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Abstract
Logistic reduced rank regression is a useful data analysis tool when we have multi-
ple binary response variables and a set of predictors. In this paper, we describe logis-
tic reduced rank regression and present a new majorization minimization algorithm 
for the estimation of model parameters. Furthermore, we discuss Type I and Type 
D triplots for visualizing the results of a logistic reduced rank regression model, 
compare them, and then develop a hybrid triplot using elements of both types. Two 
empirical data sets are analyzed. This analysis is used to (1) compare the new algo-
rithm to an existing one in terms of speed; and (2) to show the hybrid triplot and its 
interpretation.

Keywords  Constrained PCA · MM algorithm · Generalized SVD · Visualization

1  Introduction

In many scientific disciplines, quantitative information is collected on a set of vari-
ables for a number of objects or participants. When the set of variables can be divided 
into a set of P predictors and a set of R responses, we need regression type of models. 
Researchers often neglect the multivariate nature of the response set and consequently 
univariate multiple regression models are fitted, one for each response variable sepa-
rately. Such an approach does not take into account that the response variables might be 
correlated and does not provide insight into the relationships between the response vari-
ables. In this paper, the interest lies in the case where the R response variables are binary.

For binary response variables, the typical regression model is a logistic regres-
sion (Agresti 2013), that is, a generalized linear model (McCullagh and Nelder 
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1989) with logit link function and a Bernoulli or binomial distribution. In logistic 
regression models, the probability that person i answers yes (or 1) on the response 
variable Y is defined as �i = P(Yi = 1) . These probabilities (or estimated values) are 
commonly defined in terms of the log-odds form (in GLMs the “linear predictor’ ’), 
denoted by �i , that is,

and similarly

Finally, the log-odds form is a (linear) function of the P predictor variables, that is

where xip is the observed value for person i on predictor variable p and m and ap are 
the parameters which need to be estimated. The intercept m is the expected log-odds 
when all predictor variables equal zero, and the regression weights ap indicate the 
difference in log-odds for two observations that differ one unit in predictor variable 
p and have equal values for all other predictor variables.

Having R outcome variables ( Yr , r = 1,… ,R ) a multivariate model can be 
defined with probabilities �ir = P(Yir = 1) that are parameterized as

and the log-odds form is

The intercepts can be collected in a vector m and the regression weights can be col-
lected in a matrix A of size P × R.

For multivariate outcomes, Yee and Hastie (2003) proposed reduced rank vector 
generalized linear models, that are multivariate models with a rank constraint on the 
matrix with regression weights, that is,

where B is a matrix of size P × S and V a matrix of size R × S . The rank of the 
matrix A is S, a number in the range 1 to min(P,R) , and when S < min(P,R) the 
rank is reduced, hence the name reduced rank regression. The matrix B has elements 
bps for s = 1,… , S and V has elements vrs . The S elements for the predictor variable 

�i =
exp(�i)

1 + exp(�i)
=

1

1 + exp(−�i)
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p (i.e., the p-th row of B ), are collected in the column vector bp ; similarly, the S ele-
ments for response variable r are collected in the column vector vr.

At this point, it is instructive to take a step back to models for continuous out-
comes. Reduced rank regression (Anderson 1951; Izenman 1975; Tso 1981; Davies 
and Tso 1982), also called redundancy analysis (Van den Wollenberg 1977), has 
been proposed as a multivariate tool for simultaneously predicting the responses 
from the set of predictors. Reduced rank regression can be motivated from a regres-
sion point of view, but also from a principal component point of view.

From the regression point of view of reduced rank regression, the goal is to pre-
dict the response variables using the set of predictor variables. We, therefore, set up 
a multivariate regression model

where m denote the vector with the R intercepts, A is a P × R matrix with regression 
weights, and E is a matrix with residuals. In the usual multivariate regression model 
the matrix of regression coefficients is unrestricted. In reduced rank regression, the 
restriction A = BV� is imposed.

Reduced rank regression can also be cast as a constrained principal component 
analysis (PCA, Takane (2013)). In PCA, the matrix with multivariate responses 
( Y ) of size N × R is decomposed into a matrix with object scores ( U ) of dimension 
N × S , and a matrix with variable loadings ( V ) of size R × S . The rank, or dimen-
sionality, should be smaller or equal to min(N,R) . We can write PCA as the follow-
ing expression

where usually, identifiability constraints are imposed such as V�V = I or U�U = NI . 
To estimate the PCA parameters, usually the means of the responses are computed, 
that is m̂ = N−1Y�

1 . Then, the centered response matrix Yc = Y − 1m̂� is com-
puted, and subsequently U and V are estimated by minimizing the least squares loss 
function

where ‖ ⋅ ‖2 denotes the squared Frobenius norm of a matrix. Eckart and Young 
(1936) show that this can be achieved by a singular value decomposition. With pre-
dictor variables, the scores ( U ) can be restricted to be a linear combination of these 
predictor variables, sometimes called external variables (i.e., X ), that is, U = XB , 
with B a P × S matrix, to be estimated. Ten Berge (1993) shows that B and V can be 
estimated using a generalized singular value decomposition in the metrics X′X and 
I (see Appendix A for details), that is, we decompose (X�X)−

