus effi-

ciency. This trade-off is measured by calculating aggregate

system values based upon the network topology and flows

between network nodes. In this paper, I use the information

theory framework discussed much by Ulanowicz’s to

understand the organization of the U.S. economy as a

network of monetary exchanges.

The main purpose of this ‘‘Information Theory to

Quantify Structure of Network Flows’’ section is to ensure

the reader is familiar with different terminologies that are

used to refer to the same underlying mathematics of

information theory. In ‘‘Information Theory Mathematics

Background’’ section, I describe the formal descriptions

from information theory (MacKay 2003) and relate these to

the terminology and slightly different mathematics (for

‘‘conditional entropy’’ only) of Ulanowicz (2009) in

‘‘Closed Network Model Mathematics’’ and ‘‘Open Net-

work Model Mathematics’’ sections. The mathematics are

more important than the terminology, but it is important to

understand terms used by different disciplines. Some

readers might initially be more familiar with one set of

terminology or another.

I refer the interested reader to the following works to

become more fully familiar with the derivation, perspec-

tives, and use of information theory for characterizing

network structure. For terminology and derivation of the

information theory metrics in ‘‘Information Theory Math-

ematics Background’’ section, see particularly Chapters 2

and 8 of (MacKay 2003). For Ulanowicz’s definitions and

use of the metrics (as applied to ecosystems) as in ‘‘Closed

Network Model Mathematics’’ and ‘‘Open Network Model

Mathematics’’ sections, see (Ulanowicz and Wolff 1991;
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Ulanowicz 2004; Ulanowicz et al. 2009). Kharrazi’s

(2013) perspectives on information theory for network

analysis of economic flows are also useful.

Information Theory Mathematics Background

The information theory concept is predicated on probabil-

ity. The probability, 0� p� 1, that event y will occur is

P(y).1 The (Shannon) information content in an outcome

y of a random variable is as in Eq. 2 and increases as the

probability P(y) approaches zero (MacKay 2003).2

MacKay (2003) (Table 2.9) explains information content

via the example of the probability of letters, including a

space, within an English document. Spaces and the letter

‘z‘ occur with probabilities 0.1928 and 0.0007, respec-

tively, giving information content quantities from Eq. 2 of

1.65 and 7.26 nats, respectively.

hðyÞ ¼ ln
1

PðyÞ

� �
: ð2Þ

Because there are multiple possible outcomes for any

random variable (e.g., 26 letters of the alphabet as well as

spaces and punctuation), the entropy, H(Y), of the ensemble

Y is the average information content of all possible

outcomes:3

HðYÞ ¼
X
y2AY

PðyÞln 1

PðyÞ

� �
: ð3Þ

Thus, the entropy of ensemble Y, H(Y), is the weighted

average of the information content of each outcome

y weighted by the probability of that outcome. MacKay

(2003) notes that other names for the entropy of H(Y) are

the uncertainty or marginal entropy of Y. Importantly, it is

a single metric of the entire ensemble, or set of probabil-

ities. The quantity in Eq. 3 has also been referred to as

information entropy and Shannon entropy.

For network analysis that considers the flow of some

quantity (e.g., money, energy, materials, and information)

from one node to another, one can define a single proba-

bilistic event as a joint probability. The joint probability of

a flow going from node y to node z could be expressed as

P(y, z). The single event is defined as two events, both

y and z, happening simultaneously. For an economic flow

in an I–O table, the example is the probability of sector

z making a purchase from sector y.

The joint entropy of two ensembles Y and Z is:

HðY; ZÞ ¼
X

yz2AYAZ

Pðy; zÞln 1

Pðy; zÞ

� �
: ð4Þ

Ulanowicz refers to the mathematics of Eq. 4 as inde-

terminacy (Ulanowicz et al. 2009).4

Fig. 1 Differences between the terminology of information theory

(MacKay 2003) and the that of Ulanowicz (Ulanowicz et al. 2009) are

made clear by showing the relationships among the quantities of joint

entropy (or indeterminacy), mutual information (mutual constraint),

and conditional entropy. Figure concept taken from Figure 8.1 in

MacKay (2003)

1 Here I use outcomes y and z as notation to reserve the letter X to be

consistent with nomenclature used by Ulanowicz.
2 In this paper, I use natural logarithms (giving units of ‘nats’) instead

of logarithms of base 2 in MacKay (2003) (giving units of ‘bits’). The

difference in the calculated quantities and units for the information

theory metrics is less important than the relative values of each metric

when using equations with a consistent logarithm base. Thus, the

difference between using logarithms of base 2 versus base e has no

relevance for the purposes of this paper.
3 MacKay (2003) defines ensemble X as a ‘‘...triple (x;AX ;PX),

where the outcome x is the value of a random variable, which takes on

one of a set of possible values, AX ¼ fa1; a2; . . .; ai; . . .; aIg, having

Footnote 3 continued

probabilities PX ¼ fp1; p2; . . .; pi; . . .; pIg, with Pðx ¼ aiÞ ¼ pi; pi � 0

and
P

ai2AX
Pðx ¼ aiÞ ¼ 1.’’ (MacKay 2003)

4 Ulanowicz equation places a negative sign on the equation while

moving P(y, z) into the numerator within the logarithm, but it is

mathematically equivalent to Eq. 4: HðY ;ZÞ ¼
P

yz2AYAZ
Pðy; zÞ

lnð 1
Pðy;zÞÞ ¼ �

P
yz2AYAZ

Pðy; zÞlnðPðy; zÞÞ.
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MacKay (2003) Chapter 8 also defines conditional

entropy of ensemble Y given ensemble Z, HðY j ZÞ,5 as the

average, over all z, of the conditional entropy of Y given z.

This quantity measures the average uncertainty that

remains about y when z is known (see Eq. 5). One can also

calculate the conditional entropy of Z given Y, HðZ j YÞ.

HðY j ZÞ ¼
X

yz2AYAZ

Pðy; zÞln 1

Pðy j zÞ

� �
: ð5Þ

At this point, it is important to describe how MacKay

(2003) and Ulanowicz use the same term of ‘‘conditional

entropy’’ to actually refer to different mathematics. My

representation of the very informative Figure 8.1 from

MacKay (2003) demonstrates this distinction (see Fig. 1).

Ulanowicz’s many papers refer to a term called condi-

tional entropy of a network of flows that is in fact mathe-

matically the same as adding the two conditional entropies

when considering two ensembles. Equation (7) of Ulanowicz

et al. (2009) specifies an equation for ‘‘conditional entropy’’

using symbol W (Eq. 9 in this paper), that is actually equal to

the sum of both conditional entropies described above. Using

Fig. 1, one can see that W ¼ HðY j ZÞ þ HðZ j YÞ (see

Equation 9 for Ulanowicz’s mathematics of W).

With the terms defined in Eqs. 4 and 5 as well as Fig. 1,

one can see the mathematical definition of what MacKay

calls mutual information and Ulanowicz calls mutual

constraint, X [Equation (5) in Ulanowicz et al. (2009)].

These two terms refer to equivalent mathematics. From

MacKay (2003) Chapter 8, for two ensembles, Y and Z, the

mutual information between Y and Z, I(Y; Z), indicates the

average reduction in uncertainty about y that results from

learning the value of z, or vice versa, the average amount of

information that z conveys about y (MacKay 2003) (see

Eq. 6). Mathematically, and demonstrated graphically in

Fig. 1, IðY; ZÞ ¼ IðZ; YÞ.
IðY; ZÞ � HðYÞ � HðY j ZÞ ð6Þ

Closed Network Model Mathematics

At this point, I shift to nomenclature used by Ulanowicz for

those most familiar with that literature. The results of this

paper are phrased using the equations discussed in this

‘‘Closed Network Model Mathematics’’ and ‘‘Open Net-

work Model Mathematics’’ sections. Equations 7–12

describe the main calculations for information theory as

used by Ulanowicz.

Take input–output matrix T composed of entries Tij that

are flows (of energy, material, money, etc.) from node i

(row i) to node j (column j) in a network (Ulanowicz et al.

2009). The dot subscript on T indicates the sum of items

over that dimension. For example, T:j is the sum of all

flows into a given node j. Also, T:: is the total system

throughput (TST, of the flow type that is being modeled),

or the sum of all flows in the network (see Eq. 10).

The system indeterminacy, H (Eq. 7), of the flows or

‘‘events,’’ Tij is the same as the joint entropy.6 The system

mutual constraint, X (Eq. 8), measures the degree to which

a system efficiently distributes flows among its nodes or its

average degrees of constraint.7 The conditional entropy, W
(Eq. 9), is a measure of the average degrees of freedom of a

network for all flows Tij, or the remaining choice of flow

pathways for flows going from node i to node j. Ulanowicz

interprets X as what is known about the network and W as

what is not known, but what is possible in terms of flows

moving through the network.

H ¼�
X
i;j

Tij

T::
ln

Tij

T::

� �
ð7Þ

X ¼
X
i;j

Tij

T::
ln

TijT::

Ti:T:j

� �
ð8Þ

W ¼�
X
i;j

Tij

T::
ln

T2
ij

Ti:T:j

 !
ð9Þ

T:: ¼
X
i;j

Tij ð10Þ

H ¼X þW ð11Þ

Multiplying H, X, and W by T:: defines the system

‘‘capacity’’ (C), ‘‘ascendency’’ (A), and ‘‘overhead’’ or

‘‘potential reserve’’ (U) (see Eq. 12). The equation U ¼
WT:: is often referred to more simply as ‘‘reserves.’’

Mathematically capacity (H or C) for system development,

or change, is the sum of the system’s ‘‘constraints’’ (X or A)

plus ‘‘potential reserves’’ (W or U).

C ¼ HT:: ¼ XT:: þWT:: ¼ Aþ U ð12Þ

Note that the maximum values for the information the-

ory metrics for a closed N-node network system (with no

inputs and outputs) are Hmax ¼ Wmax ¼ �lnð1=N2Þ ¼
lnðN2Þ and Xmax ¼ lnðNÞ. There is no mathematical max-

imum for capacity, ascendency, and reserve because it is

directly proportional to any inherent limit in total system

throughput, TST.

5 For those unfamiliar, HðY j ZÞ is read as ‘‘the entropy of Y given

that Z is known.’’ The symbol j is interpreted as ‘‘such that’’ or ‘‘given

that’’ the following condition is already known.

