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Abstract
In a psychometric analysis of a new psychological test, we often assess the predic-
tive validity of a new target test over and above a baseline test, known as the incre-
mental predictive validity. Usually, the incremental predictive validity is evaluated 
using within-sample statistics. Recently, it was argued to use out-of-sample assess-
ment to prevent overfitting and non-replicable findings. In this paper, we elaborate 
on how to assess incremental predictive validity out-of-sample. In such an approach, 
we estimate prediction rules in one sample, and evaluate incremental predictive 
validity in another sample. Using a simulation study, we investigate whether an out-
of-sample assessment results in different findings than a within-sample evaluation, 
taking into account the reliability of the baseline and a target test, and other factors 
(i.e., sample size). Results show that there is a difference between the in-sample and 
out-of-sample assessment, especially in small samples. However, the reliability of 
the two tests has no influence on this difference. In addition, we explore the effects 
of ridge estimation, ordinary least squares, and SIMEX, three different methods for 
estimating a prediction rule, on incremental predictive validity. The results show 
that using SIMEX leads to a bad assessment of incremental predictive validity. Ordi-
nary least squares and ridge estimation result in almost the same incremental predic-
tive validity estimates with a little advantage for ridge regression. In an empirical 
application, we show how to assess incremental predictive validity in practice and 
we compare that to the usual assessment.
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1  Introduction

Psychometric evaluations of psychological tests focus on reliability and validity. 
Reliability can be conceptualized in multiple ways, for example, as an assessment 
of the internal consistency of a test measured by Cronbach’s alpha, inter-rater 
reliability, and test-retest reliability. All conceptualizations attempt to measure 
the extent to which a test is free from error. Validity also has many facets, one 
being predictive validity, which is conceptualized as the degree to which a test 
predicts a criterion of interest. Reliability and predictive validity are connected, 
that is, less reliable tests predict worse (Spearman 1904). In classical test theory 
(CTT), the observed test scores, X, are assumed to be comprised of true scores (T) 
and random measurement error (E) (Lord and Novick 1968), that is, X = T + E . 
The error is assumed to be independent of the true score. The reliability of the 
test score ( � ) is then defined by

where �2
T
 denotes the variance of the true scores, �2

X
 that of the observed scores, and 

�2
E
 the variance of the error. In practice � needs to be estimated, for example with 

Cronbach’s alpha, the greatest lower bound, or the test-retest correlation (Evers et al. 
2010b). We denote the estimated reliability of test X by rXX . The usual way to assess 
predictive validity is by the (squared) correlation coefficient between the test score 
and the criterion. The observed correlation is influenced by the reliability of both the 
test score as well as the criterion score. Spearman (1904) defined the correction for 
attenuation as a way to assess the true predictive validity, correcting for the meas-
urement error in both the test and criterion score, that is,

where rXY is the estimated true predictive validity, r∗
XY

 is the observed correlation 
(i.e., observed predictive validity) and rXX and rYY denote the estimated reliabilities 
of X and Y, respectively. When the criterion is free from error (i.e., rYY = 1 ), the pre-
dictive validity decreases at the rate of the reliability index ( 

√

rXX  ) of the test (Lord 
and Novick 1968).

The situation becomes more complicated when a new test is developed and the 
goal is to assess the predictive validity of this new test over and above the usual 
test. We will use the terminology baseline test for the existing test and target test for 
the test of interest. We would like to assess the incremental predictive validity (IV, 
Sechrest 1963; Schmidt and Hunter 1998; Westfall and Yarkoni 2016) of the target 
test. A typical example is the evaluation of a student entrance test to higher educa-
tion. Niessen et al. (2016) studied the incremental predictive validity of a selection 
test for the bachelor program in psychology. The main question is whether this test 
has incremental predictive validity over and above the high-school grade point aver-
age. The criterion is the academic achievement of a student, operationalized as the 

(1)� =
�2
T

�2
X

=
�2
T

�2
T
+ �2

E

(2)rXY =
r∗
XY

√

rXXrYY
,
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grade point average in the first year of the bachelor program. Both the test score as 
well as the grade point average are not 100% reliable.

For the assessment of incremental predictive validity, researchers typically use 
hierarchical multiple regression (Hunsley and Meyer 2003), which starts by fitting 
two regression models:

where X1 refers to the baseline test (i.e, high-school GPA in the example above), 
and X2 refers to the test to be validated, the target test. For both models, an assess-
ment of goodness of fit, such as the explained variance or mean squared error can 
be calculated. Incremental predictive validity is achieved if Model 2 significantly 
increases the model fit compared to Model 1. When X1 and X2 are uncorrelated, the 
incremental predictive validity can be shown to decrease with respect to its reliabil-
ity. However, if the tests are correlated and contain measurement error, the direction, 
and size of the attenuation in the regression parameters, and therefore the goodness 
of fit, becomes unclear (Carroll et al. 2006). More advanced models are needed to 
correct for the attenuation, such as the SIMEX procedure (details below; Cook and 
Stefanski 1994).

Recently, several papers (Breiman 2001; Shmueli 2010; Yarkoni and Westfall 
2017) distinguished between explanatory and predictive modeling and motivated a 
greater emphasis on predictive modeling. Yarkoni and Westfall (2017) argued that 
predictive modeling might help psychological research in dealing with the repli-
cability crisis, because non-replicable findings are the result of overfitting. A key 
ingredient of predictive modeling is the evaluation of statistical models in a new 
sample of observations, so-called out-of-sample evaluation. More specifically, the 
parameters of the statistical model, such as those in Eq.  (4), are estimated in one 
sample of observations. Then fixing those parameters gives a prediction rule, for 
example when b̂0 = 0.3 , b̂1 = 0.1 , and b̂2 = 0.5 , the prediction rule becomes

Determining this prediction rule is equivalent to finding an explicit equation to com-
bine the predictors. Meehl (1954) argued that finding a prediction rule can best be 
done by applying statistical techniques (see also Grove et al. 2000). Observed values 
of X1 and X2 from a different sample can be inserted in this rule to obtain predicted 
criterion scores. The predicted criterion scores can be compared to the observed cri-
terion score using a (squared) correlation or the mean squared error. Out-of-sample 
evaluation protects against overfitting.

Within the context of a psychometric analysis of the reliability and validity of a 
psychological test, this predictive framework seems to be valuable for the evalua-
tion of predictive and incremental predictive validity. It is however, unknown how 
reliability influences (incremental) predictive validity when we evaluate it out-of-
sample and how incremental predictive validity differs between different statistical 
techniques. This paper fills that gap, by first showing how incremental predictive 

(3)Model 1 ∶ Y = b0 + b1X1 + �,

(4)Model 2 ∶ Y = b0 + b1X1 + b2X2 + �,

Ŷ = 0.3 + 0.1X1 + 0.5X2.
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validity can be assessed out-of-sample, and then investigating what the influence 
is of reliability of both the baseline test ( X1 ) and the target test ( X2 ) on the incre-
mental predictive validity. We further assess what happens with the out-of-sample 
incremental predictive validity when a correction model, such as SIMEX, is applied 
and we contrast that with penalized regression models targeted at optimizing out-
of-sample predictions such as ridge regression (for details see next section; Hoerl 
and Kennard 1970; Darlington 1978). SIMEX and ridge regression do not use the 
ordinary least squares (OLS) criterion to estimate the regression weights but another 
manner, leading to other estimates and thus a different prediction rule, and conse-
quently leading to another assessment of incremental predictive validity. It is worthy 
of note that the difference between these three methods is on the incremental predic-
tive validity, which is based on the difference in predictive performance between 
models 1 and 2, which is unknown within the context of predictive modeling. This 
is because typically when an estimation method is proposed or compared (such as 
ridge vs OLS), the focus is on comparing the method’s predictive performance of 
one model and not on the difference between two models.