1

2X�Yc with a singular 
value decomposition, that is

Y = 1m� + XA + E,

Y = 1m� + UV� + E,

L(U,V) = ‖Yc − UV�‖2,

(1)(X�X)−
1

2X�Yc = P�Q�
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where P�P = Q�Q = I and � is a diagonal matrix with singular values. Subse-
quently, define the following estimates

The m are subsequently estimated as

Reduced rank regression can thus be understood from two different points of views: 
a multivariate regression model with constraints on the regression weights or a 
principal component analysis with constraints on the object scores. Yee and Hastie 
(2003) approached logistic reduced rank regression as a multivariate regression 
model with a rank constraint on the regression weights. We could approach logistic 
reduced rank regression also from the PCA point of view. PCA for binary variables 
has received considerable attention lately (Collins et al. 2001; Schein et al. 2003; De 
Leeuw 2006; Landgraf and Lee 2020).

De Leeuw (2006) defined the log-odds term �ir in terms of a principal compo-
nent analysis �ir = mr + u�

i
vr , where ui is the vector with object scores for partici-

pant i. Similar to standard PCA, object scores and variable loadings are obtained. 
These scores and loading, however, reconstruct the log-odds term, not the response 
variables themselves. De Leeuw (2006) also proposed a Majorization Minimization 
(MM) algorithm (Heiser 1995; Hunter and Lange 2004; Nguyen 2017) for maxi-
mum likelihood estimation of the parameters. In the majorization step, the negative 
log-likelihood is majorized by a least squares function. This majorizing least squares 
function is minimized by applying a singular value decomposition on a matrix with 
working responses, that are variables that function as the response variables in each 
iteration of the algorithm but are updated from iteration to iteration.

Yee and Hastie (2003, Sect. 3.4) note that “in general, minimization of the nega-
tive likelihood cannot be achieved by use of the singular value decomposition” and 
therefore proposed an alternating algorithm, where in each iteration first B is esti-
mated considering V fixed, and subsequently V is estimated considering B fixed. For 
both steps a weighted least squares update is derived, where in every iteration the 
weights and the responses need to be redefined based on the current set of param-
eters. In the next section, we develop an MM algorithm for logistic reduced rank 
regression (note, not all reduced rank generalized linear models) based on the work 
of De Leeuw (2006), where in each of the iterations a generalized singular value 
decomposition is applied. We compare the two algorithms in terms of speed of com-
putation in Sect. 4.

For interpretation of (logistic) reduced rank models, a researcher can inspect the 
estimated coefficients A = BV� . Coefficients in this matrix can be interpreted like 
the usual regression weights in (logistic) regression models. Because the number of 
coefficients is usually large (i.e., P × R ) it is difficult to obtain a holistic interpreta-
tion from this matrix. Visualization can help to obtain such a holistic interpretation 

(2)B̂ =(X�X)−
1

2P

(3)V̂ =Q�.

m̂ = N−1(Y − XBV�)�1.
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of the reduced rank model. PCA solutions can be graphically represented by biplots 
(Gabriel 1971; Gower and Hand 1996; Gower et al. 2011). Biplots are generaliza-
tions of usual scatterplots for multivariate data, where the observations ( i = 1,… ,N ) 
and the variables ( r = 1,… ,R ) are represented in low dimensional visualizations. 
The observations are represented by points, whereas the variables are represented 
by variable axes. These biplots have been extended for reduced rank regression (Ter 
Braak and Looman 1994), that not only represent observations and response vari-
ables but also predictor variables by variable axes, that is, they represent three dif-
ferent types of information, and therefore we call them triplots.

For visualization of the logistic reduced rank regression model, two types of 
triplots have been proposed. Vicente-Villardón et al. (2006) and Vicente-Villardón 
and Vicente-Gonzalez (2019) modified the usual biplots/triplots for the representa-
tion of binary data based on logistic models. Another type of triplot was proposed by 
Poole and Rosenthal (1985), Clinton et al. (2004), Poole et al. (2011), and De Rooij 
and Groenen (2023) that represents the logistic reduced rank model in a distance 
framework. In these triplots, each of the response variables is represented by two 
points instead of a variable axis, one for each response category. In Sect. 3, we dis-
cuss the two types of triplots, show advantages and disadvantages of both, and pro-
pose a hybrid type of triplot that has elements of both types.

In Sect. 4, we compare our new algorithm in terms of speed against that of Yee 
and Hastie (2003) with two empirical data sets. With these data sets, we also show 
the hybrid triplot for both data sets and provide an interpretation. We end this paper 
with a brief discussion.

2 � An MM‑algorithm for logistic reduced rank regression

Logistic models are often fitted by maximizing the likelihood, or equivalently mini-
mizing the negative log-likelihood, that is

where the probabilities ( �ir ) are functions of �ir , with �ir = mr + xiBvr . Let us define 
qir = 2yir − 1 , so that the loss function can be written as

To estimate the parameters, below we derived an MM-algorithm following the ideas 
of De Leeuw (2006). We implemented this algorithm in the R-package lmap (De 
Rooij and Busing 2022).