6 Indeterminacy of Eq. 7 is mathematically equivalent to joint

entropy of Eq. 4.
7 X, or mutual constraint, is mathematically equal to the terms mutual

information and average mutual information (Shannon and Weaver

1962) that are used in the field of information theory.
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Open Network Model Mathematics

To include inputs and outputs to and from the network,

respectively, the equations are modified as in Equa-

tions 13–18 to represent open networks (e.g., there are

flows across the boundary that is defined by the flows

among the nodes themselves) (Hirata and Ulanowicz 1984;

Ulanowicz 2002):

O ¼�
X
j

Tinput;j

T::
ln

Tinput;j

T:j

� �
�
X
i

Ti;export

T::
ln

Ti;export

Ti:

� �

�
X
i

Ti;sink

T::
ln

Ti;sink

Ti:

� �

ð13Þ

Hopen ¼ H þ 2O ð14Þ

Xopen ¼ X þ O ð15Þ

Wopen ¼ Wþ O ð16Þ

Copen ¼ HopenTSTopen ¼ XopenTSTopen þWopenTSTopen

¼ Aopen þ Uopen

ð17Þ

where

TSTopen ¼ T::;open ¼
X
i;j

ðTi;j þ Ti;export þ Ti;sinkÞ

¼
X
i;j

ðTi;j þ Tinput;jÞ:
ð18Þ

Information Theory for Assessing Economic Flows

Much of the previous work by Ulanowicz (2009) originates

from the ecological perspective that any given ecosystem

must have a balance between efficiency and redundancy. In

relatively more recent work, Ulanowicz et al. use different

terminology to describe the terms in Eqs. 11 and 12 in the

context of balanced economic systems (Goerner et al.

2009; Huang and Ulanowicz 2014). Goerner et al. (2009)

use ‘‘systemic efficiency,’’ SE, to describe ascendency, A,

and ‘‘resilience capacity,’’ RC, to describe potential

reserves, U. Also, Huang and Ulanowicz (2014), which

investigates economic flows of Beijing, use the term ‘‘re-

silience’’ to label the term U ¼ WT::.

Many times Ulanowicz and co-authors describe that

there is a ‘‘window of vitality/viability’’ representing the

range of balance within which ecosystems seem to struc-

ture themselves between too much efficiency versus resi-

lience (Zorach and Ulanowicz 2003; Ulanowicz 2009;

Goerner et al. 2009; Ulanowicz et al. 2009). If a system

becomes too efficient, it is too brittle and unable to respond

to change. If a system becomes too resilient or redundant, it

has too much overhead in which to effectively grow and

increase overall capacity for change.

Thus, it is natural to ask the question of balance for

economies as ecosystems of monetary flows among firms

or industries. Geoerner et al. (2009) discuss the information

theory metrics in this economic context. They propose that

total system ‘‘sustainability’’ (= capacity in Eq. 12) as the

addition of ‘‘systemic efficiency’’ and ‘‘resilience capac-

ity.’’ Thus, they discuss both a size and structural compo-

nent to assessing system sustainability, resilience (or

overhead), and efficiency. The size component is total

system throughput (Eq. 10). They use conditional entropy

as the metric that characterizes the amount of structural

(e.g., independent of size and normalized by TST) redun-

dancy or overhead of a network. They use mutual con-

straint as the metric to characterize the amount of structural

efficiency of a network.

Following Ulanowicz, my approach in this paper inter-

prets the fraction of individual flow relative to the total

system throughput as a probability. For example, consid-

ering a network with total flow (total system throughput,

TST) of ten composed of ten individual flows of 1, each is

interpreted as having a probability of 0.1. From the view-

point of economic I–O tables, the probability P(y) of an

event y can be interpreted as the probability that a given

economic sector will make a purchase form or sell its

products to the other sectors. In addition, the joint proba-

bility of sector z making a purchase from sector y can be

represented as P(y, z), or using Ulanowicz’s nomenclature

the probability is
Tij
T::

for a sector j purchasing from sector i.

However, I have determined that there needs to be a

more nuanced interpretation of how to use the information

theory metrics to describe the balance between the effi-

ciency and redundancy of network flows. The trade-off

between efficiency and redundancy is not best-character-

ized by assuming mutual constraint, X, represents effi-

ciency and conditional entropy, W, represents resilience or

redundancy. In addition, I describe another structural

dimension with a trade-off between the hierarchy and

equality of network nodes. These concepts and mathemat-

ics are now discussed in ‘‘Interpretive Quantifications of

Distribution of I-O Table Entries’’ section.

Interpretive Quantifications of Distribution of I–O

Table Entries

In this section, I describe what I term ‘‘interpretive met-

rics’’ based upon interpreting the phase spaced described

by conditional entropy along one axis and mutual con-

straint as the second axis. These two metrics provide

additional insight into the distribution of entries in the I–O
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tables. They are interpretations of how to view the bal-

ance between mutual constraint and conditional entropy

in the context of concepts such equality and hierarchy

(‘‘Equality and Hierarchy’’ section), and redundancy and

efficiency (‘‘Redundancy and Efficiency’’ section). The

additional dimension of measurement beyond Ulanow-

icz’s previous works is along a hierarchy–equality axis.

The Phase Space for Information Theory Metrics

For a given closed N�node network topology with each flow

(or edge) of the same value (e.g., all flows are equal as rep-

resented by a uniform input–output matrix), then the network

is at maximum conditional entropy (Wmax ¼ lnðN2Þ), max-

imum indeterminacy (Hmax ¼ lnðN2Þ), and zero mutual

constraint (Xmin ¼ 0). This is the upper-left extreme point of

Fig. 2.

For a network topology where each node is taking flow

from one other node and giving that entire flow to another

node, all flows of equal magnitude (e.g., a diagonal matrix

is a mathematical example), then the network is at maxi-

mum mutual constraint (Xmax ¼ lnðNÞ), zero conditional

entropy (Wmin ¼ 0), and half of maximum indeterminacy

(H ¼ 1
2
Hmax ¼ lnðNÞ). This is the lower right extreme

point of Fig. 2.

For an I–O matrix with only a single flow (e.g., zeros in

all flows except one), there is no longer a connected net-

work, and both mutual constraint and conditional entropy

are zero. This condition is the lower left point of Fig. 2.

Thus, for any set of flows within a network, the information

theory calculations reside in the shaded triangle phase

space of Fig. 2.

For open network models, the endpoints of the upper-

right phase space boundary are not as simple to determine

as in the case of the closed-model. The boundary is a

function of the size of the network. For any given N, the

boundary is defined by network flows that maximize W (for

a uniform set of intermediate flows and equal inputs or

outputs per node) or maximize X (e.g., for a diagonal

matrix of equal intermediate flows with equal inputs or

outputs per node). This is the same as maximizing the

distance of the upper-right boundary from the point

ðXmin;WminÞ ¼ ð0; 0Þ. In this paper, I solved empirically for

the equation for the upper boundary line for each size of

network that I analyze (37-, 12-, 7-, and 2-sector I–O

models). The equation is W ¼ Wopenboundaryintercept � 2X

where Wopenboundaryintercept is approximately 7.884, 5.934,

5.046, and 3.138 for the 37-, 12-, 7-, and 2-sector open-

models, respectively.

Equality and Hierarchy

Close inspection of the patterns in network flows allows

one to interpret a meaning for the upper boundary line

of the phase space in Fig. 2. At both the points of Wmax

and Xmax, as well as all points directly in between, each

node of the network will meet two conditions with

regard to throughput. First, the sum of input flows equals

the sum of output flows. Second, all nodes have the

same total input (and output) flow. Thus, each and every

node has the same total throughput flowing through it. In

this sense, each node is equal in total node flow

throughput.

The interpretation of the upper-right phase space

boundary line makes sense when it is considered a line of

maximum indeterminacy (and conditional entropy) for a

given mutual constraint. Thus, given just enough con-

straints to dictate a quantification of mutual constraint,

maximum indeterminacy is achieved by distributing flows

equally through all nodes as much as possible. At the point

ð0;WmaxÞ, there are equal constraints on each flow, and

each node has the same input from and output to each other

node. At the point ðXmax; 0Þ , the constraint is that each

node can have input flow from only one other node and

provide output flow to only one other node. In between

these two points are an infinite number configurations of

network flows that meet the two conditions described in the

previous paragraph.

Based upon this reasoning, I define an equation of

equality as the proportion of the distance from the phase

space point ðXmin;WminÞ ¼ ð0; 0Þ (with equality of zero) to

the maximum boundary line with equality equal to one.

Lines of constant equality from zero to one have the same

slope (a ¼ �2) as the upper boundary line (see Fig. 2).

Equation 19 provides a quantification of network node

equality at a given a point ðXi;WiÞ in the phase space. For

Fig. 2 For any set of flows in a closed network with N nodes, the

calculated information theory metrics reside in the lower left triangle

phase space of a plot of conditional entropy versus mutual constraint
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open-models, Wmax and Xmax are replaced by

Wopenboundaryintercept, described previously, and

Xopenboundaryintercept ¼ Wopenboundaryintercept=2:

Equality ¼ XIntercept

Xmax

¼ WIntercept

Wmax

¼ Wi þ 2Xi

lnðN2Þ ð19Þ

I define hierarchy as the opposite of equality, or one

minus equality (see Eq. 20). In these definitions, hierarchy

and equality are directly opposed. When one increases, the

other must decrease. See Fig. 3 for a graphical represen-

tation of equality and hierarchy within the phase space.

Hierarchy ¼1 � XIntercept

Xmax

¼1 �WIntercept

Wmax

¼1 � Equality

¼1 �Wi þ 2Xi

lnðN2Þ

ð20Þ

Redundancy and Efficiency

Here I define movement within the information theory

phase space that characterizes the distribution of flows,

rather than sum of all flows through each node. Constrained

to any constant level of equality (e.g., line of slope -2 in

Figs. 2, 3), changes in flows within the network will

increase the redundancy of the network flows if they

increase conditional entropy. Conversely, changes in net-

work flows will increase the efficiency of the network flows

if they increase mutual constraint. If not constrained to a

given level of equality, then lines of constant efficiency

(and redundancy) emanate from the origin of the phase

space (see Fig. 3).

For a metric of efficiency, I use the ‘‘degree of order’’

(a) metric of Ulanowicz (see Eq. 21) (Ulanowicz 2009).

Efficiency ¼ a ¼ X

X þW
¼ A

Aþ U
ð21Þ

I define network flow redundancy as the opposite of flow

efficiency, or one minus efficiency (see Eq. 22). In these

definitions, redundancy and efficiency are directly opposed.

When one increases, the other must decrease. Both effi-

ciency and redundancy have values between and including

zero and one.