This paper is organized as follows. In the next section, we describe the theory of 
out-of-sample assessment of prediction rules and we discuss the three estimation 
methods for estimating prediction rules. We continue with a section which contains 
preliminary analytical results. What follows is a section that describes a simulation 
study investigating the effects of within or out-of-sample assessment of incremental 
predictive validity in relation to the reliability of the baseline and target test, the 
sample size, the correlation of the two tests and the overall effect size. Furthermore, 
we investigate the three estimators of the prediction rules. Afterward, we discuss an 
empirical application, where the incremental predictive validity is assessed for three 
student selection tests. We end this paper with a discussion.

2 � Out‑of‑sample assessment of incremental predictive validity

Out-of-sample predictive performance rests on the trade-off between bias and vari-
ance. Simply stated, the more complex a statistical model is (i.e., the more param-
eters it includes), the better it will fit the data (less bias), but the more variable its 
predictions will be (more variance). On the other hand, a simpler model will fit 
worse (more bias), but its predictions will be less variable (less variance). In a for-
mal sense, when we fit a statistical model to a sample of data and investigate its 
predictive performance, the expected prediction error decomposes into (squared) 
bias and variance of the fitted model (Hastie et al. 2009; Yarkoni and Westfall 2017; 
Chapman et al. 2016; McNeish 2015). In our context, Model 2 including the new 
test under investigation has more variance but less bias than Model 1 because Model 
2 has more predictors, hence more parameters to estimate.

Trading off bias and variance is ideally done by estimating a statistical model 
in one sample and evaluating the predictive performance in another independent 
sample. However, usually we only have a single sample available. An exception 
is in statistical Monte Carlo simulation studies, where generating independent 
test or validation sets from the same (or a different) population is easily done. 
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In practical data analysis, where we only have a single sample available, cross-
validation is used (Mosier 1951; Stone 1974; Browne 2000; De Rooij and Weeda 
2020). In so-called K-fold cross-validation, we partition the data set into K inde-
pendent parts and iteratively use each part as the validation or test set and the 
other K − 1 as training or calibration set.

A standard way of assessing incremental predictive validity is by judging the 
change in explained variance, ΔR2 . Explained variance has a one-to-one rela-
tionship to the squared error when we assess in-sample. Out-of-sample, how-
ever, this link is broken and R2 is not a good measure for predictive performance. 
De Rooij and Weeda (2020) give the following example. Model 1 might predict 
Ŷ = {1, 2, 3, 4, 5} , whereas Model 2 might predict Ŷ = {7, 8, 9, 10, 11} , when the 
actual observations in the validation set are Y = {6, 7, 8, 9, 10} . It is clear that 
for both sets of predictions, the correlation with the observed outcome equals 
1, although the predictions from Model 2 are much better than those of Model 
1 (see Appendix A for a simulated example which shows this result). Further-
more, Van  Loon et  al. (2020) show that out-of-sample R2 equals 1 for a statis-
tical model only having an intercept and evaluated with K-fold cross-validation 
when K equals the sample size, that is, predictive performance would be optimal 
according to this measure and no psychological test could improve the predictive 
performance.

A better measure of predictive performance is given by the mean squared error 
of prediction, that is

where the sum is over the Nv observations in the validation set. For the two sets of 
predictions in the previous paragraph, the MSEP is 25 for the first model and 1 for 
the second. For incremental predictive validity, we use the change in MSEP

where MSEP1 is a measure of prediction error with only the baseline test and MSEP2 
that of the model including our target test. In contrast to in-sample evaluation, the 
measure of incremental predictive validity can become negative indicating that 
predictions become worse when including the new test. Positive ΔMSEP indicates 
incremental predictive validity.

In the training set, we need to estimate the coefficients for Model 1 and 2 
(Eqs. 3 and 4). In the training set of size N, we have observed values for Y, X1 and 
X2 . The observed values will be denoted by yi , xi1 , and xi2 for i = 1,… ,N . The 
estimated coefficients become part of the prediction rule, therefore, the way of 
estimation determines the prediction rule, the MSEP, and the ΔMSEP . Three dif-
ferent estimators will be investigated.

The first method of estimation is ordinary least squares (OLS). For Model 
2 (i.e., Eq. 4), the estimates are obtained by minimizing the usual least squares 
function

(5)MSEP =
1

Nv

∑

(Y − Ŷ)2,

(6)ΔMSEP = MSEP1 −MSEP2
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A similar loss function is used when estimating the regression weights for model 1 
(i.e., Eq. 3).

The second method of estimation is ridge regression, where the squared 
regression weights are penalized (Hoerl and Kennard 1970; Darlington 1978). By 
penalizing the regression weights, bias is increased but variance is reduced. For 
Model 2 (i.e., Eq. 4), the estimates are obtained by minimizing

where � is a tuning parameter, giving more or less weight to the penalty. The opti-
mal value of � is often found by cross-validation, that is, a sequence of values is 
determined and for each value K-fold cross-validation is performed. The value that 
leads to the lowest prediction error is chosen as the optimal value. There are also 
other penalized least squares methods, such as lasso (Tibshirani 1996) and elastic-
net (Zou and Hastie 2005), but these are more oriented toward variable selection 
as these penalties tend to shrink regression weights to zero. The ridge penalty often 
leads to better predictive performance, without selecting variables.

The third method of estimation is SIMEX (Cook and Stefanski 1994). The goal 
of this method is to obtain estimated coefficients from supposedly error-free pre-
dictors. In contrast to the first two methods, the SIMEX method does not use a 
loss function to be minimized. Instead, the method is composed of the following 
steps: 

1.	 In the first step, B additional data sets are generated for every value 
�1, �2 ∈ {0.5, 1, 1.5, 2} with increasing levels of measurement error. Therefore, 
draw a vector Ej ∼ N(0, �2

Ej
) and compute Zj(�j) = Xj + �jEj = Tj + Ej + �Ej for 

both predictors ( j = 1, 2 ). The variance of these inflated measurement errors of 
Zj(�j) equals (1 + �2

j
)�2

Ej
.

2.	 In the second step, regression weights are estimated using OLS for each gener-
ated data set with Y as criterion and Z1(�1) and Z2(�2) as predictor variables. As 
the � ’s increase, the predictors become less reliable, and the estimates would 
become increasingly biased. This relationship between the � ’s and the biases of 
the parameter estimates is the basis for extrapolation.

