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Abstract
Overfitting is a critical concern in machine learning, particularly when the repre-
sentation capabilities of learning models surpass the complexities present in the 
training datasets. To mitigate overfitting, curtailing the representation power of 
the model through suitable techniques such as regularization is necessary. In this 
study, a sparse-regularization method for Gaussian–Discrete restricted Boltzmann 
machines (GDRBMs) is considered. A GDRBM is a variant of restricted Boltzmann 
machines that comprises a continuous visible layer and discrete hidden layer. In the 
proposed model, sparse GDRBM (S-GDRBM), a sparse prior that encourages sparse 
representations of the hidden layer is employed. The strength of the prior (i.e., the 
sparse-regularization strength) can be tuned within the standard scenario of maxi-
mum likelihood learning; that is, the strength can be adaptively tuned based on the 
complexities of the datasets during training. We validated the proposed S-GDRBM 
using numerical experiments.

Keywords Restricted Boltzmann machine · Sparse regularization · Spatial Monte 
Carlo integration method

1 Introduction

Overfitting is a critical issue in machine learning, and it becomes severe as the rep-
resentation power of the learning model increases and the size of training dataset 
decreases. Regularization techniques are the most popular methods for mitigating 
the problem of overfitting (Bishop 2006). In standard regularization methods, such 
as L1 or L2 regularizations, penalties are imposed on the learning parameters by 
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adding penalty terms to the objective functions such as loss or log likelihood func-
tions. These standard regularization methods often involve hyperparameters (e.g., 
regularization coefficients) that control the strength of penalties, and the values of 
the hyperparameters are fixed during training.

Discriminative restricted Boltzmann machine (dRBM) is a probabilistic three-
layered neural network, consisting of input, hidden, and output layers, designed 
for solving classification problems  (Larochelle and Bengio 2008; Larochelle 
et  al. 2012). The dRBM is constructed based on restricted Boltzmann machine 
(RBM)  (Smolensky 1986; Hinton 2002). The representational capacity of the 
dRBM can be regulated by adjusting the size of the hidden layer, which expands 
as the hidden layer’s size increases. A regularization method for the dRBM, sparse 
dRBM (S-dRBM), was previously proposed (Yasuda and Katsumata 2023). In this 
regularization method, a sparse prior for the hidden layer is employed in the form of 
a Laplace-type distribution, the effect of which encourages sparse representations of 
the hidden layer. An advantage of this regularization method is that the regulariza-
tion strength (i.e., the strength of the prior) is trainable; in other words, the regu-
larization strength can be adaptively tuned based on dataset complexity, within the 
standard scenario of maximum likelihood (ML) learning.

Gaussian–Bernoulli RBM (GBRBM) is a variant of RBM that can handle con-
tinuous data points (Hinton and Salakhutdinov 2006; Cho et al. 2011), and canoni-
calized GBRBM is a reparameterized version of the GBRBM (Yasuda and Xiong 
2023). RBMs are also actively investigated in the field of physics  (Decelle and 
Furtlehner 2021; Chen et al. 2018; Nomura and Imada 2021; Torlai et al. 2018; Car-
leo and Troyer 2017.) In standard GBRBMs, the hidden variables take binary val-
ues, for example, {0, 1} or {−1, 1} . In this study, we consider (canonicalized) Gauss-
ian–Discrete RBM (GDRBM) in which the hidden variables can accept multiple 
discrete values. When the hidden variables are binary, the GDRBM is equivalent 
to the canonicalized GBRBM. This study proposes a sparse-regularized GDRBM, 
referred to as sparse GDRBM (S-GDRBM), by applying the successful regulariza-
tion method employed in S-dRBM.

The remainder of this paper is organized as follows. The GDRBM is defined in 
section 2. Section 3 presents the S-GDRBM. The S-GDRBM is obtained by combin-
ing a Laplace-type sparse prior for the hidden layer with the GDRBM. The details of 
the S-GDRBM are discussed in section 3.1, and the maximum-likelihood learning 
of the S-GDRBM based on spatial Monte Carlo integration (SMCI) method (Yasuda 
2015; Yasuda and Uchizawa 2021) is discussed in section 3.2. In section 4, we dem-
onstrate learning experiments using artificial datasets, which show that the proposed 
S-GDRBM effectively suppresses overfitting. Section  5 concludes the paper and 
presents future research directions.