Redundancy ¼1 � Efficiency

¼1 � X

X þW

¼ W
X þW

ð22Þ

Summary of Information Theory Metrics

and Interpretation

Here I present Table 1 as a summary of the information

theory metrics presented in ‘‘Information Theory toQuantify

Structure of Network Flows’’ and ‘‘Interpretive Quantifica-

tions of Distribution of I-O Table Entries’’ sections.

Results

In this section, I describe the results in several forms in

order to provide a comprehensive viewpoint of the trends.

First, ‘‘Information Theory Trends for the U.S. Economy’’

section describes the overall trends of the information

theory metrics for the 37-sector harmonization of the U.S.

Use input–output tables. Next, ‘‘Information Theory

Trends as a function of Network Size’’ section discusses

how the trends in the information theory metrics change

with increasingly simplified representations of the econ-

omy as represented by decreasing the number of sectors

used in more highly aggregated I–O tables. ‘‘3.4’’ section

describes the results within the context of the allowable

phase space described in Figs. 2 and 3. Finally, ‘‘Scaling

Laws of U.S. Use Tables: Logarithmic Plots’’ section dis-

cusses the scaling laws of the 37-sector harmonized I–O

tables, via logarithmic plots, and which economic sectors

have the highest flows in the economy.

Fig. 3 Any movement in the closed network phase space along a line

of constant node flow equality (and hierarchy) toward Wmax increases

system flow redundancy while movement toward Xmax increases

system flow efficiency. Further, any movement in the phase space

along a line of constant network flow efficiency (or redundancy)

toward the upper-right boundary increases node flow equality while

movement toward the origin of the lower left corner increases node

flow hierarchy
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Information Theory Trends for the U.S. Economy

In this section, I report the time series of the information

theory calculations and relate them to energy metrics for

the U.S. economy. In general, the structure of the U.S.

economy did in fact increase its structural reserves (con-

ditional entropy, W) and redundancy as it increased its

gross power consumption and net power ratio (NPReconomic)

until the end of the 1990s. Then, as NPReconomic decreased,

and gross power consumption stagnated, the economy

expended (decreased) its reserves in order to increase its

flow efficiency with increased mutual constraint and

decreased conditional entropy.

Tables 2 and 3 summarize the trends, while Figs. 4 and 5

plot the information theory (‘‘Information Theory to

Quantify Structure of Network Flows’’ section) and inter-

pretive metrics (‘‘Interpretive Quantifications of

Distribution of I-O Table Entries’’ section), respectively,

versus time, gross power consumption, and NPReconomic of

the U.S. economy.

I perform two time series calculations, and the fig-

ures and tables display results for both. The first time series

calculation considers only the intermediate I–O transac-

tions without any defined inputs or outputs (‘‘closed:

intermediate only’’). The second time series calculation

(‘‘open: including value added and GDP’’) includes the

sectoral value added components plus gross imports of the

I–O tables as network inputs along with the sectoral GDP

minus imports of the I–O tables as network outputs. This

open-model mimics that of Costanza and Herendeen in

examining the embodied energy of the U.S. economic

sectors as one expands the boundary to include more

aspects of the I–O tables (Costanza 1980; Costanza and

Herendeen 1984).

Table 1 Summary of information theory metrics discussed in this paper: symbols, equations, terms, and descriptions of what the equations

represent

Symbol Equation(s) Term(s) Description

h(y) (2) (Shannon) information content (MacKay 2003) An outcome y with lower probability has higher information

content

H(Y) (3) Entropy, uncertainty (MacKay 2003) The entropy of an ensemble is the average information content of

an outcome of that ensemble

H(Y, Z) (4) Joint entropy (MacKay 2003) The entropy of two ensembles, Y and Z, is the average information

content of two outcomes, y and z, occurring simultaneously

H (7) and

(14)

Indeterminacy (Ulanowicz et al. 2009) The entropy of two ensembles, Y and Z, is the average information

content of two outcomes, y and z, occurring simultaneously

HðY j ZÞ (5) Conditional entropy (MacKay 2003) The average entropy (or uncertainty) about outcome y that remains

after outcome z is known

W (9) and

(16)

Conditional entropy (Ulanowicz et al. 2009) The addition of average entropy about outcome y that remains after

outcome z is known to average entropy about outcome z that

remains after outcome y is known

I(Y; Z) (6) Mutual information (MacKay 2003) The average reduction in uncertainty (or entropy) about y that

results from learning the value of z, or vice versa

X (8) and

(15)

Mutual constraint (Ulanowicz et al. 2009) The average reduction in uncertainty (or entropy) about y that

results from learning the value of z, or vice versa

– (19) Equality (Describes nodes) Increases as the total system throughput is

distributed more evenly through each node

– (20) Hierarchy (Describes nodes) Increases as more of the total system throughput

of a network flows through fewer nodes

– (21) Efficiency (Describes flows) Increases as the flows in a network become more

concentrated to a small subset

– (22) Redundancy (Describes flows) Increases as the flows in a network become more

evenly dispersed

C (12) and

(17)

Capacity (Ulanowicz et al. 2009), sustainability

(Goerner et al. 2009)

Indeterminacy, H, multiplied by total system throughput

A (12) and

(17)

Ascendency (Ulanowicz et al. 2009), systemic

efficiency (Goerner et al. 2009)

Mutual constraint, X, multiplied by total system throughput

U (12) and

(17)

Overhead, reserve or potential reserve

(Ulanowicz et al. 2009), resilience capacity

(Goerner et al. 2009)

Conditional entropy, W, multiplied by total system throughput
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Each table summarizes trends for the information theory

metrics by three temporal phases (discussed in the fol-

lowing section) that emerge from the results. Figure 6 plots

the numbers from Tables 2 and 3 to visualize how the rates

of change in the metrics fall into the three phases of

structural change (for the 37-sector model). One can see a

general counter clockwise trend along the progression of

the phases in Fig. 6.

Closed Network Results (Intermediate Transactions Only)

There are interesting relationships between U.S. domestic

economy information theory metrics as compared to both

gross power consumption and the economy-wide measure

of net power ratio. In interpreting the results of Table 2,

recall from ‘‘Information Theory to Quantify Structure of

Network Flows’’ section that the maximum values for a 37-

node network are Hmax ¼ Wmax ¼ lnðN2Þ ¼ lnð372Þ ¼
7:22 and Xmax ¼ lnð37Þ ¼ 3:61.

There are three major phases that can describe the

economic structure of the U.S. economy as they relate to

net and gross power consumption (see Fig. 6). The three

phases are defined by unique combinations of directional

change for the interpretive information theory metrics.

During Phases 1, 2, and 3, the change in node flow hier-

archy was -, ?, and ?, respectively (and opposite for

equality), while the change in redundancy was ?, ?, and

-, respectively (and opposite for efficiency). The same

pattern of 3 distinct sign combinations almost emerges

when considering mutual constraint (-, -, ?) and condi-

tional entropy (?, ?, -) where the inconsistent change is a

low positive change for conditional entropy for Phase 2

(instead of a negative change).

In Phase 1 (1947–1967) from the end of World War II

until the end of the 1960s, both gross power consumption

and the economic net power ratio (NPReconomic) of the

economy were growing at relatively high rates of 4.1 and

2.8 %/year, respectively (e.g., the intermediate cost share

of energy and food was declining relatively rapidly).

Indeterminacy (H) and conditional entropy (W) were

increasing at relatively high rates, while mutual constraint

(X) was declining at what can be viewed as a moderate rate

compared to subsequent years. At the same time, node

Table 2 Information theory metrics of the 37-sector harmonized U.S.

Phase Years Indeterminacy (H) (%/year) Mutual constraint (X) (%/year) Conditional entropy (W) (%/year)

Closed: intermediate transactions only

1 1947–1967 ?0.38 -0.32 ?0.57

2 1967–2002 -0.07 -0.79 ?0.09

3 2002–2012 -0.35 ?1.2 -0.60

Open: with inputs (value added ? imports) and outputs (GDP-imports)

1 1947–1967 ?0.08 -0.36 ?0.20

2 1967–2002 -0.31 -0.86 -0.18

3 2002–2012 -0.28 ?0.61 -0.44

Use I–O tables (H, indeterminacy; X, mutual constraint; W, conditional entropy). The rates listed are linear rates of change over the time period

indicated (e.g., ðH1967 � H1947Þ=20 years)

Table 3 Interpretive

information theory metrics of

the 37-sector harmonized U.S.

Phase Years Gross power

(%/year)

Net power ratio

(%/year)

Hierarchy

(%/year)

Equality

(%/year)

Redundancy

(%/year)

Efficiency

(%/year)

Closed: intermediate transactions only

1 1947–1967 ?4.1 ?2.8 -1.8 ?0.26 ?0.17 -0.65

2 1967–2002 ?1.9 ?3.4 ?2.1 -0.18 ?0.17 -0.74

3 2002–2012 -0.3 -1.8 ?1.0 -0.16 -0.26 ?1.6

Open: with inputs (value added ? imports) and outputs (GDP - imports)

1 1947–1967 ?4.1 ?2.5 -0.01 0.00 ?0.12 -0.44

2 1967–2002 ?1.9 ?3.2 ?0.68 -0.40 ?0.15 -0.61

3 2002–2012 -0.3 -1.0 ?0.19 -0.16 -0.17 ?0.92

Use I–O tables (hierarchy, equality, redundancy, and efficiency). The rates listed are linear rates of change

over the time period indicated (e.g., ðx1967 � x1947Þ=20 years)
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hierarchy was declining (equality was increasing) at a

relatively high rate, while flow efficiency was decreasing

(redundancy was increasing) (see Table 3).

Phase 2 (1967–2002) spans the time from the end of the

1960s through the end of the second Millennium. It marks a

separate phase of U.S. economic structure in that the rate of

change in one indicator has changed signs. Hierarchy is now

increasing (and equality is decreasing), the opposite of Phase

1. Indeterminacy and conditional entropy have changed from

high to low rates of increase, and mutual constraint has

started declining more rapidly than before. Efficiency and

redundancy are changing similarly as in Phase 1.

From an energy perspective and compared to Phase 1,

gross power consumption and net power ratio continued to

increase in Phase 2 but at half the rate for gross power and

a slightly higher rate for net power ratio.

Phase 3 (2002–2012) represents the (short) trend since

the beginning of the twenty-first century. This time period

is characterized by the change from an increasing to a

decreasing trend for both gross power consumption

(-0.3 %/year) and net power ratio (-1.8 %/year). Inter-

estingly, this change in direction of the rates of change in

the power metrics coincides with significant changes in

trends for the information theory metrics. Indeterminacy

(a)

(b) (c)

Fig. 4 A plot of the harmonized 37-sector U.S. Use I–O matrix

information theory metrics versus both gross power consumption and

an economy-wide metric of net energy shows three distinct phases.