L(�) = −

N∑

i=1

R∑

r=1

yir log(�ir) + (1 − yir) log(1 − �ir),

L(�) = −

N∑

i=1

R∑

r=1

log
1

1 + exp(−qir�ir)
.
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2.1 � General theory about MM algorithms

The idea of MM for finding a minimum of the function L(�) , where � is a vec-
tor of parameters, is to define an auxiliary function, called a majorization function, 
M(�|�) with two characteristics

where � is a supporting point, and

The two equations tell us that M(�|�) is a function that lies above (i.e., majorizes) 
the original function and touches the original function at the support point. Because 
of the above two properties, an iterative sequence defines a convergent algorithm 
because by construction

where �+ is

the updated parameter. A main advantage of MM algorithms is that they always con-
verge monotonically to a (local) minimum. The challenge is to find a parametrized 
function family, M(�|�) , that can be used in every step.

In our case, the original function equals the negative log-likelihood. We majorize 
this function with the least squares function, that is, M(�|�) is a least squares function. 
We use majorization via a quadratic upper bound, that is, for a twice differentiable 
function L(�) and for each � the function

majorizes L(�) at � when the matrix A is such that

is positive semi definite. We also use the property that majorization is closed under 
summation, that is, when M1 majorizes L1 and M2 majorizes L2 , then M1 +M2 
majorizes L1 + L2.

2.2 � The algorithm

Lets recap our loss function

L(�) = M(�|�)

L(�) ≤ M(�|�).

L(�+) ≤ M(�+|�) ≤ M(�|�) = L(�),

�
+ = argmin

�
M(�|�),

M(�|�) = L(�) + L
�(�)(� − �) +

1

2
(� − �)�A(� − �)

A − �2L(�),

L(�) =

N∑

i=1

R∑

r=1

Lir(�ir) =

N∑

i=1

R∑

r=1

− log
1

1 + exp(−qir�ir)
.
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Because of the summation property, we can focus on a single element, Lir(�ir) . The 
first derivative of Lir(�ir) with respect to �ir is

Filling in the derivative and using the upper bound A =
1

4
 (Böhning and Lindsay 

1988; Hunter and Lange 2004), we have that

Let us now define zir = �ir − 4�ir to obtain

where cir = Lir(�ir) −
1

8
z2
ir
− �ir�ir +

1

8
�2
ir
 is a constant.

Now as

we have that

a least squares majorization function, with c =
∑

i

∑
r cir.

For logistic principal component analysis, De Leeuw (2006) defined 
�ir = mr + u�

i
vr . Collecting the elements zir in the matrix Z , in every iteration of the 

MM-algorithm he minimizes

For logistic reduced rank regression, we define �ir = mr + x�
i
Bvr . In every iteration 

of the MM-algorithm we minimize

�ir ≡
�Lir(�ir)

��ir
= −(yir − �ir)

Lir(�ir) ≤ Lir(�ir) + �ir(�ir − �ir) +
1

8
(�ir − �ir)(�ir − �ir)

≤ Lir(�ir) + �ir�ir − �ir�ir +
1

8
(�2

ir
+ �2

ir
− 2�ir�ir)

≤ Lir(�ir) +
1

8
�2
ir
+ �ir�ir − 2

1

8
�ir�ir − �ir�ir +

1

8
�2
ir
.

Lir(�ir) ≤ Lir(�ir) +
1

8
�2
ir
− 2

1

8
�irzir +

(
1

8
z2
ir
−

1

8
z2
ir

)
− �ir�ir +

1

8
�2
ir

≤ Lir(�ir) +
1

8
(�ir − zir)

2 −
1

8
z2
ir
− �ir�ir +

1

8
�2
ir

≤
1

8
(�ir − zir)

2 + cir,

L(�) =

N∑

i=1

R∑

r=1

Lir(�ir)

L(�) ≤

N∑

i=1

R∑

r=1

1

8
(�ir − zir)

2 + c,

‖Z − 1m� − UV�‖2.

‖Z − 1m� − XBV�‖2,
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which can be done by computing the mean and a generalized singular value decom-
position as in Expressions  1,  2, and  3. In detail, in every iteration we compute 
Z = 1m� + XBV� + 4(Y −�) , where � is the matrix with elements �ir , using the 
current parameter values and update our parameters as

•	 m+ = N−1(Z − XBV�)1

•	 (X�X)−
1

2X�(Z − 1m�) = P�Q�

•	 B+ =
√
N(X�X)−

1

2PS

•	 V+ = (
√
N)−1QS�S

where PS are the singular vectors corresponding to the S largest singular values, sim-
ilarly for QS , and �S is the diagonal matrix with the S largest singular values.

3 � Visualization

A rank 2 model can be visualized with a two-dimensional representation in a so-
called triplot, that shows simultaneously three types of information: the predictor 
variables, the response variables, and the participants (objects). When a higher rank 
model is fitted, triplots can be constructed for any pair of dimensions.

We discuss two types of triplots for logistic reduced rank regression. The first 
is based on the inner product relationship where we project points, representing 
the participants, on response variable axes with markers indicating probabilities of 
responding with yes (or 1). We call this a triplot of type I. Another type of triplot 
was recently described in detail by De Rooij and Groenen (2023) and uses a distance 
representation. We call this a triplot of type D. The two triplots are equivalent in the 
sense that they represent the same information but in a different way. In this section, 
we describe the two triplots in detail, make a comparison, and propose a new hybrid 
type of triplot that combines the advantages of the two types of triplots.