2  Gaussian‑discrete restricted Boltzmann machine

We consider a GDRBM defined on a complete bipartite graph consisting of two 
layers: visible and hidden layers. The visible layer consists of continuous visible 
variables v ∶= {vi ∈ ℝ ∣ i ∈ V} , and the hidden layer consists of discrete hidden 
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variables h ∶= {hj ∈ XH ∣ j ∈ H} , where V and H are the sets of indices of the vis-
ible and hidden variables, respectively; XH is a discrete sample space. The sizes of 
the visible and hidden layers are denoted by n and m, respectively (i.e., |V| = n and 
|H| = m ). The energy function of the GDRBM is defined by

where sfp z ∶= ln(1 + ez) is the softplus function; here, the learning parameters, 
{bi, �i, cj,wi,j} , are collectively denoted by � . The GDRBM is a joint distribution 
expressed as

where

is the normalization constant (or the partition function); here, 
∑

h
 denotes the 

multiple summation over h ∈ X
m
H

 , and ∫ +∞

−∞
dv denotes the multiple integration 

over v ∈ ℝ
n . The GDRBM in equation (2) is a generalized model of the canoni-

calized GBRBM (Yasuda and Xiong 2023). When the hidden variables are binary, 
XH = {0, 1} , the GDRBM is equivalent to the canonicalized GBRBM. The softplus 
function in the first term of equation (1) is employed for learning stability (Yasuda 
and Xiong 2023).

3  Proposed model: sparse GDRBM

The representation power of the GDRBM increases with an increase in m (i.e., the 
size of the hidden layer), and the overfitting problem increases in severity as the 
representation power increases. Therefore, the optimization of m is critical to pre-
vent overfitting. However, in the standard scenario, m is a hyperparameter and is 
not trainable. Numerous studies have addressed this issue, introducing various 
approaches such as sparse RBM (S-RBM)  (Lee et  al. 2007), sparse group RBM 
(SG-RBM)  (Luo et  al. 2011), Gaussian cardinality RBM (GC-RBM)  (Wan et  al. 
2015), and energy-function-constraint sparse RBM (ES-RBM)  (Wei et  al. 2019). 
The S-RBM, SG-RBM, GC-RBM, and ES-RBM introduce regularizers to encour-
age sparse representations of the hidden layer; however, they have hyperparameters 
related to the strength of the regularizers.

In the dRBM, an alternative sparse regularization, S-dRBM, is proposed  (Yasuda 
and Katsumata 2023); this model introduces a regularizer that penalizes the activations 
of hidden variables in its energy function, aiming to encourage sparse representations 
of the hidden layer. The concept of the S-dRBM is similar to that of the ES-RBM. 
However, it has no hyperparameters, which means that the strength of regularization in 

(1)E�(v, h) ∶=
∑

i∈V

v2
i

2 sfp �i
−
∑

i∈V

bivi −
∑

j∈H

cjhj −
∑

i∈V

∑

j∈H

wi,jvihj,

(2)P�(v,h) ∶=
1

Z�
exp

(
− E�(v,h)

)
,

Z� ∶= ∫
+∞

−∞

(∑

h

exp
(
− E�(v,h)

))
dv
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the S-dRBM can be adaptively tuned to the complexity of the dataset within the stand-
ard scenario of the ML learning (and the S-dRBM is confirmed to be superior to the 
ES-RBM) (Yasuda and Katsumata 2023). This section presents the S-GDRBM, which 
is based on the S-dRBM.

3.1  Model definition

The key concept of the proposed sparse regularization is simple; if hj always takes 
zero value (i.e., hj is always in the off-state), the influence of the variable is effectively 
eliminated from the model. Based on this, a sparsity assumption, similar to that in L1 
regularization, is imposed on the values of the hidden variables. In the Bayesian inter-
pretation, L1 regularization can be viewed as a Laplace prior (Bishop 2006; Rish and 
Grabarnik 2014). Here, we assume that XH is a discrete sample space defined by

where R is a finite positive integer greater than zero; therefore, e.g., 
XH(1) = {−1, 0, 1} and XH(2) = {−1,−1∕2, 0, 1∕2, 1} . We consider a (discrete-
type) Laplace distribution over h:

In this distribution, the hidden variables are zero with high probabilities, and 
� ∶= {�j ∈ ℝ ∣ j ∈ H} controls the probabilities. By combining the Laplace distribu-
tion with the GDRBM, a new model can be defined as P�(v,h) ∝ P�(v, h)Plap(h ∣ �) ; 
thus, the resultant model is expressed as

where

is the normalization constant, and � denotes the set of parameters comprising � 
and � . The second term in the exponent of equation (5) functions as the penalties 
for non-zero hidden variables, and the strength of the penalties is controlled by � . 
Equation (5) is the S-GDRBM. The S-GDRBM is identical to the GDRBM when 
�j → −∞ (i.e., sfp �j = 0 ) for all j ∈ H.

The layer-wise conditional distributions of the S-GDRBM are as follows:

(3)XH = XH(R) ∶= {−1 + r∕R ∣ r = 0, 1, 2,… , 2R},

(4)Plap(h ∣ �) ∝
∏

j∈H

exp
(
− ( sfp �j)|hj|

)
.

