
Vol.:(0123456789)

Behaviormetrika (2024) 51:37–74
https://doi.org/10.1007/s41237-023-00203-4

1 3

ORIGINAL PAPER

A Bayesian actor‑oriented multilevel relational event 
model with hypothesis testing procedures

Fabio Vieira1  · Roger Leenders2,3 · Daniel McFarland4 · Joris Mulder1

Received: 2 February 2023 / Accepted: 21 June 2023 / Published online: 17 July 2023 
© The Author(s) 2023, corrected publication 2023

Abstract
Relational event network data are becoming increasingly available. Consequently, 
statistical models for such data have also surfaced. These models mainly focus on 
the analysis of single networks; while in many applications, multiple independent 
event sequences are observed, which are likely to display similar social interaction 
dynamics. Furthermore, statistical methods for testing hypotheses about social inter-
action behavior are underdeveloped. Therefore, the contribution of the current paper 
is twofold. First, we present a multilevel extension of the dynamic actor-oriented 
model, which allows researchers to model sender and receiver processes separately. 
The multilevel formulation enables principled probabilistic borrowing of informa-
tion across networks to accurately estimate drivers of social dynamics. Second, a 
flexible methodology is proposed to test hypotheses about common and heteroge-
neous social interaction drivers across relational event sequences. Social interac-
tion data between children and teachers in classrooms are used to showcase the 
methodology.
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1 Introduction

Current technological advancements, combined with constant development of 
new communication applications, has originated huge amounts of data on social 
interactions (Eagle and Pentland 2003). This has enabled researchers to build 
and test increasingly rich and complex models of human interaction using time-
stamped data. Social network analysis is among the fields that have benefited the 
most from having access to rich temporal interaction data. In this paper, we spe-
cifically focus on the Relational Event network model (Butts and Marcum 2017; 
Stadtfeld and Block 2017; Mulder and Leenders 2019)

A relational event network is comprised of multiple interactions among a finite 
set of actors. Observation units are called “relational events", which are defined 
as discrete instances of interactions among social entities along a timescale (Butts 
and Marcum 2017). In a directed network, events contain a clear indication of 
sender and receiver. Thus, every observation unit displays information on which 
actor was the sender, which actor was the receiver, and at which point in time the 
interaction occurred. The stream of events in a given network is often referred to 
as a relational event sequence.

One of the traditional approaches to social network analysis is based on Mark-
ovian random graphs theory and involves the aggregation of events into a graph 
(Van Der Hofstad 2009). Transitions on the graph structure are then modeled 
via sufficient statistics, which are functions of the observed network ((Frank and 
Strauss , 1986; Hanneke et al. , 2010; Lusher et al. , 2013)). A different approach 
was taken by Butts (2008), who employed survival analysis concepts and intro-
duced the relational event model which profits from the temporal structure 
of relational events. In this framework, the main goal is to model the rates of 
communication between senders and receivers via a log-linear function, without 
requiring the data to be aggregated. This is done by employing sufficient statistics 
that capture important social patterns and actor-specific covariates.

Since then, the relational event model has gained increasing popularity and 
received multiple extensions. For instance, Vu et  al. (2011) introduced a model 
with time-varying parameters, based on the additive Aalen model (Aalen 1989), 
and developed an algorithm for online inference in social networks. Perry and 
Wolfe (2013) used a partial likelihood approach to modeling who the receiver 
will be a given sender. Vu et  al. (2015) implemented case–control sampling to 
decrease the number of computations in estimating relational event models. 
Later, the control–case sampling approach was further explored by Lerner and 
Lomi (2020) to estimate relational event models in large networks. Stadtfeld et al. 
(2017a) and Stadtfeld and Block (2017) introduced a two-step model, where the 
first step consists of modeling the activity rate of the sender and the second one 
features the choice of the receiver conditional on the sender. Mulder and Leend-
ers (2019) proposed a way to analyze the temporal evolution of effects in the 
social network, by estimating effects in different subsets of the data determined 
by overlapping intervals, which they called moving windows, this approach was 
further developed by Meijerink et al. (2022).
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These contributions have mainly focused on the statistical analysis of a single 
relational event sequence (with a notable exception of DuBois et al. (2013)); while 
in practice, we also often observe multiple independent relational event sequences 
which show similar but not identical social interaction behavior. For example, 
Blonder and Dornhaus (2011) analyses information flow in multiple relational 
event networks of ant colonies, DuBois et al. (2013) studies several relational event 
sequences of high-school students interactions and Kiti et al. (2016) examines social 
contact in numerous networks of Kenyan households. The gold standard for ana-
lyzing such clustered (or hierarchical) data is using a multilevel or mixed effects 
approach. In a relational event modeling approach, this implies that a probability 
distribution is specified for the network effects (or drivers) of social interaction 
behavior (such as inertia, reciprocity, transitivity, or group effects) across clusters. 
A multilevel approach will result in ‘pooled’ estimates of the cluster-specific net-
work effects where information about social interaction behavior in other clusters 
is borrowed to improve the estimation (Gelman and Hill 2006). We achieve this by 
modeling the relational event sequences in a Bayesian hierarchical framework via 
Markov chain Monte Carlo (MCMC) methods.