Solid lines show ‘‘open’’ boundary results that include per-sector

value added plus imports as inputs into each sector and per-sector

GDP minus imports as outputs from each sector. Dashed lines show

‘‘closed’’ boundary results that consider the intermediate I–O

transactions only
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(a)

(b) (c)

Fig. 5 A plot of the harmonized 37-sector U.S. Use I–O matrix

interpretive information theory metrics versus both gross power

consumption and an economy-wide metric of net energy shows three

distinct phases. Solid lines show ‘‘open’’ boundary results that include

per-sector value added plus imports as inputs into each sector and per-

sector GDP minus imports as outputs from each sector. Dashed lines

show ‘‘closed’’ boundary results that consider the intermediate I–O

transactions only

(a) (b)

Fig. 6 The three phases are illustrated by plotting the rates of change

in a conditional entropy versus mutual constraint and b redundancy

versus equality. The 37-sector rates of change for both figures progress

in a counterclockwise manner between quadrants, and it is this

positioning of the phases in different quadrants that indicates the

phases. All Phase 1 points are labeled as ‘‘[37,I]’’ meaning the Phase

1 rates of change for the 37-sector aggregation
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begins to decline as rapidly as it increased in Phase 1, and

the rates of change in mutual constraint and conditional

entropy change sign. In addition, the change in redundancy

is now negative (change in efficiency is positive). Hierar-

chy and equality have rates of change similar to those in

Phase 2.

Open Network Results (Including Value Added and GDP

Per Sector)

The trends of the rates of change in the open information

theory metrics generally follow those of the closed network

model (see Tables 2, 3; Figs. 4, 5, 6). The net power ratio

now includes expenditures for value added and gross

imports and thus is a different value but with similar rates

of change over time as in the closed-model. The trends in

hierarchy, equality, redundancy, and efficiency are all very

similar between the open- and closed-models, but with

some differences.

One difference concerns conditional and indeterminacy.

Indeterminacy generally decreases over time for the open-

model from 1958, but it does not clearly follow a

decreasing trend for the closed-model until 1992. The

trends of indeterminacy per phase are similar between the

open- and closed-model except for a faster rate of decline

in Phase 2 for the open-model. This difference for Phase 2

is driven by conditional entropy that declines in Phase 2 for

the open-model, but slightly increases for the closed-

model.

The other difference of note is that open-model hierar-

chy and equality are approximately the same at the end of

Phase 1 as at the beginning, whereas there is a clear

increasing trend for equality (decreasing for hierarchy) in

the closed-model.

Information Theory Trends Scaled by Total System

Throughput

This section summarizes the results for the information

theory metrics described by the previous section after each

is multiplied by the total system throughput (TST = T::).

The reason to consider this perspective is to understand

whether changes in network structure occur simultaneously

with absolute growth. Even if the structure of network

flows themselves changes, perhaps they do this to preserve,

or at least occur simultaneously with, absolute growth.

Figure 7 shows ascendency (A), potential reserve (U,

also referred to as overhead), and capacity (C) over time

for the 37-sector harmonized I–O tables. Table 4 indicates

the rates of change in the metrics, per temporal phase, as

well as the rate of change in GDP.

Even as the economy’s structure changed per the three

phases discussed, there is only one instance in which all

three scaled metrics do not increase from one benchmark

year to the next: from 1967 to 1972 (see Fig. 7 and data of

Supplemental Information). Thus, both the scaled and

unscaled information theory metrics indicate 1967 and/or

1972 as a critical transition point, and I believe using 1967 as

a breakpoint shows more distinct mathematical differences.

(a) (b)

Fig. 7 A plot of information theory metrics as multiplied by total system throughput for the 37-sector harmonized I–O tables: a Units of constant

$2009, b indexed to 1947. The dashed lines with circles represent the closed-model results, and solid lines represent the open-model results
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Ascendency slightly decreases (for both open- and closed-

models) from 1958 to 1963 as well as from 1997 to 2002. For

the closed-model, only ascendency decreases from 1982 to

1987 and capacity slightly decreases from 1958 to 1963.

There are a few trends of note for these metrics that

provide additional insight over those not scaled by TST in

‘‘Information Theory Trends for the U.S. Economy’’ sec-

tion. First, GDP follows ascendency in magnitude (Fig. 7a).

This is not surprising as ascendency captures the known

structure of a network (e.g., the economy), and GDP is

usually roughly equivalent to the sum of all intermediate

transactions.

Second, GDP is nearly equal to the closed ascendency in

1947, but by 1997 it is closer to open-model ascendency.

There are some fluctuations in between, but the overall

trends seem to be for open-model ascendency to now be

nearly equivalent to GDP while closed-model ascendency

is almost half of GDP.

Third, GDP outpaced all information theory metrics

through 1972 (roughly Phase 1, see Table 4; Fig. 7b) before

increasing at a similar high rate as capacity and reserve

during Phase 2 and similar lower rate in Phase 3. Ascen-

dency increased more slowly than GDP in Phase 2, but

much more quickly in Phase 3. The 1977 and 1982

benchmark years produce somewhat outlying rates of

increase for all three metrics, and a full explanation

requires further research.

Finally, the reserve metric changed at a higher rate

than both capacity and ascendency, and it most closely

matches the rate of change in GDP (see Fig. 7b). If we

consider this metric more specifically as ‘‘potential

reserve’’ in that all of it is not useful, then perhaps it

indicates the U.S. economy still has some significant

structural reserve of which to make use, even after the

structural changes since 2002.

Information Theory Trends as a function

of Network Size

To explore the ramifications of the size of the network on

the information theory metrics, I show results for addi-

tional harmonizations of the U.S. Use tables that are

aggregated into fewer total sectors. The purpose is to

understand the impacts of increasingly simplified repre-

sentations of the economy. This comparison is valuable

because economists often simplify models of economies

in order to explore certain trends and hypotheses. Thus,

one can ask whether simplified models of economies,

defined here as having fewer sectors, might miss or dif-

ferently describe important systemic characteristics. The

detail of the model (or data) might influence the inter-

pretation of system metrics.

As one increases the size of the network, one reaches

diminishing returns on the maximum values attainable for

the information theory metrics. Since maximum indetermi-

nacy (for the closed-model) Hmax ¼ �lnð1=N2Þ ¼ lnðN2Þ,
as N becomes large, Hmax increases more slowly. For

example, in moving from a 2- to 3-node representation, Hmax

increases by 0.8, but Hmax increases by only 0.05 when

moving from a 36- to 37-node representation.

Figures 6, 8, and 9 compare the information theory

metrics for the 37-, 12-, and 7-sector models (see Supple-

mental Figures S1–S2 for the two sector plots). The open-

model 12- and 7-sector plots generally follow the same

trends as the 37-sector open harmonization, providing

confidence that the aggregations capture the structure of the

I–O tables relatively consistently over time. However, the

12- and 7-sector closed-model harmonizations show some

distinctly different trends from the 37-sector model.

Figure 8c shows perhaps the most powerful link

between net energy and economic structure. Mutual

Table 4 Information theory metrics, multiplied by TST, of the 37-sector harmonized U.S.

Phase Years GDP (%/year) Capacity (C) (%/year) Ascendency (A) (%/year) Potential reserve (U) (%/year)

Closed: intermediate transactions only

1 1947–1967 ?6.2 ?3.7 ?2.6 ?4.0

2 1967–2002 ?5.6 ?6.0 ?3.7 ?6.5

3 2002–2012 ?1.9 ?2.2 ?4.2 ?1.9

Open: with inputs (value added ? imports) and outputs (GDP-imports)

1 1947–1967 ?6.2 ?3.6 ?2.8 ?3.8

2 1967–2002 ?5.6 ?6.6 ?4.6 ?7.0

3 2002–2012 ?1.9 ?2.4 ?3.5 ?2.2

Use I–O tables (C, capacity; A, ascendency; U, (potential) reserve). The rates listed are linear rates of change over the time period indicated (e.g.,

ðx1967 � x1947Þ=20 years)
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constraint seems to be almost a linear function (with neg-

ative slope) of NPReconomic for all aggregation levels. There

was a period of stagnation from 1967 to 1982 when

NPReconomic did not change much, and a clear increase after

2002 when NPReconomic had reached its maximum.

Tables 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14 show corre-

lations between the various representations of the U.S. Use

tables. If pairs of time series for each harmonized repre-

sentation of the U.S. Use tables have high correlation

(either positive or negative), then they similarly charac-

terize changes in the economy. I discuss these tables in

more detail in the following subsections.

Open-Model Results (Including Value Added and GDP Per

Sector)

For the open-model results, one of the first takeaways is

that the correlations are generally high for the 37-, 12-,

(a) (b)

(b) (d)

Fig. 8 A plot of the a mutual constraint and b conditional entropy

versus time, as well as both versus net power ratio, c, d, respectively,

for the 37-, 12-, and 7-sector representations of the U.S. Use I–O

tables. The dashed lines with circles represent the closed-model

results, and solid lines represent the open-model results
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and 7-sector aggregations. The 37-, 12-, and 7-sector

aggregations are all highly positively correlated

(r[ 0:75) for all three information theory metrics

(Tables 6, 8, 10) as well as the interpretive metrics

(Tables 12, 14). The main exception is poor correlation

for the 7-sector conditional entropy.

Many 2-sector Use table aggregations also show high

correlation (jrj[ 0:75) to the 37-sector model (see top row

of correlations). All are highly correlated for mutual con-

straint. The exceptions for indeterminacy are the ‘‘Health’’

and ‘‘Banking’’ 2-sector models. The only 2-sector aggre-

gations with high correlation for conditional entropy are

‘‘Manufacturing and Construction’’ and ‘‘Government.’’

All of the interpretive metrics show high correlation

jrj[ 0:9 for the 2-sector Use table aggregations except for

calculations of hierarchy and equality for the ‘‘Health’’ and

‘‘Banking’’ 2-sector models.

Closed-Model Results (Intermediate Transactions Only)

In contrast to open-model correlations, the reduced sector

closed-model aggregations generally have less correlation

to the 37-sector representation. The 12- and 7-sector

aggregations are highly positively correlated (jrj[ 0:75)

with the 37-sector model for mutual constraint and

conditional entropy, but not for indeterminacy. This

result is interesting because indeterminacy is equal to

mutual constraint plus conditional entropy—correlation

of the parts does not equal correlation for the sum of the

parts. Also, no 2-sector closed-model aggregations have

high correlation to the 37-sector harmonization for

indeterminacy (Table 5). These closed-model results

indicate that indeterminacy alone might miss some sig-

nificant structure of the economy as represented by the

I–O tables.