(5)P�(v,h) =
1

Z�
exp

(
− E�(v,h) −

∑

j∈H

( sfp �j)|hj|
)
,

Z� ∶= ∫
+∞

−∞

{
∑

h

exp
(
− E�(v, h) −

∑

j∈H

( sfp �j)|hj|
)}

dv

(6)P�(v ∣ h) =
�

i∈V

1
√
2� sfp �i

exp

�
−
(vi − �i(h))

2

2 sfp �i

�
,
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where

and

is the normalization constant of P�(hj ∣ v) . The marginal distribution over v is 
obtained as

The marginal distribution over h is obtained through the multivariate Gaussian inte-
gral, which leads to

where � ∈ ℝ
m and J ∈ ℝ

m×m are defined as

where S ∈ ℝ
n×n is a diagonal matrix whose (i,  i)-element is sfp �i , b ∈ ℝ

n and 
c ∈ ℝ

m are the vectors of bi and cj , respectively, and W ∈ ℝ
n×m is the matrix of wi,j ; 

Z� is the normalization constant defined by

which is expressed in terms of Z� as

Equation (11) can be regarded as a Boltzmann machine defined on a fully connected 
graph:

(7)P�(h ∣ v) =
∏

j∈H

exp(�j(v)hj − ( sfp �j)|hj|)
Gj(v)

,

(8)�j(v) ∶= cj +
∑

i∈V

wi,jvi, �i(h) ∶= ( sfp �i)

(
bi +

∑

j∈H

wi,jhj

)
,

(9)Gj(v) ∶=
∑

hj

exp
(
�j(v)hj − ( sfp �j)|hj|

)

(10)P�(v) =
1

Z�
exp

(
−
∑

i∈V

v2
i

2 sfp �i
+
∑

i∈V

bivi +
∑

j∈H

lnGj(v)

)
.

(11)P�(h) =
1

Z�

exp

(
� t
h +

1

2
h
t
Jh −

∑

j∈H

( sfp �j)|hj|
)
,

(12)� ∶= c +W
t
Sb, J ∶= W

t
SW,

(13)Z� ∶=
∑

h

exp

(
� t
h +

1

2
h
t
Jh −

∑

j∈H

( sfp �j)|hj|
)
,

(14)Z� = Z� exp

(
−
1

2

∑

i∈V

ln(2� sfp �i) −
1

2
b
t
Sb

)
.
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where qj(hj) ∶= �jhj + Jj,jh
2
j
∕2 − ( sfp �j)|hj| are the potential on the hidden 

variables.
The marginal distribution of the S-GDRBM (as well as the GDRBM) over v can 

be viewed as a Gaussian mixture model. The marginal distribution is expressed as

Here, the conditional distribution, P�(v ∣ h) , is the Gaussian distribution (cf. equa-
tion (6)); thus, this expression can be considered a Gaussian mixture model with 
|XH|m Gaussian components in which P�(h) functions as the mixture weight. The 
number of Gaussian components rises exponentially with increasing m and power-
functionally with increasing R because |XH|m = (2R + 1)m . Therefore, although it is 
small compared to the increase of m, the increase of R may also increase the repre-
sentation power of the S-GDRBM.

3.2  Maximum‑likelihood learning based on spatial Monte Carlo integration

We assume that a training dataset consisting of N data points, D ∶= {v(�)}N
�=1

 , is 
obtained. The learning of the S-GDRBM is achieved by maximizing the log 
likelihood,

with respect to � . From equation (10), the log likelihood is expressed as

where �D[⋯] denotes the sample average over the training dataset, that is,

Therefore, the gradients of the log likelihood are obtained as follows. The gradients 
for bi and �i are

and

P𝜙(h) ∝ exp

(
∑

j∈H

qj(hj) +
∑

i<j∈H

Ji,jhihj

)
,

P�(v) =
∑

h

P�(v ∣ h)P�(h).

(15)�(�) ∶=
1

N

N∑

�=1

lnP�(v
(�)),

�(�) = −
∑

i∈V

1

2 sfp �i
�D[v

2
i
] +

∑

i∈V

bi�D[vi] +
∑

j∈H

�D

[
lnGj(v)

]
− ln Z�,

�D[f (v)] =
1

N

N∑

�=1

f
(
v
(�)
)
.

(16)
��(�)

�bi
= �D[vi] − ��[vi]
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respectively, where sig z ∶= 1∕(1 + e−z) is the sigmoid function, and ��[⋯] denotes 
the model expectation of the S-GDRBM, that is,

Next, the gradients for cj and wi,j are

and

respectively, where

Finally, the gradients for �j is

where

The ML learning is conducted using a gradient ascent method based on the gra-
dients in equations (16), (17), (18), (19), and (21), which implies that the sparsity 
parameters � and the other learning parameters � are simultaneously tuned within 
the ML learning. To encourage sparsity, relatively large values are preferred for the 
initial values of � , for example �j ≈ 10 , as recommended in reference (Yasuda and 
Katsumata 2023). However, these gradients include the intractable model expec-
tations, the computational costs of which exponentially grow with the size of the 
model (the model expectations can be computed when m is sufficiently small; see 
Appendix A for the details).