3.	 In the third step, for each value of �1 and �2 , the regression estimates are averaged 
over the B solutions.

4.	 A function (e.g., linear, quadratic, or non-linear) is fitted to the averaged estimates 
against the �s.

5.	 Using this estimated function, an extrapolation is performed to the case of no 
measurement error ( �1 = �2 = −1) , which is our SIMEX estimate of the regres-
sion weights ( b0, b1 , and b2).

(7)Lols(b0, b1, b2) =

N
∑

i=i

(yi − b0 − xi1b1 − xi2b2)
2.

(8)Lridge(b0, b1, b2) =

N
∑

i=i

(yi − b0 − xi1b1 − xi2b2)
2 + �(b2

1
+ b2

2
),
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3 � Preliminary analytical results

For simple situations, we can expect an ordering of MSEPj between ridge, OLS, and 
SIMEX by demonstrating the order of the mean squared error (MSE) of the esti-
mated coefficients. This demonstration is shown for Model 1 and Model 2 separately.

Consider Model 1 where the baseline test is the only predictor. Let b denote the 
true regression parameter that exist in the population and estimator b̂(s) = sb̂ , where 
s is a positive constant and b̂ is the OLS estimator, which is unbiased. We can write 
MSE[b̂(s)] as

Since b̂ is the OLS estimator, as a result, E[(b̂ − b)] = 0 . In addition, we can sim-
plify (sb − b)2 = b2(s − 1)2 . Thus, MSE[b̂(s)] can be written as

Denote E[(b̂ − b)2] = var(b̂) . MSE[b̂(s)] is minimal when

which is a value smaller than 1. Thus, the optimal s is not when s = 1 , which would 
make b̂(s) equal to b̂ , but somewhere between 0 and 1. With 0 < s < 1 , b̂ is shrunken 
toward zero, which is analogous to how regression weights are treated in ridge 
regression. This result has been previously shown by Darlington (1978). In addition, 
Van Houwelingen and Le Cessie (1990) showed that the same value of s also mini-
mizes the mean squared error of prediction.

Suppose that the baseline test contains measurement error. A sensible remedy 
would be to correct for b̂ because it is not an unbiased estimate of b. A correction 
for b̂ using SIMEX is equivalent to setting s to the inverse of the reliability of the 
baseline test ( s = 1∕�1 ) (Carroll et  al. 2006; Cook and Stefanski 1994). Since the 
reliability of a baseline test containing error is �1 ∈ (0, 1) , then s > 1 , which means 
that b̂(s>1) > b̂ . For s > 1 , MSE[b̂(s=1)] < MSE[b̂(s>1)] . Therefore, we can assume 
an ordering of MSE[b̂(0<s<1)] < MSE[b̂] < MSE[b̂(s>1)] (ridge, OLS, SIMEX, 
respectively).1

(9)

MSE[b̂(s)] = E[(b̂(s) − b)2]

= E[(sb̂ − b)2]

= E[(sb̂ − sb + sb − b)2]

= E[(sb̂ − sb)2 + 2(sb̂ − sb)(sb − b) + (sb − b)2]

= E[(sb̂ − sb)2] + E[2(sb̂ − sb)(sb − b)] + (sb − b)2

= E[(sb̂ − sb)2] + 2sE[(b̂ − b)](sb − b) + (sb − b)2.

(10)MSE[b̂(s)] = s2E[(b̂ − b)2] + b2(s − 1)2.

(11)s =
b2

var(b̂) + b2
,

1  See Appendix A for a simulated example.
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For Model 2, where both baseline test and target test are predictors, an order for 
the MSE of the three estimators can be shown when the tests are uncorrelated. Let 
X be an orthonormal matrix containing scores on a baseline and a target test and y 
be a vector containing scores on an outcome variable. Let b be a vector of the true 
regression coefficients b1 and b2 . In matrix notation, the OLS estimator of b is

For an estimator of a parameter, its MSE can be decomposed to its variance and 
squared bias. Thus, MSE[b̂] can be defined as follows:

Since b̂ is an unbiased estimator of b , MSE[b̂] reduces to its variance. The variance 
can be defined as var(b̂) = 𝜎2tr((X⊤X)−1) (Hoerl and Kennard 1970), where �2 is the 
variance of the residuals. Thus, MSE[b̂] for orthonormal X is 2�2.

The ridge estimator 𝐛̂(�) (Hoerl and Kennard 1970) is defined as

In the case of orthonormal matrix X , van Wieringen (2021) showed that the ridge 
estimator reduces to

It is clear that the ridge estimator shrinks the OLS estimator by (1 + �)−1 . If we take 
the expectation on both sides, the ridge estimator is shown to be biased.

In the case of orthonormal X , the mean squared error of the ridge estimator is

and because X⊤X = I , MSE[b̂(𝜅)] becomes

(12)b̂ = (X⊤X)−1X⊤y.

(13)MSE[b̂] = var(b̂) + (bias(b̂))2.

(14)b̂(𝜅) = (X⊤X + 𝜅I)−1X⊤y.

(15)

b̂(𝜅) = (X⊤X + 𝜅I)−1X⊤y

= (I + 𝜅I)−1X⊤y

= (1 + 𝜅)−1IX⊤y

= (1 + 𝜅)−1(X⊤X)−1X⊤y

= (1 + 𝜅)−1b̂.

(16)
E[b̂(𝜅)] = E[(1 + 𝜅)−1b̂] = (1 + 𝜅)−1E[b̂]

= (1 + 𝜅)−1b.

(17)

MSE[b̂(𝜅)] = E[(b̂(𝜅) − E[b̂(𝜅)])
2] + (E[b̂(𝜅)] − b)2

= E[((1 + 𝜅)−1b̂ − (1 + 𝜅)−1b)2] + ((1 + 𝜅)−1b − b)2

= (1 + 𝜅)−2E[(b̂ − b)2] + bb⊤((1 + 𝜅)−1 − 1)2

= (1 + 𝜅)−2𝜎2tr((X⊤X)−1) + bb⊤((1 + 𝜅)−1 − 1)2,

(18)MSE[b̂(𝜅)] = (1 + 𝜅)−22𝜎2 + bb⊤((1 + 𝜅)−1 − 1)2,
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which is minimal when

MSE reaches its minimum not when � = 0 ( ̂b(𝜅) = b̂ ) but when 𝜅 > 0 ( ̂b(𝜅) < b̂ ). 
Therefore, for Model 2, it is clear that MSE[b̂(𝜅>0)] < MSE[b̂] . In the case where 
X contains measurement error, which means a correction is warranted, the cor-
rection done in SIMEX will increase b̂ because X remains uncorrelated. To 
increase b̂ , � must be between −1 and 0. When −1 < 𝜅 < 0 , using  (18), it should 
be clear that MSE[b̂] < MSE[b̂(−1<𝜅<0)] . Therefore, we can assume the par-
ticular ordering of the MSE when baseline and target tests are not correlated is 
MSE[b̂(𝜅>0)] < MSE[b̂] < MSE[b̂(−1<𝜅<0)] (ridge, OLS, and SIMEX respectively). 
The expected ordering becomes challenging to prove analytically when baseline and 
target tests are correlated. When tests are correlated, the constant � will depend on 
their correlation and the true regression coefficients of each test in the model (Dar-
lington 1968). Moreover, if the tests contain measurement error, the reliability of 
both tests will also play a role (Carroll et al. 2006).