(a) (b)

Fig. 9 A plot of calculations for the 37-, 12-, and 7-sector

representations of the U.S. Use I–O tables for a efficiency (37-,

12-, and 7-sector results run from top to bottom) and b equality over

time. The dashed lines with circles represent the closed-model results,

and solid lines represent the open-model results

Table 5 Table showing correlations for 37-, 12-, 7-, and each 2-sector breakdown for indeterminacy for the closed-model without value added as

inputs and GDP as outputs

37 12 7 2

Energy and food Health Govt. Elec. and info. Banking Mfg. and const. Business

1 0.46 0.14 -0.15 -0.044 0.19 0.31 -0.18 0.37 0.081

– 1 0.94 -0.76 0.79 -0.2 0.7 0.73 -0.63 0.85

– – 1 -0.83 0.87 -0.21 0.68 0.91 -0.85 0.96

– – – 1 -0.55 -0.099 -0.86 -0.86 0.7 -0.91

– – – – 1 -0.61 0.31 0.76 -0.79 0.75

– – – – – 1 0.27 -0.14 0.23 -0.018

– – – – – – 1 0.65 -0.51 0.72

– – – – – – – 1 -0.95 0.94

– – – – – – – – 1 -0.86

– – – – – – – – – 1
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For mutual constraint (Table 7), two of the 2-sector

aggregations are significantly positively correlated (‘‘En-

ergy and Food’’ and ‘‘Manufacturing and Construction’’),

while two are significantly negatively correlated (‘‘Elec-

tronics and Information’’ and ‘‘Banking’’). Table 2 and

Fig. 4 show that closed-model 37-sector mutual constraint

generally decreased until 2002 (along with increasing

power consumption) before increasing to 2012. The shares

of intermediate transactions for both ‘‘Energy and Food’’

and ‘‘Manufacturing and Construction’’ decreased through

2002, and their 2-sector representations also decreased in

mutual constraint. On the other hand, the 2-sector ‘‘Elec-

tronics and Information’’ aggregation increased mutual

constraint from the 1960s through 2002, and the ‘‘Bank-

ing’’ aggregation increased mutual constraint primarily

from 1947 through 2007 (1982 being somewhat of an

anomaly) before declining to 2012 after the financial crisis

and Great Recession.

Considering conditional entropy for the closed-model

configuration (Table 9), there are no 2-sector aggregations

that are highly correlated (jrj[ 0:75) with the 37-sector

harmonization. However, the signs of the correlation

coefficients are generally opposite that of mutual con-

straint, indicating that (at least since 1958) conditional

entropy and mutual constraint generally moved in oppo-

site directions. Further, Fig. 8d indicates a clear rise in

(closed-model) conditional entropy as NPReconomic

increases, and vice versa for 2002–2012. Thus, another

indicator that cheaper resources (energy and food) trans-

lated to more distributed flows among economic sectors

(and vice versa).

The closed-model correlations for efficiency and

redundancy (the correlations are identical as the metrics are

defined as opposites) are similar in trend to that of mutual

constraint (Table 13; Fig. 9a). The 2-sector aggregations

for ‘‘Energy and food,’’ ‘‘Electronics and Information,’’

Table 6 Table showing correlations for 37-, 12-, 7-, and each 2-sector breakdown for indeterminacy for the open-model with value added as

inputs and GDP as outputs

37 12 7 2

Energy and food Health Govt. Elec. and info. Banking Mfg. and const. Business

1 0.98 0.93 0.9 0.26 0.97 0.9 -0.075 0.97 0.91

– 1 0.97 0.91 0.35 0.96 0.91 0.014 0.96 0.92

– – 1 0.83 0.39 0.91 0.9 0.15 0.88 0.92

– – – 1 0.42 0.93 0.71 -0.12 0.96 0.75

– – – – 1 0.18 0.028 -0.26 0.32 0.076

– – – – – 1 0.89 0.052 0.97 0.92

– – – – – – 1 0.21 0.83 0.91

– – – – – – – 1 -0.13 0.21

– – – – – – – – 1 0.84

– – – – – – – – – 1

Table 7 Table showing correlations for 37-, 12-, 7-, and each 2-sector breakdown for mutual constraint for the closed-model without value

added as inputs and GDP as outputs

37 12 7 2

Energy and food Health Govt. Elec. and info. Banking Mfg. and const. Business

1 0.98 0.86 0.93 0.24 0.34 -0.92 -0.8 0.93 -0.73

– 1 0.9 0.96 0.18 0.28 -0.87 -0.86 0.94 -0.71

– – 1 0.89 0.12 0.17 -0.68 -0.77 0.84 -0.5

– – – 1 0.035 0.2 -0.87 -0.84 0.9 -0.59

– – – – 1 0.82 -0.29 -0.37 0.3 -0.46

– – – – – 1 -0.48 -0.45 0.43 -0.59

– – – – – – 1 0.71 -0.85 0.7

– – – – – – – 1 -0.89 0.74

– – – – – – – – 1 -0.8

– – – – – – – – – 1
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and ‘‘Manufacturing and Construction’’ show high corre-

lation (positive, negative, positive, respectively) to the 37-,

12-, and 7-sector intermediate Use table aggregations.

Also, overall the correlations for any given aggregation

(e.g., along a column) are much more consistent for effi-

ciency and redundancy. This suggests that Ulanowicz’s

metric that I use for efficiency (Eq. 21) is perhaps a more

consistent measure of system balance toward efficiency

than mutual constraint alone.

The closed-model correlations for equality and hierar-

chy are much less consistent (Table 11; Fig. 9b). The 12-

and 7-sector correlations are poor both between each other

and to the 37-sector harmonization. The 7-sector aggre-

gation is negatively correlated with that of the 37-sector.

Thus, it is difficult to interpret any meaning from the

2-sector correlations to the 37-, 12-, and 7-sector versions,

or among themselves. These results pose questions for

future research in terms of understanding the equality of

monetary flows through the sectors when defining both the

number of sectors and which to aggregate.

Scaling Laws of U.S. Use Tables: Phase Space

Here I investigate whether some simple scaling laws might

describe the U.S. Use tables. To test this, I generated many

sample data for a 37�37 matrix-based upon power laws

and exponential distributions (with many randomly chosen

scaling exponents) as well as randomly selecting matrix

entries from a uniform distribution. Each matrix with

sample data represents one marker in Figs. 10 and 11 that

show results with blue dots and red dots representing

randomized power and exponential law-generated matrix

Table 8 Table showing correlations for 37-, 12-, 7-, and each 2-sector breakdown for mutual constraint for the open-model with value added as

inputs and GDP as outputs

37 12 7 2

Energy and food Health Govt. Elec. and info. Banking Mfg. and const. Business

1 0.99 0.99 0.99 0.99 0.99 0.97 0.97 0.99 0.98

– 1 1 0.99 0.99 0.99 0.98 0.97 0.99 0.99

– – 1 1 0.99 0.99 0.99 0.98 0.99 0.99

– – – 1 0.99 0.99 0.98 0.97 0.99 1

– – – – 1 1 0.99 0.99 1 1

– – – – – 1 0.99 0.99 1 1

– – – – – – 1 0.98 0.99 0.99

– – – – – – – 1 0.98 0.99

– – – – – – – – 1 1

– – – – – – – – – 1

Table 9 Table showing correlations for 37-, 12-, 7-, and each 2-sector breakdown for conditional entropy for the closed-model without value

added as inputs and GDP as outputs

37 12 7 2

Energy and food Health Govt. Elec. and info. Banking Mfg. and const. Business

1 0.89 0.79 -0.56 0.56 -0.1 0.65 0.48 -0.3 0.7

– 1 0.98 -0.66 0.82 -0.23 0.61 0.79 -0.69 0.9

– – 1 -0.7 0.86 -0.22 0.57 0.88 -0.8 0.95

– – – 1 -0.38 -0.2 -0.77 -0.8 0.6 -0.84

– – – – 1 -0.62 0.13 0.72 -0.74 0.72

– – – – – 1 0.4 -0.1 0.21 0.012

– – – – – – 1 0.52 -0.35 0.64

– – – – – – – 1 -0.95 0.93

– – – – – – – – 1 -0.83

– – – – – – – – – 1
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entries, respectively. Supplemental Figure S6 shows a

comparison of the phase space the 37-, 12-, and 7-sector

models of the Use tables.

Phase Space for Closed-Model of Use I–O Tables

In Fig. 10, the distribution of intermediate transactions

(closed-model) within the U.S. economy, as represented by

the Use tables, can be approximated by a power law from

1958 to approximately 1982. The first year with I–O

table data (1947) lies outside of the blue-dotted (power

law) region, and the same holds for the last 6 benchmark

years with data (1987 to 2012). This is more clearly seen in

the zoomed view of Fig. 10b. Where the Use table infor-

mation theory calculations reside near the Monte Carlo

simulations of power law-generated entries (1958-1982),

the ith entries of the 37 � 37 matrix are scaled as Ti ¼ i�k

with 0:9\k\1. After 1982, the phase space location of the

intermediate transactions moves away (to the left) from this

power law boundary.

The results from filling each I–O entry with a random

number from a uniform distribution are in a very tight

range (not distinguishable from the other results) where

labeled ‘‘Uniform’’ near the bounding case of a uniform

matrix at maximum conditional entropy and zero mutual

constraint. The I–O table calculations do not appear near

the trends for any of the Monte Carlo I–O matrix entries

generated from exponential distributions.