In the following, an approximation of the model expectations based on the first-
order SMCI method  (Yasuda 2015; Yasuda and Uchizawa 2021) (which can be 
viewed as a Rao-Backwellization) is considered; SMCI-based evaluation has out-
performed the evaluation based on the standard Monte Carlo integration (MCI) 

(17)
��(�)

��i
=

sig �i

2( sfp �i)
2

(
�D[v

2
i
] − ��[v

2
i
]
)
,

��[⋯] ∶= ∫
+∞

−∞

∑

h

(⋯)P�(v, h)dv.

(18)
��(�)

�cj
= �D

[
Hj(v)

]
− ��[hj]

(19)
��(�)

�wi,j

= �D

[
viHj(v)

]
− ��[vihj],

(20)Hj(v) ∶=
�

hj

hjP�(hj ∣ v) =

∑
hj
hj exp(�j(v)hj − ( sfp �j)�hj�)

Gj(v)
.

(21)
��(�)

��j
= ( sig �j)

(
− �D

[
Qj(v)

]
+ ��

[
|hj|

])
,

(22)Qj(v) ∶=
�

hj

�hj�P�(hj ∣ v) =

∑
hj
�hj� exp(�j(v)hj − ( sfp �j)�hj�)

Gj(v)
.



 Behaviormetrika

1 3

in Bernoulli–Bernoulli RBMs  (Sekimoto and Yasuda 2023) and deep Boltz-
mann machines (Katsumata and Yasuda 2021). We assume that we have K sam-
ple points, S ∶= {v(�), h(�)}K

�=1
 , drawn from the S-GDRBM. Here, the first-order 

SMCI method is briefly introduced. The visible and hidden variables are collec-
tively denoted by x = v ∪ h , and � th sample point is denoted by x(�) = v

(�) ∪ h
(�) . 

Based on the first-order SMCI method, the model expectation for a function of 
xt ⊆ x is evaluated as

where x𝜕t ⊆ x is the nearest-neighbor variables of xt , for example, x�t = h when 
xt = {vi} and x�t = x ⧵ {vi, hj} when xt = {vi, hj} . Here, �S[⋯] denotes the sample 
average over the sample set S. In equation (23), the sum over xi ∈ xt is replaced with 
the integration over xi when xi is continuous. Based on equation (23), the model 
expectations, ��[vi] and ��[v

2
i
] , are approximated as

and

respectively, where equation (6) is used. Similarly, using equation (7), the model 
expectations, ��[hj] and ��[|hj|] , are approximated as

and

respectively. Finally, the approximation of ��[vihj] is considered. Based on equation 
(23), it is approximated as

where v−i ∶= v ⧵ {vi} and h−j ∶= h ⧵ {hj} . The conditional distribution in the right 
hand side of equation (28) is

(23)��[f (xt)] ≈ �S

[
∑

xt

f (xt)P�(xt ∣ x�t)

]
=

1

K

K∑

�=1

∑

xt

f (xt)P�(xt ∣ x
(�)

�t
),

(24)��[vi] ≈
1

K

K∑

�=1
∫

+∞

−∞

viP�(vi ∣ h
(�)) =

1

K

K∑

�=1

�i(h
(�))

(25)��[v
2
i
] ≈

1

K

K∑

�=1
∫

+∞

−∞

v2
i
P�(vi ∣ h

(�)) = sfp �i +
1

K

K∑

�=1

�i(h
(�))2,

(26)��[hj] ≈
1

K

K∑

�=1

∑

hj

hjP�(hj ∣ v
(�)) =

1

K

K∑

�=1

Hj(v
(�))

(27)��

[
|hj|

]
≈

1

K

K∑

�=1

∑

hj

|hj|P�(hj ∣ v
(�)) =

1

K

K∑

�=1

Qj(v
(�)),

(28)��[vihj] ≈
1

K

K∑

�=1
∫

+∞

−∞

∑

hj

vihjP�(vi, hj ∣ v
(�)

−i
, h

(�)

−j
)dvi,
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where

From equations (28) and (29), we obtain

where

By substituting the model expectations, ��[⋯] , in the gradients in equations (16), 
(17), (18), (19), and (21) with the corresponding approximations provided in equa-
tions (24), (25), (26), (27), and (30), respectively, the approximated gradients are 
obtained. The cost of the computation of the SMCI-based expectations is O(Knm); 
thus, they can be computed even when the size of the S-GDRBM is large. Although 
the aforementioned SMCI-based approximations are formulated for the S-GDRBM, 
they can be directly applied to the GDRBM by setting sfp �j = 0 (i.e., �j → −∞).