Above, we showed analytical derivations for Model 1 and Model 2. We showed 
that the mean squared error will be smaller for the ridge estimator compared to the 
OLS estimator, and that in turn the mean squared error of the OLS estimator will be 
smaller than the SIMEX estimator. This is true for both Model 1 and Model 2 (see 
Eqs. 11 and 19). Incremental predictive validity is, however, defined as the differ-
ence between the mean squared errors of prediction of Model 1 and Model 2. That 
is, we are interested in the change in the mean squared error of prediction between 
models 1 and 2, when both are estimated by ridge, OLS, or SIMEX. For this differ-
ence, no analytical results are available for the different estimators. Therefore, we 
resort to Monte Carlo Simulations.

4 � Simulation study

In the simulation study, we considered two test scores, one for the baseline test and 
one for the target test. The simulation study was divided into two parts. In Part I, we 
focused on two questions. the first question is: what is the effect of using within or 
out-of-sample assessment of incremental predictive validity? The second question 
is: what are the effects of the reliabilities of the baseline and target test on incremen-
tal predictive validity for the within sample and the out-of-sample approach and is 
this effect different for the two approaches? For both questions, we took sample size 
into account and the collinearity between the true tests scores, the overall predict-
ability of the criterion ( R2 ), and the ratio of the effect of the baseline and target test. 
In this first part, we only compared results from prediction rules estimated with ordi-
nary least squares.

In Part II, we focused on the assessment of incremental predictive valid-
ity from an out-of-sample perspective. Here, we compared out-of-sample 

(19)𝜅 =
2𝜎2

bb⊤
.
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incremental predictive validity of prediction rules estimated by OLS, SIMEX, 
and ridge. We were interested in whether the differences in out-of-sample incre-
mental predictive validity across estimation methods depended on sample size, 
the collinearity between the true tests scores, the predictability of the criterion 
( R2 ), and the ratio of the effect of the two tests.

4.1 � Data generation and simulation factors

Criterion Y is generated by

where true test scores T1 and T2 were sampled from a bivariate normal distribution 

with means � =

(

0

0

)

 and covariances Σ =

(

1 r12
r12 1

)

 , and the error term � is drawn 

from a standard normal distribution with a standard deviation of 
√

1 − R2 . We used 
four conditions of the ratio of the regression coefficients 
(b1 ∶ b2) ∈ (2 ∶ 1, 1 ∶ 1, 1 ∶ 2, 1 ∶ 0) , four conditions of overall effect 
( R2 ∈ (0.1, 0.2, 0.3, 0.4) ) and five degrees of collinearity 
( r12 ∈ (0.1, 0.3, 0.5, 0.7, 0.9) ). The first three conditions of b1 ∶ b2 reflect conditions 
when there is incremental predictive validity. The last condition of b1 ∶ b2 repre-
sents a situation where there is no incremental predictive validity in the population. 
Appendix B gives the exact calculations of the regression coefficients given overall 
effect and degree of collinearity.

In practice, instead of observing the true test scores, we observe scores that 
contain random measurement error. The observed test scores were generated by 
adding random normally distributed error to the true scores with mean 0 and 
variance

where �j is the reliability of test j, defined as in Eq. (1). We vary the reliabilities of 
both the baseline and target test. Reliabilities 0.6 to 0.9 represent the different cut-off 
values of standard criteria of acceptability (Evers et al. 2010a). Reliabilities of 0.5 
and 1 reflect extreme cases of reliability.

Calibration data were generated with sample sizes of 50, 100, 200, 500, and 
1000. These conditions reflect typical sample sizes that may be found in valida-
tion studies of various psychological tests. Validation data were generated using 
the same model, but with a sample size of 10,000. A large number of the vali-
dation sample provides the true error of the prediction rule (Varma and Simon 
2006). Furthermore, having a uniform size for the validation sample enables a 
fair comparison of the predictive accuracies between prediction rules. Table  1 
gives a summary of the design factors for our simulation study. In each of the 
14,400 conditions, we generated 500 calibration and validation sets.

Y = b1T1 + b2T2 + �,

(20)�2
Ej
=

1 − �j

�j
,
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4.2 � Outcome measure of incremental predictive validity

For each generated calibration data set, we fitted the two regression models 
defined in (3) and (4) using all three estimators (OLS, ridge, and SIMEX), result-
ing in two prediction rules for each estimation method.

In Part I of the simulation studies, we only investigated the estimated predic-
tion rules from OLS. To compare the within-sample assessment of IV with the 
out-of-sample assessment, we used either the calibration data set (again) as the 
validation data set or the validation data set. Inserting the values of the test scores 
in these prediction rules gives predicted criterion scores. For both models, we 
can compute the MSEP and their difference. When the calibration set is used as 
validation set, the MSEPs are equal to the usual MSEs and they are prone to over-
fitting. When the validation data set is used, the assessment should be protected 
against overfitting.

In Part II, where we only assess IV out-of-sample, we also take the SIMEX 
and ridge rules into account. Our interest lies in the difference between these 
three prediction rule estimators on the IV and possible interactions with other 
design factors.

To evaluate our simulation results, we performed two mixed analysis of vari-
ance (ANOVA) tests using SPSS version 27 (IBM corp 2020). The outcome vari-
able in these mixed-ANOVA’s is the ΔMSEP . To inspect the size of the effects in 
the mixed-ANOVA, we used the partial �2 . We used the guidelines of Cohen et al. 
(2013), that is �2 = 0.01 denotes a small effect, �2 = 0.06 a medium effect, and 
�2 = 0.14 a large effect.

The simulation was done using R version 4.2.1 (R Core Team 2022). To imple-
ment the SIMEX method, we used the simex package (Lederer et al. 2017) and 
for the ridge method, the parcor package (Kraemer et  al. 2009) was used. In 
the SIMEX implementation, we used the default options of the main function to 
run the algorithm: quadratic extrapolation function, 100 bootstrap samples, and 
a predetermined set of � values as previously mentioned. In the ridge method 
implementation, we used a tenfold cross-validation process to choose the optimal 
shrinkage parameter ( � ) from a predetermined set of values of this parameter pro-
vided in the function.