Therefore, our first contribution is a multilevel extension for the dynamic actor-
oriented model (Stadtfeld et al. 2017a) for independent relational event sequences. 
In this framework, a relational event between a sender and a receiver in a network is 
modeled by separately modeling (i) when an actor decides to initiate an event as a 
sender given the past history, and (ii) modeling the receiver that is chosen given the 
sender and the past event history between the actors. Thereby, this approach differs 
from the dyadic approach of Butts (2008), and the hierarchical extension by DuBois 
et  al. (2013), where the time, sender, and receiver are jointly modeled using the 
same set of parameters (Stadtfeld et al. 2017b). The actor-oriented approach is there-
fore more flexible by separately modeling the behavior of actors to become a sender 
and the behavior of senders to choose a receiver in contrast to the dyadic approach. 
A second important difference is that we explicitly model the full unstructured 
covariance matrix of the network effects across sequences. Thereby, the depend-
ency between interaction behavior across sequences, such as inertia and reciprocity 
(which is generally nonzero), is included in the analysis resulting in improved esti-
mation using the concept of pooling. A final important difference between a dyadic 
relational event model and an actor-oriented approach is the computational burden, 
which is considerably larger in the case of a dyadic approach. This can be explained 
by the size of the risk set (i.e., the possible events that can be observed at every 
step), which is equal to N(N − 1) in the case of a network consisting of N actors 
where N(N − 1) dyads are at risk for each event, while the risk set of the sender 
model in an actor-oriented model consists of N actors, and the risk set of the receiver 
model consists of N − 1 actors (when assuming that the sender cannot be equal to 
the receiver). In the case of moderate to large networks, this difference can have a 
huge impact on the computational costs when using a dyadic approach.

Our second contribution is an extensive set of statistical tests using the Bayes fac-
tor (Jeffreys 1961; Kass and Raftery 1995) for evaluating hypotheses about social 
interaction behavior in the case of independent relational event sequences. The 
first test can be used to assess whether specific interaction behavior, such as inertia 
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(which quantifies the degree of habitual behavior between actors to keep sending 
messages of one actor towards another actor), is equal or differs across sequences 
(i.e., whether it should be modeled as a fixed effect or as a random effect). In the 
case of different interaction behavior across sequences, a second test is proposed to 
assess the degree of heterogeneity (or variability) of network effects on social inter-
action behavior, e.g., to assess whether inertia behavior varies more across clusters 
than reciprocity, or whether the impact of a group effect (e.g., whether the sender 
is the teacher in a class room or not) on social interaction dynamics is more or less 
heterogeneous than another group effect (e.g., whether the sender is male or female). 
Third, a test is proposed for evaluating hypotheses with equality and order con-
straints on the average relative importance across clusters (i.e., on the fixed effects) 
of drivers on social interaction dynamics. The methodology is flexible to also allow 
for testing the absolute values of network effects, which is useful when the exact 
sign is unknown before observing the data. These tests build on and further extends 
recent developments on Bayes factor hypothesis testing (Mulder et al. 2021).

Our methods have been implemented in R (R Core Team 2017), interfacing with 
Stan through the rstan package (Stan Development Team 2018). We provide the full 
code to facilitate the fitting of other relational event models (https:// github. com/ 
Fabio- Vieira/ bayes ian_ dynam ic_ netwo rk).

The remainder of this paper is divided as follows: in Sect.  2, we describe the 
relational events framework and present the hierarchical actor-oriented relational 
event model. This Section also introduces the Bayesian specification of the model by 
presenting prior distributions and briefly discussing a reparametrization that allows 
more efficient sampling; we detail the hypothesis testing methods in Sect.  3 and 
conduct the empirical application in Sect.  4. The paper ends with a discussion in 
Sect. 5, where we go through some limitations of the model and possible routes for 
future research.

2  The relational event framework

The relational event model (REM) is used to model the rate of interactions 
in dynamic social networks (Butts 2008). In this framework, events happen 
among actors at particular points in time, being represented by tuples in the form 
et = (s, r, t) , where s is the sender, r is the receiver, and t is the time point of the 
interaction. Thus et is called a relational event. Therefore, we have K clusters (in 
this paper we will use cluster, groups, relational event sequence and network inter-
changeably), each of which with N1,… ,NK social actors allowed to be senders or 
receivers at any given time. At time t, in cluster k, sender s ∈ {1, 2,… ,Nk} inter-
acts with receiver r ∈ {1, 2,… ,Nk | r ≠ s} , forming a dyad (s, r) ∈ Rk(t) , where 
Rk(t) =

{
(s, r) ∶ s, r ∈ {1, 2,… ,Nk}, s ≠ r

}
 is called the risk set, which comprises 

all possible dyads (s, r) at a particular point in time.
The main idea consists of assuming that, for each cluster k, for k = 1,… ,K , we 

are able to observe an ordered sequence of Mk dyadic events among Nk individuals 
on the time window [0, �k) ∈ IR+ . Thus, a relational event sequence for cluster k is 
formally defined as

https://github.com/Fabio-Vieira/bayesian_dynamic_network
https://github.com/Fabio-Vieira/bayesian_dynamic_network
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where tm is the time at which the mth event occurred, in cluster k. Then, following 
Butts (2008), who borrows concepts from survival analysis, the relational event his-
tory Ek is modeled as a stochastic process, where the rate of events from sender s 
to receiver r, with (s, r) ∈ Rk(t) , is given by the intensity �sr