To demonstrate the validity of the SMCI-based evaluation, using numerical experi-
ments, we compared the approximation accuracy of it with that of the MCI-based 
evaluation on small-sized S-GDRBMs with n = m = 10 . The parameter setup of the 
S-GDRBMs was as follows: the bias parameters, b and c , and weight parameters, W , 
were drawn from a uniform distribution in the interval [−�, �] , � were drawn from a 
uniform distribution in the interval [−10, 10] , and {�i} were fixed by �i = ln(e − 1) 
(i.e., sfp �i = 1 ). The sample set with K = 1000 was generated using layer-wised 
blocked Gibbs sampling on the S-GDRBM. Figure 1 depicts the mean absolute errors 
(MAEs) between the exact model expectations and their approximations. Because the 
S-GDRBMs are small, the exact model expectations can be evaluated (see Appendix 
A). The SMCI-based evaluation outperforms the MCI-based evaluation in terms of 
MAE.

(29)

P�(vi, hj ∣ v−i, h−j)

∝ exp

(
−

v2
i

2 sfp �i
+ bi,j(h−j)vi + cj,i(v−i)hj − ( sfp �j)|hj| + wi,jvihj

)
,

bi,j(h−j) ∶= bi +
∑

�∈H⧵{j}

wi,�h� =
�i(h)

sfp �i
− wi,jhj,

cj,i(v−i) ∶= cj +
∑

k∈V⧵{i}

wk,jvk = �j(v) − wi,jvi.

(30)��[vihj] ≈
sfp �i

K

K�

�=1

∑
hj
(wi,jhj + bi,j(h

(�)

−j
))hj exp(−e

(�)

j
(hj))

∑
hj
exp(−e

(�)

j
(hj))

,

e
(�)

j
(hj) ∶= −

sfp �i

2
w2
i,j
h2
j
−
(
cj,i(v

(�)

−i
) + ( sfp �i)bi,j(h

(�)

−j
)wi,j

)
hj + ( sfp �j)|hj|.
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4  Numerical experiment

In this section, we demonstrate the ML learning of the S-GDRBM and compare 
it to that of the GDRBM using artificial training datasets in which the artificial 
training datasets were generated from the GBRBM (Yasuda and Xiong 2023).

First, we demonstrate numerical experiments on small-sized models. The size 
of the data-generative GBRBM, Pgen(v,h) , was n = 5 and m = 3 , in which the bias 
parameters, b and c , and weight parameters, W , were drawn from a Gaussian dis-
tribution with zero mean and variance 0.01, and {�i} were fixed by �i = ln(e − 1) . 
Using the data-generative GBRBM, artificial datasets with size N were gener-
ated based on layer-wised blocked Gibbs sampling. The use of artificial datasets 
is appropriate for our purpose because their complexities can be controlled, and 
moreover, the degree of generalization can be monitored (using a negative cross-
entropy described below).

For the artificial datasets, the ML learnings were conducted using the GDRBM 
and S-GDRBM (with R = 1, 2 ) in which the sizes of the visible layers were n = 5 
and the sizes of the hidden layers were m = 3 or m = 7 . The bias parameters were 
initialized to zero, while the weight parameters were initialized using (Gaussian-
type) Xavier’s initialization (Glorot and Bengio 2010), and {�i} were initialized to 
�i = −3 for all i ∈ V  . In the S-GDRBM, the initial values of � were set to a fixed 
value of �j = 10 for all j ∈ H . The adamax optimizer (Kingma and Ba 2015) with 
the full-batch training was used in the gradient ascent. The log likelihood,

β
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Fig. 1  MAEs between exact expectations and their approximations for various � : (a) ��[vi] , (b) ��[v
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(c) ��[hj] , (d) ��[|hj|] , and (e) ��[vihj] . The plots present the average values of 3000 experiments
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and the negative cross-entropy,

were used as measures to assess the quality of the learning process, where 
Ptr(v) = P�(v) when the learning model is the GDRBM and Ptr(v) = P�(v) when it 
is the S-GDRBM. The log likelihood represents the fitness to the training dataset, 
and the negative cross-entropy represents the degree of generalization. As the learn-
ing proceeds without overfitting, both log likelihood and negative cross-entropy 
monotonically increase; whereas the negative cross-entropy decreases as overfit-
ting begins to appear. The log likelihood and cross-entropy were exactly computed 
because the sizes of the data-generative and learning models were sufficiently small 
(see Appendix A). The exact learning and the SMCI-based learning presented in 
section  3.2 were conducted. In the SMCI-based learning, the sample points, S, 
required to evaluate the model expectations in equations (24), (25), (26), (27), and 
(30) were obtained based on 10-steps layer-wised blocked Gibbs sampling starting 
from the training data points (i.e., the sampling procedure used in CD10  (Hinton 
2002)).