Table 1   Summary of simulation design factors

Description Factors Levels n levels

Reliability of baseline test �
1

0.5, 0.6, 0.7, 0.8, 0.9, 1 6
Reliability of target test �

2
0.5, 0.6, 0.7, 0.8, 0.9, 1 6

Calibration sample N
cal

50, 100, 200, 500, 1000 5
Ratio of the effect size b

1
∶ b

2
1:0, 2:1, 1:1, 1:2 4

Degree of collinearity r
12

0.1, 0.3, 0.5, 0.7, 0.9 5
Predictability of the criterion R

2 0.1, 0.2, 0.3, 0.4 4
Total conditions 6 × 6 × 5 × 4 × 5 × 4 14,400



	 Behaviormetrika

1 3

4.3 � Simulation results

4.3.1 � Part I: effect of within or out‑of‑sample assessment of IV

To investigate the effect of using a within or out-of-sample assessment of IV and 
the effect of reliabilities on IV for each approach, a mixed-ANOVA analysis was 
performed with the assessment approach (i.e., within or out-of-sample) as the 
within-subjects factor and the data design factors as between-subjects factors. We 
included all main effects till three-way interactions. Mauchly’s test of sphericity 
was violated in this analysis. Therefore, all the significance tests are based on the 
Greenhouse–Geisser correction. The assumptions of normality of the residuals of 
the ANOVA were assessed by checking the raw skewness values of the residuals 
in each of the 14,400 conditions. We found that the majority of the skewness were 
between −2 and 2 which is considered as not severely skewed (Kim 2013; Kline 
2015; Hair Jr et al. 2021). Therefore, we proceeded with using the results from this 
mixed-ANOVA. However, because there were some conditions that fell outside of 
the range, we also performed robust ANOVAs on the effects that we interpret to 
ensure that the significance tests were not affected.

In the regular mixed-ANOVA, we found a significant main effect of the approach 
to analyze IV with a large effect size F(17, 199,737) = 469,590.395 , p < 0.001 , 
�2 = 0.061 . This effect was found to only depend on the size of the calibration 
sample with a medium to large effect F(4, 7,199,737) = 103,035.608 , p < 0.001 , 
�2 = 0.054 . The interaction effect between approach and other design factors ( �1 , �2 , 
b1 ∶ b2 , r12 , and R2 ) had effect sizes below 0.01, and therefore not considered influ-
ential. Note that the main effect of IV approach and the interaction effect between IV 
approach and calibration sample size were also significant in the robust ANOVAs 
(see Table 5 in Appendix C).

Figure 1 shows aggregated results of IV for the within or out-of-sample approach 
against Ncal collapsed over all other factors. As seen in Fig.  1, there is a discrep-
ancy between the within- and out-of-sample assessment, that is, IV is larger when 
assessed within sample, a sign of overfitting. This difference diminishes as the size 
of the calibration sample increases.

Effects of reliabilities on IV for both approaches As the difference in IV between 
approaches only depended on Ncal , we conclude that the effects of the reliabilities 
( �1 and �2 ) were the same for both approaches. Therefore, we further inspected the 
between-subjects effects of the reliabilities. In general, all design factors (except the 
size of the calibration sample) were found to have significant and large between-
subjects main effects on IV (see Table 2). For an overview of the effects, we listed 
the between-subjects effects that were medium to large in Table 2. Note that these 
effects were also found to be significant in the robust ANOVAs (see Table  5 in 
Appendix C). As can be seen in Table 2, the size of the calibration sample did not 
appear, which suggests that its between-subjects effects were not influential because 
their effect sizes were below .01. The factors that were influential were b1 ∶ b2 , r12 , 
R2 , and the reliabilities of the tests ( �1 and �2 ). In the following, we focus the inter-
pretation on medium to large two-way interaction effects on IV that involve the reli-
abilities of the tests.
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Figure  2 shows several multi-panel line plots in which we display aggregated 
results of IV for each approach against the reliability of the target test ( �2 ) and 
against the reliability of the baseline test ( �1 ). The panels in each plot represent one 
other design factor. Notice that for all plots the two lines representing the within and 
out-of-sample approaches to assess IV are parallel, showing the main effect of the 
approach to assess IV.

The reliability of the target test is shown to have a positive relationship with its 
IV, such that the IV increased as the test became more reliable (Fig. 2a, b). It can 
also be seen that this effect became stronger as the predictability of the criterion ( R2 ) 
increased (see Fig. 2a). In Fig. 2b, the effect of the reliability of the target test ( �2 ) 
on IV weakened as the ratio between b1 and b2 increased. For the condition where 
there is no IV ( b1 ∶ b2 = 1 ∶ 0 ), within-sample IV was always positive, whereas 
out-of-sample IV was negative for very weak reliability (0.5 and 0.6) but could be 
slightly positive when tests had high reliability ( 𝜌2 > 0.7).

The effect of the reliability of the baseline test on the IV of the target test was 
dependent on the predictability of the criterion (Fig.  2c) and collinearity between 
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Fig. 1   Incremental predictive validity ( ΔMSEP ) against N
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the true scores of the tests (Fig. 2d). Figure 2c shows the relationship between IV 
and the reliability of the baseline test ( �1 ) aggregated on the predictability of the 
criterion. We see that as the reliability of the baseline test becomes higher the IV 
of the target test decreased. In addition, this effect became stronger as the crite-
rion was increasingly predictable. In Fig. 2d, we can see that as the true test scores 
became highly correlated, the effect of the reliability of the baseline test ( �1 ) became 
stronger. With higher reliability, the IV of the target test decreased, more so when 
collinearity increased.

4.3.2 � Part II: effect of estimation methods on out‑of‑sample assessment of IV

The second goal of the simulation study is to compare the out-of-sample assessment 
of IV for the different estimators of the prediction rule. Before we discuss this com-
parison, we show how the estimates in the prediction rules differ between the three 
methods.

Figure 3 shows aggregated results of the coefficients of Model 2 across 500 rep-
etitions for the condition when the true regression coefficients were equal, the size 
of calibration sample was moderate ( Ncal = 200 ), the effect of the full model was 
medium ( R2 = 0.2 ), and with low collinearity in the true test scores ( r12 = 0.1 ). Fig-
ure 3a shows the effect of the reliability of the target test ( �2 ) on the estimates when 
the baseline test is fully reliable ( �1 = 1 ), whereas Fig. 3b shows the effect of the 
reliability of the baseline test ( �1 ) when the target test if fully reliable ( �2 = 1).

As shown in Fig.  3a, the estimated intercepts were not affected by the reli-
ability of the target test and they were close to the true values. The reliability of 
the target test influences its corresponding coefficient b̂2 , such that, as reliability 

Table 2   Between subjects effects table on IV (averaged over approaches) using prediction rules from 
OLS

Robust ANOVA = (+) significant ( p < 0.05 ) and (−) not significant ( p > 0.05)
SS sum of squares, df degrees of freedom, �2 = partial eta-squared

SS df F �2 Robust ANOVA

(b
1
∶ b

2
) 15,110.20 3 5,818,679.37 0.708 +

R
2 7529.46 3 2,899,465.87 0.547 +

(b
1
∶ b

2
 ) × r

12
3635.56 12 349,997.61 0.368 +

(b
1
∶ b

2
 ) × R2 3023.37 9 388,082.64 0.327 +

�
2

2742.66 5 633,691.51 0.306 +
�
1

2230.81 5 515,429.15 0.264 +
r
12

1817.24 4 524,840.93 0.226 +
�
2
 × ( b

1
∶ b

2
) 1013.55 15 78,060.28 0.140 +

�
1
 × r

12
861.33 20 49,752.31 0.121 +

�
2
 × R2 547.76 15 42,186.49 0.081 +

�
1
 × R2 446.90 15 34,418.59 0.067 +

r
12

 × R2 363.83 12 35,026.43 0.055 +
Error 6232.20 7,199,737
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increased, the estimated coefficients approximate the true values. Estimates of the 
SIMEX method were on average closer to the true values compared to ridge and 
OLS estimates. Estimates b̂1 and b̂2 from the ridge method were always smaller 
than the estimates from OLS (and SIMEX), indicating the shrinkage effect on the 
coefficients.