3.1 � The type I triplot

This type of logistic triplot was proposed by Vicente-Villardón et  al. (2006) and 
Vicente-Villardón and Vicente-Gonzalez (2019). The objects, or participants, are 
depicted as points in a two-dimensional Euclidean space with coordinates ui = B�xi.

Each of the predictor variables is represented by a variable axis through the ori-
gin of the Euclidean space with direction bp2∕bp1 . Markers can be added to the vari-
ables axis representing units t = ±1,±2, .. with coordinates t bp2

bp1
 . We use the conven-

tion that the variable axis has a dotted and a solid part. The solid part represents the 
observed range of the variable in the data, the dotted part extends the variable axis 
to the border of the display. The variable label is printed on the side with the highest 
value of the variable.
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Object coordinates ( ui ) are a direct result of these predictor variable axis by the 
process of interpolation, as described in Gower and Hand (1996) and Gower et al. 
(2011).

We illustrated in Fig. 1a, where two predictor variables are represented one with 
regression weights 0.55 and -0.45 (diagonal variable axis), the other with regression 
weights -0.05 and -0.75 (almost vertical variable axis). Markers for values -3 till 3 
are added to both variable axes. Also included are two observations, A and B, who 
have values on the two predictor variables 2 and 1 (A), and -3 and 2 (B) respectively. 
The process of interpolation is illustrated by the grey dotted lines, that is, we have to 
add two vectors to obtain the coordinates for the two observations.

Each of the response variables is also represented by a variable axis through the 
origin. The direction of the variables axis is vr2∕vr1 . Markers can be added to these 
variables axis as well. We add markers that represent the probabilities of respond-
ing 1 equal to � = {0.1, 0.2,… , 0.9} . The location of these markers is given by 
�(v�

r
vr)

−1vr , where 𝜆 = log(𝜋∕(1 − 𝜋)) − m̂r (based on Gower et al. 2011, page 24) 
. To obtain the predicted probabilities for an object or participant for response vari-
ables r, the process called prediction (Gower and Hand 1996; Gower et al. 2011) has 
to be used, where the point representing this object is projected onto the variable 
axis.

This is illustrated in Fig. 1b for a single response variable with vr1 = −0.8 and 
vr2 = −0.5 . The value of m = −1 . On the variable axis there are markers indicating 
the expected probabilities. By projecting the points of the observations, A and B, 
onto this variable axis we obtain the expected probabilities. For observation A this 
is approximately 0.28, while for observation B the expected probability is approxi-
mately 0.61.

The two-dimensional space can be partitioned into two parts by a decision line 
for response variable r. These decision lines are perpendicular to the response varia-
ble axis and through the � = 0.5 marker. As we have a decision line for each 
response variable, we have R of these lines in total, together partitioning the space in 

a maximum of 
∑S

s=0

�
R

s

�
 regions (Coombs and Kao 1955), each region having a 

favourite response profile.

3.2 � The type D triplot

These types of triplots are described in detail in De Rooij and Groenen (2023). Simi-
lar work has been proposed earlier mainly in the context of political vote casts by 
Poole and Rosenthal (1985); Clinton et al. (2004), and Poole et al. (2011).

In Type D triplots, the response variables are represented in a different manner, 
while the object points and the variable axes for the predictor remain the same (see 
Fig. 1a). Each response variable is represented by two points, one for the no-cate-
gory (with coordinates wr0 ) and one for the yes-category (with coordinates wr1 ). The 
squared distance between an object location and these two points defines the prob-
ability, that is
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where d2(ui,wr1) is the squared Euclidean two-mode distance

The coordinates wr0 and wr1 for all r can be collected in the 2R × S matrix W . This 
matrix can be reparametrized as

with Al = IR ⊗ [1, 1]� and Ak = IR ⊗ [1,−1]� , where ⊗ denotes the Kronecker prod-
uct, and where L is the R × S matrix with response variable locations and K the 
R × S matrix representing the discriminatory power for the response variables. Ele-
ments of K and L are denoted by krs and lrs , respectively.

To obtain the coordinates W from the parameters of the logistic reduced rank 
regression we take the following steps (for details, see De Rooij and Groenen 2023). 
The matrix K is defined as K = −V∕2 . The matrix L can be obtained from m and K . 
For every response variable we have that

The solution that is closest to the origin of the Euclidean space is

Classification of an object is straightforward by choosing the response category 
that is closest by the object location. Probabilities are more difficult to obtain from 
this Type D triplot, as the mental operation described in Eq. 4 has to be performed. 
Because the model is defined in squared Euclidean distances, it is not the distance to 
the category points that is needed per se, the distance towards the decision line suf-
fices to derive the probabilities (De Rooij and Groenen 2023). The decision line is 
defined as the line orthogonal to the line joining the two category points and through 
their midpoint. As discussed by De Rooij and Groenen (2023), the distance between 
the two category points relates to the discriminatory power: points far away can be 
discriminated well, while points close to each other can not be discriminated on the 
basis of the predictor variables.