Figures  2–5 depict the values of the log likelihoods and negative cross-entro-
pies against the training epoch; the upper plots, labeled (a) and (b), in the figures 

1

N
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(a) (b)

)d()c(

epoch
0 10000 20000 30000 40000 50000

n
eg

at
iv

e 
cr

o
ss

−
en

tr
o
p
y

−10

−8

−6

−4

−2

GDRBM (R = 1)

GDRBM (R = 2)

S−GDRBM (R = 1)

S−GDRBM (R = 2)

epoch
0 10000 20000 30000 40000 50000

lo
g
 l

ik
el

ih
o
o
d

−10

−8

−6

−4

−2

GDRBM (R = 1)

GDRBM (R = 2)

S−GDRBM (R = 1)

S−GDRBM (R = 2)

epoch
0 10000 20000 30000 40000 50000

n
eg

at
iv

e 
cr

o
ss

−
en

tr
o
p
y

−10

−8

−6

−4

−2

GDRBM (R = 1)

GDRBM (R = 2)

S−GDRBM (R = 1)

S−GDRBM (R = 2)

epoch
0 10000 20000 30000 40000 50000

lo
g
 l

ik
el

ih
o
o
d

−10

−8

−6

−4

−2

GDRBM (R = 1)

GDRBM (R = 2)

S−GDRBM (R =1)

S−GDRBM (R = 2)

Fig. 2  Log likelihoods and negative cross-entropies obtained based on the exact learning. The sizes of 
the learning models are n = 5 and m = 3
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represent the results obtained when N = 10 , while the lower plots, labeled (c) and 
(d), display the results for the case N = 100 . The plots in the figures present the 
average values obtained from 100 experiments. The results in figures 2 and 3 were 
obtained based on the exact learning and those in figures 4 and 5 were based on the 
SMCI-based learning. Overfitting is particularly observed in figures 3(b) and 5(b). 
We can observe that the S-GDRBMs successfully reduce overfitting. Whereas, the 
S-GDRBMs yield similar results to those of the GDRBMs in the experiments where 
overfitting is not a significant issue.

Next, we demonstrate numerical experiments on larger models in which the size 
of the data-generative GBRBM was n = m = 50 . The parameter setup of the data-
generative GBRBM was as follows: the bias and weight parameters were drawn 
from Gaussian distributions with zero mean and variances 0.05 and 0.002, respec-
tively, and {�i} were the same as in the aforementioned experiments. For the arti-
ficial datasets generated from the data-generative GBRBM, the SMCI-learnings 
(with CD50 ) were conducted using the GDRBM and S-GDRBM (with R = 1, 2 ) in 
which the sizes of the visible layers were n = 50 and the sizes the hidden layers were 
m = 50 or m = 100 . The initialization of the learning parameters were the same as 
in the aforementioned experiments, and the adamax optimizer with the mini-batch 
training was used in which the mini-batch size was B. Figure 6 depicts the values 
of negative cross-entropies against the training epoch; (a) displays the results for 
the learning models with m = 50 when N = 1000 and B = 100 , and (b) displays 
the results for the learning models with m = 100 when N = 150 and B = 30 . The 
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Fig. 3  Log likelihoods and negative cross-entropies obtained based on the exact learning. The sizes of 
the learning models are n = 5 and m = 7



1 3

Behaviormetrika 

(a) (b)

)d()c(
epoch

0 10000 20000 30000 40000 50000

lo
g
 l

ik
el

ih
o
o
d

−10

−8

−6

−4

−2

GDRBM (R = 1)

GDRBM (R = 2)

S−GDRBM (R = 1)

S−GDRBM (R = 2)

epoch
0 10000 20000 30000 40000 50000

lo
g
 l

ik
el

ih
o
o
d

−10

−8

−6

−4

−2

GDRBM (R = 1)

GDRBM (R = 2)

S−GDRBM (R = 1)

S−GRBM (R = 2)

epoch
0 10000 20000 30000 40000 50000

n
eg

at
iv

e 
cr

o
ss

−
en

tr
o
p
y

−10

−8

−6

−4

−2

GDRBM (R = 1)

GDRBM (R = 2)

S−GDRBM (R = 1)

S−GDRBM (R = 2)

epoch
0 10000 20000 30000 40000 50000

lo
g
 l

ik
el

ih
o
o
d

−10

−8

−6

−4

−2

GDRBM (R = 1)

GDRBM (R = 2)

S−GDRBM (R = 1)

S−GDRBM (R = 2)
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sizes of the learning models are n = 5 and m = 3
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Fig. 5  Log likelihoods and negative cross-entropies obtained based on the SMCI-based learning. The 
sizes of the learning models are n = 5 and m = 7
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negative cross-entropy was evaluated using a sampling-based approximation1 More 
pronounced overfitting is observed in figure  6(b). The S-GDRBM successfully 
reduces overfitting; moreover, the peaks of the rise of the S-GDRBMs are higher 
than those of the GDRBMs (similar behaviors can be observed in figures 2(b) and 
3(b)).