In Fig. 3b, it is shown that the reliability of the baseline test only influenced 
the b1 estimates. When 𝜌1 < 0.9 , estimated b̂1 from the SIMEX correction were 
on average smaller than its true value. Estimates of b̂2 were on average very close 
to the true value and were not affected by the reliability of the baseline test. In 
this figure, we can also see that the ridge estimates of b̂1 and b̂2 were consistently 
smaller than the estimates from OLS and SIMEX.

To compare out-of-sample IV between the three methods, a mixed ANOVA anal-
ysis was performed to investigate the effect of varying estimation methods on IV. In 
the analysis, methods (Methods) are the within-subjects factor with out-of-sample 
IV as the dependent variable. The analysis included main effects of all the factors 
until three-way interactions between Methods and two data design factors. Mauch-
ly’s test of sphericity was violated in this analysis, therefore the significance of the 
effects was tested based on the Greenhouse–Geisser correction. The assumption of 
the normality of the residuals of the ANOVA was assessed by checking the skew-
ness of the residuals for each outcome in each of the 14,400 conditions. We found 
that most of the conditions were within the range −2 and 2, which is considered not 
severely skewed (Kim 2013; Kline 2015; Hair Jr et al. 2021). Thus, we proceeded 
with using the results from this mixed-ANOVA. However, as there were conditions 
that fell outside of the acceptable range of skewness, we performed several robust 
ANOVAs to check whether this affected the results of the significance tests.

In the mixed-ANOVA, we found a significant main effect of Methods on IV 
F(1.04, 7,489,711.875) = 233,724.04 , p < 0.001 , �2 = 0.031 . Additionally, we 
found that the effect of Methods moderately depended on the size of the cali-
bration sample F(4.161, 7,489,711.875) = 105,253.12 , p < 0.001 , �2 = 0.055 . The 
interaction between Methods and the reliability of the target test was small to 
medium F(5.201, 7,489,711.875) = 71,839.617 , p < 0.001 , �2 = 0.048 . In addi-
tion, the reliability of the baseline test was found to have a small effect on how 
the methods effect IV F(5.201, 7,489,711.875) = 23,987.41 , p < 0.001 , �2 = 0.016 . 
The above effects were also tested using robust ANOVAs (see Table 6 in Appen-
dix C) and were found to be significant.

As seen from the results, most design factors influenced the effect of Methods 
on IV; however, collinearity between the tests ( r12 ) and predictability of the cri-
terion ( R2 ) had negligible impact, as the effect sizes of their interaction effects 
with Methods were below 0.01. Next we interpret the interaction effects between 
Methods and design factors with effect sizes above 0.01.

Fig. 3   Mean estimated coefficients of Model 2 (i.e., b̂
0
 , b̂

1
 , and b̂

2
 ) against (a) the reliability of the tar-

get test ( �
2
 ; with �

1
= 1 ) and (b) the reliability of the baseline test ( �

1
 ; with �

2
= 1 ) as a function of 

three estimation methods (dotted = OLS, dashed = SIMEX, and bold = ridge), for the condition when 
R
2 = 0.2 , N

cal
= 200 , b

1
∶ b

2
= 1 ∶ 1 , and r

12
= 0.1 . Red lines represent true values of the coefficients in 

the population

▸
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Figure  4 shows the interaction effects between Methods and Ncal , �2 , and �1 , 
averaged over 500 replications and collapsed over the other design factors. We see 
larger differences in IV between estimation methods when the calibration sample 
was small (Fig. 4a) small reliability of the target test (Fig. 4b) and high reliability of 
the baseline test (Fig. 4c). Overall, the results show, although not substantial, ridge 
slightly enhanced the IV of the target test, and using the SIMEX lowered IV com-
pared to OLS in most cases.

5 � Empirical illustration

In this section, we illustrate how to evaluate out-of-sample incremental predictive 
validity in practice and compare it to the classical approach. We use data from Nies-
sen et al. (2016), who studied the predictive validities of three psychological tests in 
predicting higher education performance for the psychology bachelor program at a 
Dutch University. These tests were created to select students.

The first test, called PSYCHOLOGY, is a trial studying test that mimics an exam 
for a course in the first year of the bachelor’s program. The other two tests were 
specific skills test for English and Mathematics (further denoted as ENGLISH and 
MATH). Our analysis focuses on investigating the incremental predictive validity of 
these tests in predicting academic performance over and above high school grades. 
Academic performance is quantified as the grade point average at the end of the first 
year (FYGPA) with scores running from one to ten. This criterion was calculated 
using the average of all the course grades taken in the first year and was reported to 
have a reliability of 0.89 in a follow-up study (Niessen et al. 2018).

The baseline test, High School GPA (HSGPA), was computed by the authors by 
averaging reported course grades from high school (Niessen et al. 2016). In a fol-
low-up study, also including this cohort, HSGPA was reported to have a reliability 
of 0.73 based on calculated intraclass correlations (Niessen et  al. 2018). The trial 
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Fig. 4   Incremental predictive validity ( ΔMSEP ) against (a) calibration sample size ( N
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1
 ) as a function of the 

Methods (dotted = OLS, dashed = SIMEX, and bold = ridge)
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studying test (PSYCHOLOGY) consisted of 40 items with scores running from 0 
to 40. This target test was reported to have a reliability of 0.81 based on Cronbach’s 
alpha (Niessen et al. 2016). The scores for ENGLSH and MATH run from 0 to 20 
and 0 to 30, respectively. The reliability of ENGLISH is 0.70 and of MATH 0.76 
(Niessen et al. 2016).

In this reanalysis, we used a sub-sample ( n = 200 ) of this data set based on one 
cohort which comprises students that completed the highest Dutch secondary level 
of education before entering university. We excluded one erroneous observation2 
from this sub-sample. In our data set, HSGPA is positively correlated with each of 
the three new tests, correlation with PSYCHOLOGY equals 0.45 (p < 0.001), with 
ENGLISH 0.30 (p < 0.001), and with MATH 0.36 (p < 0.001).

To assess incremental predictive validity for, say, the PSYCHOLOGY test, two 
statistical models need to be compared:

In the classical, within-sample approach, we fit these two models and examine the 
change in MSE, ΔR2 , and its F-statistic with corresponding p-value to assess the 
incremental predictive validity. A residuals check for both models that were esti-
mated using OLS was done and showed no severe violations of assumptions.