Phase Space for Open-Model of Use I–O Tables

Unlike calculations for the closed-model for bounding

cases of uniform and diagonal matrices, each does not have

a single bounding value for the open network model. This

is because one must make assumptions about how the

sectoral inputs and outputs are distributed among all

Table 10 Table showing correlations for 37-, 12-, 7-, and each 2-sector breakdown for conditional entropy for the open-model with value added

as inputs and GDP as outputs

37 12 7 2

Energy and food Health Govt. Elec. and info. Banking Mfg. and const. Business

1 0.86 0.67 0.65 -0.51 0.75 0.71 -0.67 0.85 0.34

– 1 0.93 0.4 -0.17 0.56 0.73 -0.34 0.55 0.55

– – 1 0.25 -0.028 0.52 0.69 -0.082 0.38 0.65

– – – 1 -0.39 0.72 0.2 -0.76 0.9 -0.16

– – – – 1 -0.75 -0.61 0.25 -0.55 -0.32

– – – – – 1 0.69 -0.42 0.82 0.45

– – – – – – 1 -0.062 0.45 0.67

– – – – – – – 1 -0.81 0.3

– – – – – – – – 1 0.013

– – – – – – – – – 1

Table 11 Table showing correlations for 37-, 12-, 7-, and each 2-sector breakdown for hierarchy and equality for the closed-model without

value added as inputs and GDP as outputs

37 12 7 2

Energy and food Health Govt. Elec. and info. Banking Mfg. and const. Business

1 0.26 -0.59 0.49 -0.64 0.37 -0.36 -0.77 0.87 -0.6

– 1 0.58 -0.48 0.48 -0.048 0.51 0.29 -0.17 0.46

– – 1 -0.88 0.89 -0.21 0.75 0.94 -0.89 0.96

– – – 1 -0.63 -0.042 -0.9 -0.89 0.76 -0.93

– – – – 1 -0.6 0.45 0.8 -0.83 0.78

– – – – – 1 0.16 -0.16 0.25 -0.045

– – – – – – 1 0.73 -0.63 0.77

– – – – – – – 1 -0.95 0.95

– – – – – – – – 1 -0.89

– – – – – – – – – 1
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sectors (see Fig. 11). For each distribution (e.g., exponen-

tial or power law) used to create Monte Carlo inputs of the

intermediate I–O matrix, I use the same distribution to

estimate the 37 input values that mimic value added in the

I–O framework. For uniform and diagonal cases, each

nonzero intermediate matrix entry is equal and each input

(and output) entry is equal. In keeping with economic I–O

accounting conventions, I then solve for the system outputs

as a function of the input (=value added) and intermediate

matrix values. That is to say, for any given ith row and

column, the sum of all rows for column i plus input i must

equal the sum of all columns for row i plus output i (Miller

and Blair 2009). Thus, for uniform and diagonal distribu-

tions, each input (= each output) value generally does not

equal the value placed in the intermediate matrix.

The results are similar to that of the closed-model in that

for the early years (e.g., 1958 and 1963), the open-model I–

O results reside near the range of some power law

distributions, but not near those for a uniform matrix,

diagonal matrix, or exponential law-driven entries. One can

see after 1967 (the fourth data point) the calculations move

down and to the left in the phase space, whereas in the

closed-model the trend is still up and to the left.

Scaling Laws for Use Tables: Logarithmic Plots

Figure 12 shows six semilogarithmic plots to further explore

the possible scaling laws of the U.S. Use tables. Each of the

subfigures indicates one of three types of results for either the

closed-model (Fig. 12a, c, e) or open-model (Fig. 12b, d, f)

representation of the economy. The y-axis of each subplot of

Fig. 12 is one minus the cumulative fraction of flows, F(t),

considered when summing the fraction of all flows in order

from the smallest to largest entry.

If the trends in Fig. 12 follow a straight line, this implies

power law scaling. If all of the flows are equal (e.g., full

Table 12 Table showing correlations for 37-, 12-, 7-, and each 2-sector breakdown for hierarchy and equality for the open-model with value

added as inputs and GDP as outputs

37 12 7 2

Energy and food Health Govt. Elec. and info. Banking Mfg. and const. Business

1 0.99 0.97 0.95 0.78 0.99 0.95 0.74 0.99 0.98

– 1 0.99 0.96 0.83 0.99 0.95 0.78 0.99 0.98

– – 1 0.93 0.83 0.97 0.95 0.83 0.95 0.98

– – – 1 0.86 0.96 0.85 0.7 0.97 0.91

– – – – 1 0.76 0.67 0.55 0.81 0.73

– – – – – 1 0.95 0.78 0.99 0.98

– – – – – – 1 0.81 0.92 0.95

– – – – – – – 1 0.71 0.81

– – – – – – – – 1 0.95

– – – – – – – – – 1

Table 13 Table showing correlations for 37-, 12-, 7-, and each 2-sector breakdown for efficiency and redundancy for the closed-model without

value added as inputs and GDP as outputs

37 12 7 2

Energy and food Health Govt. Elec. and info. Banking Mfg. and const. Business

1 1 0.99 0.93 0.4 0.34 -0.83 -0.43 0.75 -0.51

– 1 1 0.94 0.38 0.33 -0.83 -0.44 0.75 -0.5

– – 1 0.93 0.37 0.35 -0.85 -0.4 0.73 -0.49

– – – 1 0.41 0.36 -0.79 -0.49 0.8 -0.41

– – – – 1 0.89 -0.62 -0.41 0.37 -0.63

– – – – – 1 -0.61 -0.34 0.31 -0.68

– – – – – – 1 0.16 -0.5 0.61

– – – – – – – 1 -0.72 0.45

– – – – – – – – 1 -0.44

– – – – – – – – – 1
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node flow equality), then this plot will appear as a vertical

line. Thus, for Fig. 12a–b, the closer is the plotted line to a

vertical line (e.g., the steeper the slope), the more equal is

the equality metric. Note that equality is highest for the

closed-model in 1967 and for the open-model in 1958.

In each subsection of this section, I also show a table of

the top ten largest plotted values in order to indicate which

sectors are responsible for the largest economic flows each

year. The largest economic flows in turn indicate larger

mathematical importance in terms of scaling laws and the

information theory calculations.

Table 14 Table showing correlations for 37-, 12-, 7-, and each 2-sector breakdown for efficiency and redundancy for the open-model with value

added as inputs and GDP as outputs

37 12 7 2

Energy and food Health Govt. Elec. and info. Banking Mfg. and const. Business

1 0.99 0.99 0.98 0.96 0.96 0.95 0.92 0.97 0.96

– 1 1 0.99 0.96 0.97 0.97 0.93 0.98 0.98

– – 1 0.99 0.97 0.98 0.97 0.94 0.99 0.98

– – – 1 0.98 0.99 0.97 0.95 0.99 0.99

– – – – 1 0.97 0.93 0.93 0.98 0.95

– – – – – 1 0.98 0.98 0.99 0.99

– – – – – – 1 0.96 0.97 0.99

– – – – – – – 1 0.94 0.97

– – – – – – – – 1 0.98

– – – – – – – – – 1

(a) (b)

Fig. 10 A plot of the 37-sector harmonized U.S. Use I–O matrix

(closed-model: without value added as inputs and GDP as outputs)

information theory trends along with results from generating multiple

37 � 37 matrices where entries are governed by a power law and then

randomly distributed (blue dots), an exponential law and then

randomly distributed (red dots), or a random values generated from

a uniform distribution (black dots highly concentrated where labeled

‘Uniform’). The dashed lines represent upper bounds. a Results at full

extent. b A zoomed view focusing on the areas with the calculations

for 37-sector harmonized U.S. Use tables. The U.S. Use tables from

1958 to 1982 reside near a power law scaling (where the ith entries

are scaled as Ti ¼ i�k; 0:9\k\1) but diverge from power law scaling

after 1982

10 Page 24 of 33 Biophys Econ Resour Qual (2016) 1:10

123



Considering Each Use Table Entry

Figure 12a shows the cumulative faction of all monetary

flows in the 37-sector harmonized Use table when con-

sidering only the intermediate transactions (or closed-

model). Figure 12b shows the same when considering the

open-model where each sectoral input and output flow is

treated as another single entry. By visual inspection, the

closed-model trends of more closely approximate a line

(e.g., power law) for the middle range of years

(1958–1977) than the open-model results. This observation

is confirms that of Figs. 10 and 11.

Table 15 lists the sectors involved in each of the top

ten largest individual intermediate purchases (e.g., indi-

vidual entries in the I–O table). The two harmonized food

sectors have one to three of the top ten purchases each

year, and the energy sectors have a single top ten pur-

chase in each of 1982, 1997, 2007, and 2012. One of the

major trends is that the harmonized sector Food Products,

Stores, and Services (=18) effectively replaces the Farms

(=1) sector as the sector with the largest single sectoral

purchase, and farms drops out of the top ten purchases

after 1987 after having the single largest intermediate

purchase for all prior years. This change in influence from

the Farms (=1) sector happens before the change to

NAICS in 1997. The Petroleum and Coal Products (=23)

sector has one of the top ten purchases in each benchmark

year, rising from rank 7–10 in 1987 and earlier to rank

2–5 from 1992 and later. Each year this largest purchase

by the Petroleum and coal products sector is (unsurpris-

ingly) for primary energy feedstock from the Oil and Gas

Extraction (=3) sector.

Summing Entries by Sales of Each Sector

In Fig. 12c, d, I sum all 37 sales from a given sector to all

37 sectors (e.g., sum all column entries for a given row, i)

and plot the cumulative distribution of these sums. The

trends for 1997–2012 appear generally different from the

other years, and this is possibly due to effects from the

underlying table constructions (i.e., using the ‘‘before

redefinitions’’ Use tables organized by NAICS for 1997

and later versus by SIC for 1992 and earlier).

Table 16 lists the top ten sectors for total intermediate

sales each year. Both harmonized food sectors have top ten

sales from 1947 to 1982 (with Farms (=1) having the

highest sales each of those years). From 1987 to 2012, the

Farms sector is no longer in the top ten, but Food Products,

Stores, and Services (=18) is within the top four. For the

energy sectors, Utilities (=5) had the highest or second

highest sales for 1977, 1982, and 1992, but does not appear

in the top ten otherwise. The Petroleum and Coal Products

(a) (b)

Fig. 11 A conditional entropy versus mutual constraint phase space

plot of the information theory calculations for the harmonized 37-

sector U.S. (Wmax ¼ 7:8842 and Xmax ¼ Wmax

2
). Use I–O tables when

including sectoral value added as inputs and sectoral GDP as outputs

(green circles connected by line). All Monte Carlo calculations use a

37 � 37 matrix. The dashed lines represent upper bounds. a All

calculations. Open black circles uniform matrices with uniform inputs

and outputs at various scaling (sum of inputs and outputs relative to

intermediate transactions); closed black circles diagonal matrices

results run along bottom edge of middle and right plots; red dots

exponential matrices; blue dots power law matrices. b A zoomed

view to the locations of the calculations of the 37-sector harmonized

U.S. Use tables
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(a) (b)

(c) (d)

(e) (f)

Fig. 12 Semilogarithmic plots of 37-sector harmonized IO tables as

the cumulative fraction of flows, either the relative size of each entry

or the relative sum of entries for a sector (y-axis) versus the fraction of

the total sum of that entry or sum (x-axis). The circles along the x-axis

represent the final (and largest) value of the IO table or sum (as this

final value cannot be plotted on logarithmic axis). a Individual

intermediate (only) IO entries, b Individual intermediate IO entries

with inputs and output flows also, c sum of the sales (each row)

considering intermediate IO entries only, d sum of the purchases

(each column) considering intermediate IO entries only, e sum of the

sales (each row) considering intermediate IO entries and output

(GDP-imports) flows, f sum of the purchases (each column)

considering intermediate IO entries and input (value added ?

imports) flows
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(=23) sector had the fourth highest sales for 1987, 2007,

and 2012 and appeared in the top ten in 1958, 1977, and

1982. The other dominant sectors for sales, besides food

and energy, are Construction (=6), Motor Vehicles (=14),

Wholesale and Retail Trade (=26), Business services (=30),

Insurance and banking (=31), Real estate (=32), and Health

(=33).