On the trained models obtained in the experiments in figure  6, we evaluate 
� ∶=

∑
j∈H �tr[�hj�]∕m , where �tr[⋯] denotes the expectation on the trained mod-

els. � ∈ [0, 1] can be read as the statistical activation-ratio of the hidden layer; 
� = 1 when all hidden variables always take ±1 and � = 0 when all hidden variables 
always take zero. In the models with R = 2 , the hidden variables can take two kinds 
of activations, |hj| = 1 and |hj| = 1∕2 , and we regard the former as the strong acti-
vation and the latter as the weak activation. If the effect of sparse regularization 
functions as expected, the values of � are suppressed. Table 1 presents the �-values 
on the trained models; here, �tr[|hj|] was computed based on the SMCI-evaluation. 
The �-values of the S-GDRBMs are considerably lower than those of the GDRBMs, 
which means the proposed regularization functions. From (a) to (b) in table 1, the �
-values of the GDRBMs increase and approach one; this implies that the effect of 
redundant hidden-variable-activations causes overfitting. Conversely, the �-values of 
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Fig. 6  Negative cross-entropies obtained based on the SMCI-based learning: (a) m = 50 and N = 1000 
( B = 100 ) and (b) m = 100 and N = 150 ( B = 30 ). (c) and (d) are the enlarged plots of (a) and (d), 
respectively. The plots in these figures present the average values of 30 experiments

1 The negative cross-entropy was evaluated based on equation (34). In the equation, ��[vi] and ��[v
2

i
] 

were evaluated using the SMCI-based evaluation in equations (24) and (25), respectively, and the nor-
malization constant was evaluated based on marginalized annealed importance sampling  (Yasuda and 
Takahashi 2022); the expectations in the third term in equation (34) were evaluated using equation (36) 
based on the standard MCI.
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the S-GDRBMs decrease, which implies that the S-GDRBMs shrink the effect of 
redundant hidden-variable-activations to suppress overfitting.

We can observe that the �-values of the S-GDRBMs with R = 1 are lower than 
those with R = 2 in table  1, which implies that the effect of sparse regulariza-
tion is more enhanced in the case R = 1 . This is intuitively understood as follows: 
the penalties for the hidden variables taking non-zero values tend to be larger in 
R = 1 when � of both S-GDRBMs are the same. In addition, compared with the 
S-GDRBM with R = 1 , the S-GDRBM with R = 2 more significantly decreases 
the negative cross-entropies in figures  3(b) and 6(d). However, we consider that 
these results do not immediately indicate that the S-GDRBM with R = 1 is superior 
to that with R = 2 . As mentioned in section  3.1, the representation power of the 
S-GDRBM can be increased by increasing the R-value. There is the possibility that 
the S-GDRBMs with R = 2 or more are more suitable for more complex training 
datasets than the S-GDRBM with R = 1 . The aforementioned experimental results 
confirm the proposed sparse regularization functions, i.e., the strength of regulariza-
tion is adaptively tuned during training. This might seem counterintuitive because 
the ML learning aims to achieve a good fit to the training data and does not inher-
ently prioritize the suppression of overfitting. From the ML perspective, the strength 
of regularization should ideally decrease to zero (i.e., �j goes to −∞ ) because the 
solution exhibiting overfitting will be globally optimum. This matter might be con-
sidered as follows. The model learns the abstract of the data distribution in the early 
stage of the learning; both log likelihood and cross-entropy grow in this stage. After 
the early stage, the model starts to be finely tuned to learn the details of the data 
distribution and to increase the log likelihood. This fine tuning causes overfitting. 
The sparse regularization prevents the fine tuning by shrinking the hidden variables 
representations and attempts the model to stay at a locally optimum near the point 
reached in the early stage. Figure  7 depicts the long-term learning version of the 
experiments in figures 3(a) and 3(b). The S-GDRBMs converge to better solutions 
in terms of the negative cross-entropy. However, not as much as the GDRBMs, the 
S-GDRBMs also exhibit the tendency of overfitting. If early stopping could be prop-
erly conducted, the learning solution presenting a high negative cross-entropy can 
be obtained. However, appropriate early stopping in terms of the negative cross-
entropy is not practical because the true data-generative model is unknown. The 
log likelihood for a separate test dataset may be used as the alternative criterion for 
early stopping. However, the log likelihood involves the intractable normalization 

Table 1  Values of � : (a) the trained models obtained in the experiments in figure 6(a) and (b) the trained 
models obtained in the experiments in figure 6(b). The values of the table are the average values obtained 
from 30 experiments

GDRBM S-GDRBM

(a) (b) (a) (b)

R = 1 0.875 0.990 0.235 0.101
R = 2 0.818 0.975 0.285 0.129
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constant, a precise evaluation of which is expensive in large systems even if a sam-
pling-based approximation is employed.