This is illustrated in Fig.  1c for the same response variable and the same two 
observations. It is directly clear from this figure that observation A is closer to cate-
gory 0, and observation B closer to category 1. Therefore, A has a higher probability 
for responding no (0) and B a higher probability for responding yes (1). The distance 

(4)�ir =
exp

(
−

1

2
d2(ui,wr1)

)

exp
(
−

1

2
d2(ui,wr0)

)
+ exp

(
−

1

2
d2(ui,wr1)

) ,

d2(ui,wr1) =

S∑

s=1

(uis − wr1s)
2.

W = AlL + AkK

mr =

S∑

s=1

krslrs.

lrs =
mrkrs

2
∑

s k
2
rs

.
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between the two points indicates the discriminative power, the further the two points 
of a response variable are apart the better these two classes are distinguished by the 
predictor variables.

3.3 � Comparison

Both triplots are equal on the predictor side of the model, that is, the object positions 
and the variable axes for the predictor variables. The response side of the model, 
however, has a different geometric representation. For the Type I triplot, the points 
of the objects need to be projected on the variable axes to obtain the probability of 
answering yes. For the Type D triplot, the distance of the object point towards the 
two category points of a response variable has to be inspected. The probability is 
highest for the response category closest to the object point. Determining the exact 
probability for the Type D biplot is, however, more involved. On the other hand, 
for classification the Type D plot has advantages, as it is simply the closest class to 
which an object is classified. Another advantage of the Type D plot is that the dis-
criminatory power of a response variable can be directly inspected as it is depend-
ent on the distance between the two class points, that is when the two class points 
of a response variable are further apart, they are overall better distinguished by the 
predictor variables. The discriminatory power can also be obtained from the Type 
I plot, but as the markers are not evenly spread over the variable axis this is usu-
ally cumbersome. We would need to inspect the distance between, say, the � = 0.5 
marker and the � = 0.6 marker for two variables to make such a comparison, where 
smaller distances indicate higher discriminatory power. Which predictor variables 
are responsible for the discrimination of the two categories of a given response vari-
able is most easily judged by the Type I plot, as it corresponds to the angle between 
the variable axis for a predictor and that of a response. The information can also be 
obtained from the Type D plot, but first we would need to draw the line connecting 
the two category points and subsequently inspect the angle.

3.4 � The hybrid triplot

We propose to use a type of hybrid triplot, combining the features of both the Type 
I and the Type D plots. As the objects and predictor variables are represented in 
exactly the same way in the two triplots, these remain the same. The hybrid plot, 
uses both variables axes with markers as well as the information of the category 
points in its representation.

The two points wr0 and wr1 in the Type D triplot, derived as outlined above, lie on 
the variable axis for response variable r of the Type I triplot. The midpoint of these 
two points coincides with the marker for � = 0.5 . These two properties allow us to 
combine the two types of triplots in a hybrid visualization, where the response vari-
ables axis are printed by dotted lines with a solid part from wr0 to wr1 . The endpoints 
of this solid part of the variable axis represent the two category points. The length of 
this solid part indicates the discriminatory power.
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4 � Empirical examples

4.1 � Drug consumption data set

The drug consumption data (Fehrman et  al. 2017) has records for 1885 respond-
ents and has been analyzed by De Rooij and Groenen (2023) before. Here we rep-
licate that analysis, but focus on the new, hybrid, triplot. For each respondent there 
is information about age and gender plus measurements for the big five personality 
traits, neuroticism (N), extraversion (E), openness to experience (O), agreeableness 
(A), and conscientiousness (C), and another personality characteristic, namely sen-
sation seeking (SS).

In addition, participants were questioned concerning their use of 18 legal and ille-
gal drugs. For each drug, participants indicated whether they used that drug in the 
last year (yes or no). We focus on the 11 drugs that had a minimum percentage of 
10% and a maximum of 90%, which are amphetamine (Am), benzodiazepine (Be), 
cannabis (Ca), cocaine (Co), ecstasy (Ex), ketamine (Ke), legal highs (Le), LSD, 
methadone (Me), mushrooms (Mu), and nicotine (Ni) ( R = 11).

4.1.1 � Comparison of algorithms

In this section, we compare the two algorithms in terms of speed. The IRLS algo-
rithm of Yee and Hastie (2003) been implemented in the VGAM package (Yee 2022), 
the MM algorithm is implemented in the lmap package (De Rooij and Busing 
2022). An exact comparison is difficult, because in the implementation in VGAM the 
call starts with a formula, so the design matrices have to be built, whereas the lmap 
packages starts with the two matrices. Furthermore, the VGAM implementation uses 
several criteria for convergence, while the lmap convergence criterion is solely 
based on deviance. In the comparison, we first checked using the complete data set 
which convergence criterion in lmap leads to the same solution. Nevertheless, the 
comparison is not completely fair. We estimate the same rank 2 model using these 
two algorithms. The data set has N = 1885 , P = 9 , and R = 11 . To compare the 
speed of the two algorithms we use the microbenchmark package (Mersmann 
2021) where the two algorithms are applied ten times. Results are shown in Table 1, 
where it can be seen that MM algorithm is much faster.