In the out-of-sample approach, we only considered prediction rules estimated 
using OLS and the ridge, as the simulations showed that the SIMEX method works 
poorly to assess incremental predictive validity. Because we only have a single sam-
ple, K-fold cross-validation is needed. To estimate the MSEP of both models, a ten-
fold cross-validation process was employed for the OLS method and a nested tenfold 
cross-validation for the ridge method. Nested cross-validation is suggested for meth-
ods that require choosing a penalty parameter (Varma and Simon 2006) as in our 
case for ridge regression. In every cycle of the 10-fold cross-validation, we trained 
the model on 9 parts and validate on 1. During the training, we need to find the opti-
mal penalty parameter, which needs cross-validation again. So, in the training set, 
consisting of 9 parts of the data, we used tenfold cross-validation to obtain an opti-
mal penalty parameter. Then the regression model with this optimal penalty param-
eter was fitted again on 9 parts. Based on the estimated parameters, a prediction rule 
was created and used for predicting criterion scores in the left out validation part. 
The final estimate of the prediction error is the average prediction errors of all folds.

Both cross-validation processes were repeated 100 times as recommended by 
Harrell (2015) and De Rooij and Weeda (2020). For every round of cross-validation, 
IV was estimated by subtracting the average squared prediction error of Model 2 
from Model 1 (as in Eq. 6). The 100 repetitions provided 100 measures of incre-
mental predictive validity for each estimation method. As in De Rooij and Weeda 
(2020), we use boxplots to visualize incremental predictive validity.

Model 1 ∶ FYGPA = b0 + b1HSGPA + �,

Model 2 ∶ FYGPA = b0 + b1HSGPA + b2PSYCHOLOGY + �.

2  Value of one for first-year grade point average was available while grades on first-year courses were 
not.
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5.1 � Results

Let us start with the classical, within-sample approach of assessing incremental 
predictive validity. For each of the three new tests, we fitted two models. The first 
model only has HSGPA as predictor, the second has HSGPA and the new test as 
predictors. Table  3 shows the change in MSE, the change in R2 , the incremen-
tal F-test (each with df = (1, 197)), and its associated p-value. The table shows 
that there is incremental predictive validity for PSYCHOLOGY. For MATH, the 
p-value is 0.07, showing it is close to significant, whereas for ENGLISH there is 
no evidence of incremental predictive validity.

For the out-of-sample approach, the incremental predictive validity of the three 
tests was estimated by the ridge method and OLS. The results are shown in Fig. 5. 
For these three tests, the estimation method does not make a large difference. 
For the PSYCHOLOGY test, the average incremental predictive validity (rounded 
to the third decimal) equals ΔMSEP = 0.051 , for ENGLISH ΔMSEP = −0.001 , 
and for MATH ΔMSEP = 0.004 . The boxplots show that there is some variability 
around these averages. For PSYCHOLOGY, in every of the 100 repetitions of 
the repeated cross validation ΔMSEP is positive for both estimation methods. For 
ENGLISH, only 33 (or 35) of the repetitions lead to incremental predictive valid-
ity using least squares (ridge), and for MATH in 89 out of the 100 repetitions we 
found incremental predictive validity. Also from the boxplots we can tell that for 
both ENGLISH and MATH there is no real incremental predictive validity, where 
for ENGLISH the box includes zero, for MATH the whiskers include zero.

Table 3   Assessment of 
incremental predictive validity 
for each of the three tests

ΔMSE ΔR2 F p

Psychology 0.060 0.057 18.800 < 0.001

English 0.005 0.005 1.532 0.217
Math 0.011 0.011 3.236 0.074
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Fig. 5   Incremental predictive validity ( ΔMSEP ) for (a) PSYCHOLOGY, (b) ENGLISH, and (c) MATH. 
Each as a function of Estimation methods (least squares and ridge)
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For PSYCHOLOGY on the other hand, it seems there is incremental predictive 
validity. However, before jumping to final conclusions we need to see how much 
better the predictions really become. The root mean squared error of prediction is 
an easier method to interpret, as it is on the same scale as the original measure-
ments. The average RMSEP for Model 1 equals 0.8358 and for Model 2 0.8048. 
That means that by including the PSYCHOLOGY test, the individual predictions for 
the First Year Mean Grade become on average 0.031 better. As grades for courses 
often use only a single decimal, one might wonder whether this difference is worth 
the trouble.

6 � Discussion

The main interest of incremental predictive validity research is to see whether add-
ing a new test increases the accuracy of predictions of a given criterion. Usually 
researchers evaluate the incremental predictive value within the sample, that is, they 
use the same sample to estimate the prediction models and to evaluate the outcome. 
Such a procedure might be prone to overfitting. Therefore, out-of-sample evaluation 
of incremental predictive validity might be better.

In this paper, we investigated such an out-of-sample assessment of incremental 
predictive validity. First, we performed a simulation study to compare the within-
sample approach to the out-of-sample approach to assess incremental predictive 
validity. In this simulation study, we also investigated the relationships between 
the reliabilities of the baseline and target test on incremental predictive validity for 
both approaches. Finally, we compared the out-of-sample assessment of incremen-
tal predictive validity using three different estimation methods and showed how to 
implement the out-of-sample approach to assess incremental predictive validity in 
practice.

Overall, the results of the simulation study showed that there was a difference 
between using the within- and out-of-sample approach to assess incremental pre-
dictive validity. The within-sample assessment overestimated the out-of-sample 
assessment for small sample sizes. In smaller samples, out-of-sample predictions 
from models 1 and 2 have more bias (more error) than those from larger samples. 
Therefore, the IV of the target test is smaller than what it could have been when esti-
mated with a larger sample. With larger samples, the out-of-sample predictions are 
assumed to be more accurate. Thus, the IV of the target test is estimated to be larger 
than that of smaller samples.

We also found that the reliabilities of the baseline test and the target test affected 
the incremental predictive validity of the target test. However, these effects did not 
differ between the within- and out-of-sample approaches. This is actually good news, 
because all our knowledge on the relationship between reliability and predictive or 
incremental predictive validity is based on within sample reasoning. This knowledge 
is now also applicable for out-of-sample assessment of incremental predictive valid-
ity. We suspect that only sampling error played a role in the difference between in- 
and out-of-sample approaches of IV as the reliabilities of the baseline and the target 
test were equal in both calibration and validation samples.
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The simulation study also showed that out-of-sample incremental predictive 
validity depends on how we estimate the prediction rule. In most cases, using the 
SIMEX method for estimating the prediction rules leads to a poor assessment of 
incremental predictive validity compared to OLS, especially when the test(s) had 
weak reliabilities. This is partly in line with Carroll et al. (2006) who already sug-
gested using the original rules estimated from the error-prone tests. A plausible 
reason is that the test scores used for predicting in new samples are error-prone. 
Therefore, if the estimated regression weights are corrected for measurement error, 
there is a mismatch between the estimated coefficients with the test scores in the 
new sample, which can lead to more error in the predictions. In addition, the SIMEX 
method requires additional parameters to estimate: reliability of the tests and an 
extrapolation function, which adds more variance that may lead to more prediction 
error. Note that in the simulation study, reliability of the tests were known and there-
fore not estimated (in practice they are estimated), but even then SIMEX performed 
worst for the majority of cases.

Furthermore, the simulation results showed that the ridge method slightly 
enhanced incremental predictive validity compared to the OLS and SIMEX in small 
samples. In other words, the results showed that the way the weights of the predic-
tion rule are estimated does matter. This finding is in contrast with the suggestion in 
Wainer (1976) to standardize predictors and use unit weights, but in line with Sack-
ett et al. (2017) who showed that unit weighting in combination with standardization 
is not recommended for estimating incremental predictive validity.