5  Conclusion and future studies

In this study, a sparse-regularized GDRBM, S-GDRBM, is proposed by imposing a 
Laplace-like prior on the hidden layer. In the S-GDRBM, the strength of sparse reg-
ularization (in other words, the strength of the prior) is trainable in contrast to that 
in conventional sparse regularizations. The results of our numerical experiments in 
section 4 show that the proposed regularization method functioned as expected. The 
present regularization becomes strong for training datasets in which overfitting is 
severe and is weakened for datasets in which overfitting is not severe, which implies 
the strength of regularization is adaptively tuned during training.

As mentioned in section 3, there are several related works that aim to promote 
sparse representations of the hidden layer  (Lee et  al. 2007; Luo et  al. 2011; Wan 
et al. 2015; Wei et al. 2019). Another relevant work is infinite RBM (iRBM) (Côté 
and Larochelle 2016), which treats m as a random variable and tunes its distribution 
during training (note that the iRBM and its hybrid-type learning algorithm  (Peng 
et al. 2018) have hyperparameters). In the iRBM, the effective size of m is optimized 
according to the complexity of the training dataset. The objective of the iRBM study 
is similar to that of the present study. The S-GDRBM and the related works (exclud-
ing the ES-RBM2) are not in direct competition, suggesting that the S-GDRBM can 
potentially be used in conjunction with them for further developments. The combi-
nation with the iRBM is important, and it will be conducted in our future studies. In 
the future, additional studies will explore the applications of the S-GDRBM in vari-
ous contexts. These could include its use as a feature extractor (Yasuda and Xiong 
2023) or as an input converter for classification systems (Kanno and Yasuda 2021).
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Fig. 7  Long-term learning version of the experiments in figures 3(a) and 3(b)

2 In the ES-RBM, the hidden variables being {0, 1}-binary is essential; therefore, the S-GDRBM cannot 
directly apply to the ES-RBM.
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Evaluation of Exact Expectations on S‑GDRBM

Consider a S-GDRBM and assume that m (the size of hidden layer) is sufficiently 
small and an expectation on P�(h) , �h

�
[⋯] ∶=

∑
h
(⋯)P�(h) can be evaluated by 

performing the multiple summation, where P�(h) is the marginal distribution of 
the S-GDRBM expressed in equation (11). In this case, the model expectations, 
��[vi] , ��[v

2
i
] , ��[hj] , ��[|hj|] , and ��[vihj] , can be obtained. The model expecta-

tions, ��[hj] and ��[|hj|] , are evaluated through ��[hj] = �
h
�
[hj] and 

��[|hj|] = �
h
�
[|hj|] , respectively. Using P�(v,h) = P�(v ∣ h)P�(h) , we obtain

where �i(h) is defined in equation (8). In a similar manner,

are obtained.
When m is sufficiently small, the value of the log likelihood in equation (15) 

can be computed because the normalization constant of the S-GDRBM, Z� , can 
be computed using equation (14) (note that Z� can be obtained by performing the 
multiple summation in equation (13)). In this situation, a negative cross-entropy 
between different S-GDRBMs can be evaluated. Consider a negative cross-
entropy defined as

The negative cross-entropy is rewritten as

where G�
j
(v) denotes Gj(v) with �′ . ��[vi] and ��[v

2
i
] are obtained using equations 

(31) and (32), respectively. The evaluation of ��[lnG
�
j
(v)] is as follows. Based on the 

reproductive property of Gaussian, we obtain

where G�
j
(z) ∶= ln

∑
hj
exp{(c�

j
+ z)hj − ( sfp ��

j
)�hj�} ; here, N(z ∣ �, �2) is a Gaussian 

distribution with mean � and variance �2 , and

(31)��[vi] =
∑

h

(

∫
+∞

−∞

viP�(v ∣ h)dv

)
P�(h) =

∑

h

�i(h)P�(h) = �
h
�

[
�i(h)

]
,

(32)��[v
2
i
] =

∑

h

(

∫
+∞

−∞

v2
i
P�(v ∣ h)dv

)
P�(h) = sfp �i + �

h
�

[
�i(h)

2
]
,

(33)��[vihj] =
∑

h

hj

(

∫
+∞

−∞

viP�(v ∣ h)dv

)
P�(h) = �

h
�

[
hj�i(h)

]
.

Hcross ∶= ∫
+∞

−∞

P�(v) lnP�� (v)dv.

(34)Hcross = −
∑

i∈V

��[v
2
i
]

2 sfp ��
i

+
∑

i∈V

b�
i
��[vi] +

∑

j∈H

��[lnG
�
j
(v)] − ln Z�� ,

(35)∫
+∞

−∞

P�(v ∣ h) lnG
�
j
(v)dv = ∫

+∞

−∞

N(z ∣ �j(h), s
2
j
) lnG�

j
(z)dz,
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Equation (35) leads to

Although the formulations in this appendix are obtained based on the S-GDRBM, 
they can be applied to GDRBMs (by setting sfp �j = 0 ) and GBRBMS (by setting 
sfp �j = 0 and XH = {0, 1}).
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