Table 1   Timing of rrvglm-algorithm in the VGAM package and the lpca-algorithm in the lmap pack-
age for the drug consumption and NCD data sets

data algorithm min lq mean median uq max neval

drugs rrvglm 3.075 3.216 3.336 3.328 3.433 3.655 10
lpca 0.029 0.030 0.040 0.038 0.047 0.059 10

ncd rrvglm 15.274 16.570 16.930 16.804 17.728 18.038 10
lpca 1.378 1.406 1.464 1.452 1.537 1.559 10



402	 Behaviormetrika (2024) 51:389–410

1 3

For our MM algorithm, (X′X)−
1
2  and (X�X)−

1

2X need only to be evaluated once. 
During the iterations a SVD of a P × R matrix has to be solved which is a relatively 
small matrix. Therefore, the computational burden during the iterations is small. As 
is usual for MM algorithms convergence is relatively slow in terms of the number of 
iterations needed (Heiser 1995). For the drug consumption data, 42 iterations were 
needed.

The IRLS algorithm alternates between an update of B and V (Yee 2015, 
Sect. 5.3.1). For both updates, a matrix with working weights needs to be inverted. 
As this matrix depends on the current estimated values, the inverse needs to be re-
evaluated in every iteration. These matrix inversions are computationally heavy. In 
terms of the number of iterations the IRLS algorithm is faster, that is, only 6 itera-
tions were needed for the drug consumption data.

Yee (2015) (Sect.  3.2.1) points out that, apart from some matrix multiplica-
tions, the number of floating point operations (flops) for the IRLS algorithm is 
2NS3(P2 + R2) per iteration, which for this application is 6092320. The SVD in the 
MM algorithm takes 2PR2 + 11R3 = 16819 flops per iteration (cf., Trefethen and 
Bau 1997). These computations exclude the intercepts ( m ). Also with respect to 
storage our algorithm has some advantages, that is, the MM algorithm works with 
the matrix X while the IRLS algorithm works with X⊗ IS , a much larger matrix.

4.1.2 � Visualization

De Rooij and Groenen (2023) introduced a quality of representation measure for the 
response variables. The quality of representation measure, Qr , compares the fit of a 
single response variable in the rank 2 model with the fit obtained in a separate logis-
tic regression based on the same predictor variables. Qr is defined by

where D(0,r) is the deviance of the intercept-only logistic regression model for 
a response variable r , Dr is part of the deviance (i.e., 2L(�) ) corresponding to 
response variable r, and Dlr is the deviance from a logistic regression of response 
variable r with the same predictor variables as in the reduced rank model. Qr ranges 
between 0 (very bad fit) to 1 (no loss due to rank restriction). As such, we see how 
much fit is lost for every response variable, by reducing the rank of the model. For 
this analysis, the quality measures are all very high, ranging between 0.90 and 1.00, 
with the worst fit for Cocaine.

The hybrid triplot for the rank 2 model of the drug consumption data is shown in 
Fig. 2. First, let us inspect the response variables. All the labels are printed on the 
left-hand side of the triplot, indicating that the probability of drug use is highest on 
that side of the display and lowest on the right-hand side of the triplot. We see that 
the variable axes have solid parts of different lengths, that is, the solid part for ben-
zodiazepine (Be) and methadone (Me) is much smaller than the solid part of can-
nabis (Ca) or LSD. Therefore, overall cannabis use and LSD are better discriminated 
by the predictor variables than benzodiazepine or methadone use. The endpoints of 

Qr = (D(0,r) −Dr)∕(D(0,r) −Dlr),
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each solid line correspond to the positions of the yes and no point for each response 
variable in the type D plot, where in this particular triplot the yes marker is always 
on the lefthand side of the display.

Some predictor variable axes for the predictors have sharp angles with the 
variable axes of the responses, whereas others have obtuse angles. Openness, 
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Fig. 2   The hybrid triplot for the drug consumption data. The grey points represent the participants. The 
blue lines are the variable axes for the predictor variables (age, gender, neuroticism (N), extraversion (E), 
openness (O), conscientiousness (C), agreeableness (A), sensation seeking (SS)). The green lines are the 
variable axes for the responses (amphetamine (Am), benzodiazepine (Be), cannabis (Ca), cocaine (Co), 
ecstasy (Ex), ketamine (Ke), legal highs (Le), LSD, methadone (Me), mushrooms (Mu), and nicotine 
(Ni)). The variable labels are printed on the positive side of the variable, that is, the highest values of the 
predictor variables and the highest probabilities for the response variables (color figure online)
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extraversion, age, sensation seeking, and gender have sharp angles indicating that 
these predictor variables discriminate well between drug use and abstinence.

The variable axes for openness, extraversion, and age are close together. There-
fore these variables have similar effects on the response variables. More open par-
ticipants, younger participants, and more introvert participants tend to have a higher 
probability for using LSD, mushrooms (Mu), and ecstasy (Ex). Participants who 
score higher on sensation seeking have a higher probability of using benzodiazepine 
(Be), methadone (Me), and cocaine (Co). Female participants (i.e., gender = 1) have 
a lower probability of drug use than male participants.