In large samples, the assessed incremental predictive validity was the same for 
ridge and OLS rules. A plausible explanation for this finding may lie in the ratio 
between sample size (N) and the number of predictors (P). Although using biased 
estimates in prediction rules has been noted to be beneficial in multiple regression 
(Darlington 1978), as N/P increases, the penalty parameter � may approach zero. 
As a consequence, the rules obtained from the ridge method become equivalent to 
the rules from OLS (McNeish 2015). This is also a plausible explanation for find-
ing equal estimates of the incremental predictive validity using the OLS and ridge 
method in the application example.

In the application example, we showed how to assess incremental predictive 
validity using the out-of-sample approach. Therefore, we tested the incremental 
predictive validity of three new student selection tests. In a classical approach, one 
showed incremental predictive validity, for another test (ENGLISH), there was no 
evidence of incremental predictive validity, and for the third test (MATH), there 
is small evidence of incremental predictive validity (i.e., a marginally significant 
effect). In the out-of-sample approach, only the PSYCHOLOGY test showed incre-
mental predictive validity. However, if we were to use this test, the predictions of 
academic achievement would only be 0.031 points better. Conceptually, by find-
ing the decrease in prediction error alone one could confirm the decision to utilize 
the test for selection in addition to high-school grades. This does not imply that we 
should refrain from assessing other factors that might contribute to test utility (Hun-
sley and Meyer 2003). The decision to include the trial studying test in the selec-
tion procedure requires a balancing act across a variety of factors. For example, the 
institute should rate the improvement of 0.031 points in the prediction of academic 
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achievement against the labor costs of test maintenance, incurred cost of administer-
ing the test, and the effort of the applicants or test takers.

In short, we argued that incremental predictive validity should also be assessed 
from an out-of-sample perspective. Such a perspective protects against overfitting 
and provides more detail in what we actually gain (0.031 points versus 6% extra 
explained variance). Especially for smaller samples, the out-of-sample approach 
seems valuable. Furthermore, we investigated the link between the reliability of the 
baseline and the target test to incremental predictive validity and found that this link 
is the same irrespective of the within- or out-of-sample approach to assess incre-
mental predictive validity.

Appendix A

In this section, we performed a small simulation experiment to demonstrate how dif-
ferent prediction rules can have identical R2 but different mean squared errors when 
evaluated using out-of-sample data. We generated an outcome Y using the following 
model

where T contain true scores draw from a standard normal distribution, b0 = 0 , 
b1 = 0.2 , and � , denoting the error drawn from a normal distribution with zero mean 
and variance of 

√

1 − b2
1
.

Instead of observing T, we often observe X = T + E . In this example the reliabil-
ity of X is set to � = 0.9 , using 20, we can calculate �2

E
 . The population size was set 

to 10,000 from which we repeatedly draw calibration samples of size 100 and fit the 
following regression model using the OLS method:

We obtain the estimated coefficients (i.e., b̂ols
0

 and b̂ols
1

 ) of the prediction rule and 
used these coefficients to compute the predicted values on a validation sample of 
1000 that was also drawn from the same population. This process was repeated 
100 times. Furthermore, we created different prediction rules by crudely applying 
a shrinkage factor on the weight of OLS b̂ols

1
 . The predicted values in the validation 

sample are given by

with

where s is the shrinkage factor ranging from 0 to 1.1 in increments of 0.1. Note that 
when s = 1 , we simply apply the prediction rule from OLS, b̂∗

1
= b̂ols

1
 . When s < 1 , 

Y = b0 + b1T + �

Ycal = b0 + b1X
cal + �.

Ŷval = b̂0 + b̂∗
1
Xval

b̂∗
1
= s ∗ b̂ols

1
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b̂∗
1
< b̂ols

1
 . Fixing s = 1.1 resembles performing a correction on the estimated coef-

ficient when � = 0.9 . Thus, b̂∗
1
> b̂ols

1
.

Figure 6 show the aggregated results over 100 repetitions. In this figure, the R2 cal-
culated in the validation sample remains identical for each shrinkage factor, but the 
mean squared errors vary as a function of this factor. Notice also in Fig. 6a, the solution 
with the smallest average mean squared error is at s = 0.7 , suggesting a benefit from 
shrinking the coefficient.

Appendix B

In this section, we describe the process of obtaining the regression coefficients b1 and 
b2 in the simulation study. In the simulation study, the standard deviations of true scores 
T1 and T2 , and outcome variable were fixed to one ( �T1 = �T2 = �Y = 1 ). Thus, the 
covariance between the true scores is equivalent to the correlation of these true scores 
�12 = r12 and R2 = var(Ŷ) . The squared multiple correlation is defined as

By knowing  21 and the four conditions of the ratio of the regression coefficients 
(b1 ∶ b2) ∈ (2 ∶ 1, 1 ∶ 1, 1 ∶ 2, 1 ∶ 0) , we can find the regression coefficients b1 and 
b2 in two steps. The first step is to find the expression for b1 , given certain levels of 
R2 , r12 , ratio of b1 and b2 . For a summary of these expressions for b1 , see Table 4. 
The second step is to compute calculate b2 by knowing b1 . Note that in the fourth 
condition of the ratio of the regression coefficients (1:0), which means that  b1 = R , 
and therefore b2 = 0.

(21)R2 = b2
1
+ b2

2
+ 2b1b2r12.
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Fig. 6   Out-of-sample (a) Mean squared error (MSEP) and (b) R2 against various shrinkage values. As 
s < 1 more shrinkage is applied with s = 1 equal to the solution from OLS
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Appendix C

In this section, we list R-code to apply the robust ANOVAs that were highlighted 
in this paper ( 𝜂2 > 0.01 ). These robust ANOVAs allow us to examine whether our 
results were affected by severe skewness of the residuals. Robust ANOVAs were 
performed in R using the WRS2 package (Mair and Wilcox 2020) and we used 
� = 0.05 for significance testing. The function |bwtrim()| fits a mixed-ANOVA 
model with one between- and one within-subjects effects and |t2way()| fits a two-
way ANOVA model. For the within-subjects effects in Part I and Part II of the 
simulation study, we fitted robust mixed-ANOVA models to test the differences 
in IV. For the between-subjects effects in Part I (see Table 2), we fitted two-way 
between-subjects robust ANOVAs on the differences in the average of the IV esti-
mated in- and out-of-sample from OLS.

Table 4   Summary of analytical 
expressions for b1 for different 
ratios between b1 and b2

Ratio Expression

b
1
= b

2 b
1
=
√

R2

2+2r12

b
1
= 2b

2
b
1
=

√

R2

5

4
+r

12

2b
1
= b

2 b
1
=
√

R2

5+4r12

Table 6   Summary of the robust ANOVAs that were performed to test several effects from the mixed-
ANOVA in Part II

Table 5   Summary of the robust ANOVAs that were performed to test several effects from mixed-
ANOVA in Part I
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