Summing Entries by Purchases by Each Sector

In Fig. 12e, f, I sum all 37 purchases of a given sector from

all 37 sectors (e.g., sum all row entries for a given column,

i) and plot the cumulative distribution of these sums. The

distributions from 1997 to 2012 are visually different than

before 1997, again indicating perhaps some underlying

influence from the underlying change from SIC to NAICS

in 1997. Consistent with the phase space trends in Figs. 10

and 11 the earlier years show scaling closer to a power law,

but not the latter years. The scaling is not expected to be

the same for the case of sum of sales (Fig. 12c, d) as

compared to the case of the sum of purchases. For any

given sector, the underlying BEA Use table data (NAICS,

before redefinitions) do not have the sum of sales (all

columns) equal to the sum of purchases (all rows).

Table 17 lists the top ten sectors for total intermediate

purchases each year. In all years, the two food sectors are

within the top six highest purchases from 1947 to 1992,

with Farms (=1) the top sector during that time span. From

1997 onward, the Food Products, Stores, and Services

(=18) sector has the third highest purchases and the Farm

sector is no longer in the top ten (possibly due to redefi-

nition of sectors from SIC to NAICS).

The energy sectors within the top ten highest purchases

have an interesting pattern. The Petroleum and Coal

Products (=23) sector, responsible for refining oil into

fuels, had the sixth highest purchases in 1982 and third

Table 15 Table showing the

ten entries with the highest

individual intermediate

economic flows for each year

(largest entry at top of table)

1947 1958 1963 1967 1972 1977 1982 1987 1992 1997 2002 2007 2012

1 1 1 1 1 1 1 1 6 12 14 18 18

9 6 6 6 6 6 5 6 18 14 18 23 18

14 6 9 6 6 9 5 6 18 18 23 24 23

18 9 10 9 9 10 6 14 23 18 26 26 24

18 10 14 10 10 14 6 18 26 23 29 30 26

19 14 18 14 14 18 18 18 30 24 30 31 30

20 18 18 18 18 18 18 23 31 26 31 31 31

20 18 19 18 18 23 23 26 31 30 31 32 32

23 19 23 23 23 26 26 30 33 31 33 33 33

32 23 32 26 31 31 31 31 33 31 33 33 33

The numbers indicate which of the 37 sectors made that individual purchase, or sector i making purchase

Tij where i ¼ j is possible. The food sectors (numbers italicized in table) are 1 (Farms) and 18 (Food

products, Stores, and Services), and the energy sectors (numbers bold in table) are 3 (Oil and gas

extraction), 5 (Utilities), and 23 (Petroleum and coal products)

Table 16 Table showing the

ten sectors with the highest sum

of total intermediate sales for

each year (largest entry at top of

table)

1947 1958 1963 1967 1972 1977 1982 1987 1992 1997 2002 2007 2012

1 1 1 1 1 1 1 6 5 6 6 6 6

6 6 6 6 6 5 5 14 6 12 14 14 14

9 9 9 9 9 6 6 18 14 14 18 18 18

14 10 10 11 11 9 11 23 18 18 24 23 23

18 11 11 14 14 11 18 26 26 24 26 24 24

19 14 14 18 18 14 23 28 28 26 29 26 26

20 18 18 24 26 18 26 30 30 30 30 30 30

26 23 26 26 31 23 28 31 31 31 31 31 31

28 26 30 30 32 26 31 32 32 32 32 32 32

32 32 32 32 33 33 33 33 33 33 33 33 33

The numbers indicate which of the 37 sectors made those total sales (including to its own sector). The food

sectors (numbers italicized in table) are 1 (Farms) and 18 (Food products, Stores, and Services), and the

energy sectors (numbers bold in table) are 3 (Oil and gas extraction), 5 (Utilities), and 23 (Petroleum and

coal products)
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highest in both 2007 and 2012, but is not within the top ten

otherwise. In the time span from 1972 to 1992, Utilities

(=5) had the second or third highest total purchases, but

was not within the top ten in any other years. The Oil and

Gas Extraction sector (=3) had the second highest pur-

chases in 1977 and 1982 and the highest purchases in 2007

and 2012. This trend reflects the two time periods with

significant investment in oil and gas extraction. The year

1982 is unique in having all five of the energy and food

sectors within the top ten for total purchases.

Discussion

Interpretation of Trends

There are three general insights from analyzing the trends

of the information theory metrics. First, for the 37-sector

model three phases are defined by distinct combinations of

directional change for the information theory metrics that

attempt to measure separate modes of change. During

Phases 1, 2, and 3, the change in node flow equality was ?,

-, and -, respectively (and opposite for hierarchy), while

the change in redundancy was ?, ?, and -, respectively

(and opposite for efficiency). Similar phase-defining dif-

ferences in direction of change occurred for combinations

of conditional entropy (?, ?, -) and mutual constraint (-,

-, ?) for the open-model. Thus, the information theory

approach does indeed capture structural changes in the U.S.

economy.

In Phase 1, money flowed more equally both for the

transactions among economic sectors and through each

economic sector. In Phase 2, money began to flow less

equally through each sector (e.g., total throughput). In

Phase 3, money also began flowing in a less distributed

manner among sectors. Thus, Phase 2 was a transition from

a time where all indicators pointed to increasingly uniform

distribution to one in which all indicators pointed to

increasingly less uniform distribution. A research question

remains as to whether this is a natural progression.

Second, increasing gross power input and net power

ratio (NPReconomic) for the U.S. economy coincided with a

trend toward more uniform distribution of monetary flows

(increased conditional entropy and redundancy) and a

decrease in efficient flow distribution (decreased mutual

constraint and efficiency) among economic sectors of the

U.S. economy. Because I model the economy as the same

37 sectors from 1947 to 2012, this increased distribution

along with increased NPReconomic also represents monetary

flows going into new economic sectors that practically did

not exist in the earlier years (e.g., ‘‘aircraft and parts’’

Sector 27 and ‘‘amusements’’ Sector 34).

Third, after 2002, when the NPReconomic began to

decrease and gross power input was approximately con-

stant, the monetary flows of the U.S. economy became

more concentrated as represented by both increases in node

flow hierarchy, mutual constraint, and efficiency. Increased

expenditures by energy and food sectors were the drivers of

the post-2002 economy-wide structural change. Further,

these increased expenditures are driven by the approach of

biophysical constraints that are no longer allowing the

production of ever-cheaper food and energy (King 2015b;

King et al. 2015b). To be clear, energy and food interme-

diate expenditures are still a relatively small share com-

pared to the 1950s, but they are no longer getting cheaper

as in the past. Per Stein’s Law, ‘‘If something cannot go on

forever, it will stop’’ (Samuelson 2013). There are, of

course, numerous studies projecting or searching for the

signs of stagnation in growth or maturing of our society or

economy, which is an expectation from a systems/ecosys-

tems point of view that considers the finite nature of the

Earth as a fundamental constraint (for some studies, see

Table 17 Table showing the

ten sectors with the highest sum

of total intermediate purchases

for each year (largest entry at

top of table)

1947 1958 1963 1967 1972 1977 1982 1987 1992 1997 2002 2007 2012

1 1 1 1 1 1 1 1 1 10 10 3 3

6 9 9 9 5 3 3 5 5 12 14 10 9

9 10 10 10 9 5 5 9 6 18 18 18 18

10 18 11 11 10 9 9 10 10 24 24 23 23

18 24 18 18 18 10 18 18 18 26 26 24 24

19 26 24 24 26 18 23 26 26 28 28 26 26

26 28 26 26 28 26 26 28 28 29 29 28 28

28 30 28 28 30 28 28 30 30 30 30 30 30

30 31 30 30 31 30 30 31 31 31 31 31 31

32 32 32 32 32 32 32 32 32 32 32 32 32

The numbers indicate which of the 37 sectors made the total purchases (including from its own sector). The

food sectors (numbers italicized in table) are 1 (Farms) and 18 (Food products, Stores, and Services), and

the energy sectors (numbers bold in table) are 3 (Oil and gas extraction), 5 (Utilities), and 23 (Petroleum

and coal products)
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Meadows et al. (1972), Brown et al. (2011), Turchin and

Nefedov (2009), Brown et al. (2014), DeLong and Burger

(2015) and Matutinoviı́ et al. (2016)).

Another way of summarizing these conclusions on the

trends is that the U.S. economy transitioned from a rela-

tively low metabolic (small low-consuming population)

and resource-rich state (Phase 1) to one that has high

metabolism (large high-consuming population) and is rel-

atively resource-limited (Phase 3) in that it no longer can

make energy and food cheaper. Since 2012, energy

expenditures have dropped, particularly due to a decline in

oil prices in 2015 (from relatively high prices, [ 90

2016=BBL, from 2012 to 2014). However, we must wait

until the BEA produces the 2017 I–O tables to determine if

the 2002–2012 trend continues.

There are competitive- and resource-based explanations

for the phases I have outlined in the results. Phase 1 (from

1947 to 1967) was a period in which there were no

apparent limits to U.S. economic expansion. The U.S. was

the major market economy as Western Europe and Japan

were rebuilding from World War II. Thus, the U.S. had

little economic competition. Declining food expenditures

(e.g., food = energy) along with cheap and abundant energy

via prolific oil fields (e.g., in Texas) enabled the U.S. to

control energy prices. Texas oil production actually had to

be held back by the Texas Railroad Commission to prevent

price collapse. During this time, the U.S. economy built up

‘structural reserves’ in the sense that money became more

evenly spread throughout the domestic economy. By all

measures in this paper, monetary flows became more

evenly distributed during Phase 1.