Neuroticism (N) and Agreeableness (A), on the other hand, are almost orthogonal 
to the response variable axes indicating that the relationship between these two pre-
dictor variables and drug use are weak.

The variable axis for conscientiousness has a sharp angle with, for example, ben-
zodiazepine (Be) and methadone (Me), but an obtuse angle with the variable axes 
for LSD, mushrooms, and ecstasy. Less conscientious participants, therefore, have 
a higher probability to use benzodiazepine and methadone while more conscien-
tious participants have a lower probability to use benzodiazepine and methadone. 
The degree of conscientiousness, however, does not result in large differences in the 
probability of, say, LSD use.

4.2 � Non communicable diseases data set

Noncommunicable diseases (NCDs) such as diabetes, chronic lung disease, stroke, 
and depression tend to be of long duration and are the result of a combination of 
genetic, physiological, environmental and behavioural factors. The 2030 Agenda 
for Sustainable Development recognizes NCDs as a major challenge for sustainable 
development. Here, data (wave 1) of the Survey of Health, Ageing and Retirement in 
Europe (SHARE; Börsch-Supan et al. 2013) were used. In this data set, we have for 
N = 29207 subjects information on seven NCDs, diabetes (Di), hypertension (H), 
chronic lung disease (CL), joint disorders (JD), angina (An), stroke (S), and depres-
sion (De). Overall, the prevalence of NCDs is not large, percentages range from 
3.5% for stroke till 37.8% for depression. However, relatively many people develop 
multiple NCDs, that is, in the current data set 6021 participants have two NCDs, 
2451 participants developed three NCDs, 894 have four, 214 have five, 40 have six, 
and 3 participants suffer from all seven NCDs.

Participants of this study live in various European countries, Austria (AT, 1538), 
Germany (DE, 2902), Sweden (SE, 2937), The Netherlands (NL, 2805), Spain (ES, 
2226), Italy (IT, 2494), France (FR, 2890), Denmark (DK, 1665), Greece (EL, 
2800), Switzerland (CH, 957), Belgium (BE, 3735), and Israel (IL, 2258). In the 
current analysis we are interested in the relationship between country of origin and 
NCDs, taking into account the gender and age of the participants. As, country is 
coded by 11 dummy variables, with The Netherlands as a reference category, the 
number of predictor variables in this analysis equals P = 13.



405

1 3

Behaviormetrika (2024) 51:389–410	

4.2.1 � Comparison of algorithms

Again, we compare the two algorithms in terms of speed. This data set has 
N = 29207 , P = 13 , and R = 7 . To compare the speed of the two algorithms we use 
the microbenchmark package (Mersmann 2021). Results are shown in Table 1, 
where it can be seen that again the MM algorithm is much faster.
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Fig. 3   The hybrid triplot for the NCD data. The grey points represent the participants. The blue lines 
are the variable axes for the predictor variables (age, gender, Austria, Germany, Sweden, Spain, Italy, 
France, Denmark, Greece, Switzerland, Belgium, and Israel). The green lines are the variable axes for 
the responses (diabetes (Di), hypertension (H), chronic lung disease (CL), joint disorders (JD), angina 
(An), stroke (S), and depression (De)). The variable labels are printed on the positive side of the variable, 
that is, the highest values of the predictor variables and the highest probabilities for the response vari-
ables (color figure online)
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4.2.2 � Visualization

The quality of representation is not as good as in the drug consumption data. Some 
response variables are well represented (H, 0.86; JD, 0.93; An, 0.96; S, 0.82; De, 
0.81), but diabetes and chronic lung disease are not well represented, the quality of 
representation are 0.66 and 0.57 respectively. The two-dimensional triplot is shown 
in Fig.  3. As can be seen, not for every response variable the solid green part is 
drawn (Di, CL, and S). The reason is that this part of the variable axis is far outside 
the range of the participant points. Extending the boundaries of the triplot to include 
this part, would clutter the center of the display. An important conclusion for these 
three variables is that for all participants the probability of these diseases is small, 
that is smaller than 0.3 for stroke and diabetes, and smaller than 0.2 for chronic lung 
disease. The decision lines fall outside the triplot, indicating that all participants are 
classified as not having those noncommunicable diseases. For the other response 
variables, we see that joint disorders have a relatively high discriminatory power 
(long solid part), whereas hypertension has a relatively low discriminatory power 
(small solid part). Angina and depression are in between.

Concerning the relationships between the predictor variables and response varia-
bles we see that being female is associated with higher depression and lower angina. 
Higher ages are associated with angina, stroke, diabetes, and hypertension, but age 
has no relationship to depression and only a small relationship with joint disorders.

Considering the countries, the effects of the different countries are compared 
against the profile of The Netherlands (i.e., The Netherlands is the baseline cate-
gory). Austria and Sweden have very small vectors and Germany and Greece small 
vectors, indicating that their average profiles of non-communicable diseases are very 
similar to that of The Netherlands. The countries that differ the most from The Neth-
erlands are Spain, Italy, France, Israel, and Switzerland.

Interpretation goes again by inspecting the angles of vectors corresponding to the 
countries to the variable axes of the responses. A small angle suggests that a country 
has, on average, a higher probability for that response, a 90o angle suggest a similar 
probability, while an obtuse angle indicates a lower probability for a noncommuni-
cable disease. Switzerland scores lower on angina, stroke, diabetes, chronic lung dis-
ease, and hypertension, but higher on joint disorders and depression. France, Spain 
and Italy, and to a lower degree also Denmark and Belgium score higher on depres-
sion, joint disorders, and hypertension (small angles), but similar on angina, stroke, 
diabetes, and chronic lung disease ( 90o angles). Israel has higher probabilities for 
angina, stroke, diabetes, chronic lung disease, and hypertension, but similar prob-
abilities as The Netherlands on joint disorders and depression.

5 � Discussion

Logistic reduced rank regression is a useful tool for regression analysis of multi-
variate binary response variables. We developed a new algorithm based on previous 
work by De Leeuw (2006) and implemented it in the lmap-package (De Rooij and 
Busing 2022). The algorithm uses the majorization inequality of De Leeuw (2006) 
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to move from the negative log-likelihood to a least squares function and the general-
ized singular value decomposition for minimizing the least squares function. Each of 
these two steps is known and as such the algorithm is a straightforward combination 
of the two. The inequality of De Leeuw (2006) to find a least-squares majorization 
function for the negative binomial or multinomial log-likelihood can more com-
monly used to develop logistic models for categorical data.

We compared the new algorithm to the IRLS algorithm (Yee and Hastie 2003; 
Yee 2015) on two empirical data sets; our new algorithm is about ten times faster 
but uses more iterations. MM algorithms are known for slow convergence (see 
Heiser 1995) in terms of a number of iterations needed. Yet, the updates within the 
iterations are computationally cheap. A singular value decomposition of a P × R 
matrix needs to be computed, where usually P and R are relatively small. Our MM 
algorithm is only applicable for logistic reduced rank models, whereas the IRLS 
algorithm of Yee (2015) is designed for the family of reduced rank generalized lin-
ear models.

In the VGAM-package (Yee 2022, 2015), in a second step also the standard errors 
of the model parameters can be obtained. In an MM algorithm, not the negative 
log-likelihood is itself minimized but iteratively the majorization function is mini-
mized. Therefore, our algorithm does not automatically give an estimate of the Hes-
sian matrix nor the standard errors. Is this a bad thing? Buja et al. (2019a, 2019b) 
recently argued that if we know statistical models are approximations, we should 
also carry the consequences of this knowledge. The computation of standard errors 
assumes the model to be true, that is, not an approximation. Therefore, assuming the 
model is true while knowing it is not true results in estimated standard errors that 
are biased. A better approach to obtain standard errors or confidence intervals is to 
use the so-called pairs bootstrap, where the predictors and responses are jointly re-
sampled. For the bootstrap it is useful if the algorithm is fast.

Two types of triplots were discussed and compared, the Type I and Type D 
triplots. The two types of triplots are equal on the predictor side of the model, but 
differ in the representation of the response variables. Whereas the Type I triplot uses 
an inner product relationship where object points have to be projected onto response 
variable axes, the Type D uses a distance relationship, where the distance of an 
object point towards the yes and no point for each response variable determines the 
probabilities. We discussed advantages and disadvantages of both approaches, and 
were then able to develop a new, hybrid, type of triplot by combining the two.

In the Type D triplot we make use of the two-mode Euclidean distance. This 
distance is often used to model single-peaked response functions and the object 
points are then called ideal points. The single-peaked response function is usually 
contrasted with the dominance response function (see, for example, Drasgow et al. 
2010, and references therein). Whereas in the latter the probability of answering yes 
is a monotonic function of the position on the latent trait, in the former this prob-
ability is a single-peaked function defined by distances. In the Type D triplot, how-
ever, the relationship is still of the dominance type, where the probability of answer-
ing yes goes monotonically up or down for objects located on any straight line in 
the Euclidean representation. The main reason is that the model is in terms of the 
distance towards the categories of the response variable, not the response variable 
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itself. De Rooij et al. (2022) recently developed a distance model where the distance 
between the object and the response variable (i.e., not the categories) determines 
the probability of answering yes. Such a representation warrants an interpretation 
in terms of single peaked relationships. Logistic reduced rank regression models 
assume a monotonic predictor-response relationship, no matter how the model is 
visualized.

Appendix A: The generalized singular value decomposition

The singular value decomposition is a well known decomposition of a matrix and 
can be considered a special case of the generalized singular value decomposition in 
the metrics I and I . The generalized singular value decomposition of the matrix Y in 
the metrics G and H is given by

where P is a matrix of left generalized singular vectors, Q is a matrix of right gener-
alized singular vectors, and � a diagonal matrix with singular values. The matrices 
P and Q satisfy P�GP = Q�HQ = I , that is, they are columnwise orthogonal with 
respect to the metric matrices G and H ( Takane 2013, page 65). We assume that 
both G and H are square, symmetric, positive definite matrices.

The generalized singular value decomposition is computed as follows (Takane 2013; 
Abdi 2007). Do a usual SVD on the matrix Y∗ defined as Y∗ = G

1

2YH
1

2 , that is

and then
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