The years 1967–2002 (Phase 2) are characterized by

energy and environmental constraints affecting the U.S.

economy for the first time. The Clean Air Act (1970) and

Clean Water Act (1972) were substantially increased in

scope and enforcement. Further, peak U.S. crude oil pro-

duction in 1970 enabled the Arab oil embargo of 1973, and

OPEC’s increase in posted oil price in 1973 (Mitchell

2013), to raise oil prices to such a degree to cause major

reactions by importing countries. The environmental and

energy changes encouraged significant investment in util-

ities (e.g., wastewater treatment) and resource extraction

(see Table 17) along with a focus on consumer energy

efficiency for the first time since industrialization. As

examples, the U.S. created car fuel efficiency standards

known as Corporate Average Fuel Economy (CAFE),

shifted away from using oil for power generation (and

temporarily also away from natural gas and toward coal),

and expanded oil production into Alaska and the Gulf of

Mexico. These and other macroeconomic factors (in-

creasing debt ratios non-financial corporations (Minsky

2016; pp. 48–52); the end of spending for the Vietnam

War; and a transition to government deficits in 1970

(Galbraith 2014; p. 41) resulted in gross power consump-

tion and GDP increasing at a slower rate than before the

1970s. Starting in 1972, the U.S. has no longer been a net

exporter of goods and services (except for 1982), and the

oil and gas sector has been a net importer (in monetary

terms) since 1967 (see Figure S7).

Thus, economic transactions stopped becoming more

evenly distributed as the annual changes in conditional

entropy and indeterminacy were close to zero. Hierarchy

started to increase as fast as it decreased during Phase 1

while redundancy kept increasing. This combination of

metrics indicates that some sectors started attracting an

increased share of total flows through them even while all

flows within the economy became more distributed.

The years 2002–2012 (Phase 3) are unique in that the I–

O tables became more concentrated by all measures (the

exact opposite trends of Phase 1). Mutual constraint,

hierarchy (of node flows), and efficiency (of all flows) all

increased during this time, while conditional entropy

decreased. These changes are largely due to shifts toward

increased energy (‘‘Oil and Gas Extraction’’ Sector 3) and

food sector purchases.

Implications of Modeled Number of Sectors

In each individual time series, I keep the number of sectors

constant over all years. Thus, it is difficult to test the idea

that more complexity is associated with ‘‘differentiation in

structure (more parts to a system and, in particular, more

kinds of parts)’’ (Tainter 2011). What can be said regarding

the trends of modeling the economy with more sectors

(Figs. 8, 9) is that representing the economy with more

sectors mathematically produces higher hierarchy (lower

equality) and efficiency (lower redundancy). That is to say,

by modeling more sectors the same total system throughput

can be distributed across a larger matrix. Thus, as the

number of sectors increases, there are an increasing number

matrix entries with smaller flows, and the mathematics

inevitably produce higher hierarchy and efficiency for the

same economy. The opposite trend happens modeling the

economy with fewer sectors.

The mathematics of mutual constraint and conditional

entropy, on the other hand, are such that the metrics do not

change only by adding more sectors (or nodes) with zeros

flows. For example, consider modeling an ‘‘internet’’ sec-

tor. In 1947, this sector would have no purchases or sales.

Just by adding an internet sector (with zero sales and

purchases) to the 1947 I–O table (e.g., before the internet),

the absolute information theory metrics would not change,

but equality and hierarchy would because they are defined

relative to the size of the network. This is possibly an

inherent advantage of applying information theory metrics

to weighted networks in that zero entries have no impact on
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the absolute metric, or more generally, the larger flows

have more impact on the calculations.

In considering the effect network size on aggregate

metrics, there are possibly some insights to take from the

ecological literature on the study of food webs. Bersier and

Sugihara (1997) studied various food webs of different

sizes and determined that there was a critical food web

size. For analyzing individual species as nodes in the net-

work, food webs smaller than 12 species indicated network

metrics scaled with size, but those larger than 12 generally

showed scale invariance (e.g., metrics did not change with

more species defined in food webs) (Bersier and Sugihara

1997). When they alternatively decided to describe food

webs by trophic types instead of individual species, they

found the break point size was 7. It is a complete coinci-

dence that I represented the I–O tables as 12- and 7-sector

networks as I was unaware of this previous literature before

performing my analysis.

One important difference between the I–O table con-

structions and those of food webs is explained by quoting

(Bersier and Sugihara 1997): ‘‘The upper and lower limits

of the properties, given that there are no loops of the kind

where species A eats species A or species A eats species B

and species B eats species A ...’’ The authors are explaining

how certain values of their network metrics are limited by

the constraints of constructing a viable food web. The I–O

tables generally include the types of flows that they avoid.

That is to say, economic sector A does purchase from and

sell to Sector B and most sectors have considerable ‘‘can-

nibalistic’’ economic flows in which a sector purchases and

sells to itself (e.g., transactions occur on the diagonal of the

I–O matrix).

Thus, it is not clear whether research on directed graphs

that describe ecological food chains is applicable for eco-

nomic I–O tables. It is likely that, due to increased con-

straints on flows in directed networks, directed and

undirected networks reside in distinct locations in the

information theory phase space. For example, Ulanowicz

finds that ecosystems tend to reside near efficiency ¼ a ¼
0:4 , whereas my 37-sector I–O tables are in a range

0:10\a ¼ efficiency\0:21. Analysis of the tables for 40

countries in the World Input–Output Database (1996–

2011) also indicates efficiency ¼ a is between 0.12 and

0.17 (Bond 2015).

Organization and the Energy–Complexity Spiral

One motivation for this work was to relate metrics of the

structure of the U.S. Use tables to energy consumption and

costs. In effect, this partially tests Joseph Tainter’s theory

of the ‘‘energy–complexity’’ spiral, and there are some

insights from the calculations of this paper.

The value of the approach in this paper is that it presents

a rigorous quantitative framework for calculating metrics

that characterize the structure of flows within a network.

Despite the clear methods for calculating the metrics, the

interpretations of any ‘‘complexity’’ calculations are much

less clear partly due to the interpretive nature of a word

such as ‘‘complexity.’’ Most people would generally con-

sider the U.S. economy as more complex today than in

1947—we have more technology and types of jobs (e.g.,

computers and information technology). But this general

conclusion is not necessarily based on a structured

framework.

Tainter suggests that higher complexity comes with an

‘‘increase in organization,’’ where ‘‘organization is defined

as constraints on behavior,’’ and increased ‘‘economic

differentiation.’’ Using these definitions, an increase in

organization can be indicated by increasing mutual con-

straint, hierarchy, and/or efficiency. None of these increase

in Phase 1, a time of practically no economic or resource

constraints. Only hierarchy increases in Phase 2, a time of

increased resource constraints. All three ‘‘organization’’

metrics increase in Phase 3 (for closed and open-models), a

time of increasing resource constraints (e.g., cost of food

and energy) and economic competition (e.g., outsourcing to

Asia) more so than the other phases.

Tainter (2011) also implies that societies with surplus

energy (e.g., net energy), such as industrial society today,

also increase complexity: ‘‘Abundant, inexpensive energy

generates increasing complexity, and simultaneously pro-

duces new kinds of problems such as waste and climate

change.’’ If we take indeterminacy, or joint entropy, to be a

measure of total system uncertainty and assume that higher

uncertainty comes with more complex systems, then we

can conclude that increased gross and net energy accom-

panied increased complexity of the U.S. economy during

Phase 1. The rationale here is that a more complex system

is harder to understand, and thus, its internal flows have

higher indeterminacy, or entropy. The corollary would be

that the U.S. economy is decreased in complexity during

Phase 3 because both open- and closed-model indetermi-

nacy declined, along with gross power and net power ratio.

The view of indeterminacy, or entropy, as a direct metric

for complexity is perhaps the most consistent with Tain-

ter’s notion.

Sharing is another concept of Tainter’s definition of

complexity: that increased inequality is one measure of

increased complexity. The Gini coefficient is often used a

metric for inequality, and my measure of hierarchy is

similar. After 1967 when quantifiable energy and economic

constraints occurred, the hierarchy of the I–O tables in-

creases as monetary flows are more concentrated through

fewer sectors. The magnitude of the rate of change is
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higher for the closed versus open-model for Phases 1 and 3,

but not Phase 2. The higher rate of Phase 2 increase in

hierarchy for the open-model indicates that the input and

output flows became concentrated more quickly than

within the intermediate transactions of the I–O table.

In summary, the calculations in this paper provide evi-

dence that resource (e.g., energy) constraints influence the

structure of the economy in some fundamental way. During

Phase 1, we might say the U.S. became less complex as

resources were abundant, cheap, and money became more

evenly distributed (e.g., equality increased). However, we

might say the economy became more complex if we use

indeterminacy as a metric of complexity. During Phase 3,

the opposite situation occurred, and we might say the

economy became more complex by increasing hierarchy as

organization in response to increased food and energy costs

(e.g., constraints). On the other hand, Phase 3 can be

interpreted as a time of decreasing complexity if indeter-

minacy is used as a metric for complexity. My conclusion

is that complexity as a term is insufficient to characterize

the changing flows in the U.S. I–O tables and likely any

network.

I do not posit that my findings relate to personal social

interaction. For example, some social and psychological

literature investigates hierarchy and egalitarianism within

teams, businesses, and communities. While it is commonly

found that hierarchies emerge naturally to enable higher

group productivity (e.g., higher sales, less time per task),

these are usually investigations about individual people

working together on common tasks (Ronay et al. 2012;

Van Berkel et al. 2015). Interestingly, Van Berkel et al.

(2015) suggest that more mental effort is required to better

exhibit egalitarian values. Whether this increased effort

translates to power input into the economy is a good

question for future research. The results of this paper do

show that higher rates of increase in U.S. power con-

sumption were associated with increasing ‘‘egalitarianism’’

in terms of distribution of money in the I–O tables.

Concluding Remarks

In this paper, I sought evidence as to whether the U.S.

economy has, over time (1) expended reserves to increase

performance, (2) increased in complexity, and/or (3)

increased in hierarchy in relation to total power con-

sumption and/or the relative cost of energy and food to the

U.S. economy. Overall, the analyses of this paper generally

support the idea that the power and cost metrics coincide

with a significant changes in the economic structure of the

U.S. economy since 1947. One major structural shift

occurred between 1967 and 1972, and the other around the

turn of the twenty-first century.

Increasing rates of gross power consumption, as well as

decreasing share of intermediate expenditures of the food

and energy sectors, correlate with increased distribution of

money among economic sectors, and vice versa. This result

holds for both the closed (intermediate transactions only)

and open (including value added as input and GDP as

output) model representations of the economy. Thus, the

U.S. economy did seem to expend structural reserves (e.g.,

decrease conditional entropy, redundancy, and equality)

and increase efficiency (as well as mutual constraint and

hierarchy) when food and energy expenditures increased

after 2002.

Further, the findings of this paper are important for

future economic modeling because they show how the

level of detail within data and models affects system-wide

distributional metrics of economic transactions. Thus,

models of very simplified economies (e.g., 2-sector mod-

els) might not be able to describe enough detail or the

correct trends.
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