(
t|Ek

)
 . This intensity 

function has the form of a Cox proportional hazards model (Cox 1972). Moreover, 
the intensity is assumed constant between subsequent events and the waiting times 
conditionally exponentially distributed. This amounts to the well-known piece-wise 
constant exponential model for survival data (Friedman 1982). Thus, the survival 
function is given by Ssr

(
tm − tm−1|Ek

)
= exp

{
− (tm − tm−1)�sr

(
tm|Ek

)}
.

2.1  The actor‑oriented multilevel relational event model

In this paper, we focus on an alternative relational event model that was proposed by 
Stadtfeld et  al. (2017a) and Stadtfeld and Block (2017). Their approach models the 
receiver given the sender, similar to Perry and Wolfe (2013). Conceptually, it builds 
on the same tradition as the stochastic actor-oriented model (Snijders 1996), where the 
evolution of the network is assumed to be a product of actors’ individual behaviors as 
they constantly seek to maximize their own utilities. The basic framework consists of a 
two-step approach based on log-linear predictors. First, the waiting time until an actor 
becomes active is modeled. After that, a multinomial choice model (McFadden 1973) 
is employed to determine the choice of the receiver by the active sender actor. These 
two steps are assumed to be conditionally independent given the available information 
about the past up to that event.

The Bayesian hierarchical approach we will develop for multiple relational event 
sequences (denoted as "clusters") will build on this model. At each point in time, in 
cluster k, sender s ∈ {1, 2,… ,Nk} starts an interaction with intensity �s

(
t|Ek

)
 . This 

intensity is directly proportional to the probability of a given actor s to be the next 
sender. This probability is given by P

�
s
m
= s�E

k

�
= �

s

�
t�E

k

�
∕
∑

h∈k �h
�
t�E

k

�
,

∀ h ∈ {1, 2,… ,N
k
} and m ∈ {1, 2,… ,M

k
} , where Mk is the number of events in 

cluster k. Next, this sender chooses the receiver r ∈ {1, 2,… ,Nk|r ≠ s} , forming the 
dyad (s, r) ∈ Rk(t) , with intensity �r|s

(
t|s,Ek

)
 . The receiver intensity represents the 

rate at which actor s chooses actor r to form a dyad, which is proportional to the proba-
bility of observing dyad (s, r) ∈ Rk(t) as the next one in the sequence. This probability 
is given by P

�
r
m
= r�s

m
= s,E

k

�
= �

r�s
�
t�s,E

k

�
∕
∑

h∈k �h�s
�
t�s,E

k

�
, ∀ h ∈

{1, 2,… ,N
k
| h ≠ s} and m ∈ {1, 2,… ,M

k
} . Then, these intensities for cluster k, for 

the sender and receiver steps of this model, will be given by the following log-linear 
functions:

where � and � are a vectors of fixed-effect parameters, �k and �k are a vectors of 
random-effect parameters for cluster k, with k = 1,… ,K . The vectors of statistics 

Ek = {etm = (sm, rm, tm) ∶ (sm, rm) ∈ Rk(tm), 0 < t1 < ⋯ < tMk
< 𝜏k},

(1)
�s
(
t|Ek

)
= exp{��

zs(t) + ��
k
xs(t)},

�r|s
(
t|s,Ek

)
= exp{� �

zsr(t) + ��
k
xsr(t)},
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zs(t) and xs(t) are associated with actor s ∈ {1, 2,… ,Nk} , whereas zsr(t) and xsr(t) 
are vectors of statistics associated with dyad (s, r) ∈ Rk(t).

Assuming this log-linear form will allow us to conduct inference at the actor 
level, unveiling effects that make actors more (or less) prone to start interactions 
or more (or less) likely to be chosen as the next receiver. Also, this idea helps us to 
limit the size of the set of possible dyads that need to be analyzed at each point in 
time: if actor s is the one starting an interaction at time t, then all dyads, where s is 
not the sender, become impossible to happen. Thus, for the actor-oriented model, the 
risk set, Rk(t) , will have size Nk − 1 (given the sender), whereas for a dyadic model, 
such as in DuBois et al. (2013), the risk set has size (Nk − 1)Nk , which can easily 
become massive for medium to large networks.

The likelihood for the actor-oriented model is given by

where � is the vector containing all parameters and Z and X are matrices with fixed 
and random-effects covariates, respectively. The time of the last observed event in 
cluster k is denoted by tMk

 and �k the end of the observation period. In most empirical 
applications, it is assumed that tMk

= �k . This way the last part of the likelihood is 
equal to 1, since due to the piece-wise constant exponential assumption we have 
Ssm

(
tm − tm−1|Ek

)
= exp

{
− (tm − tm−1)�s

(
tm|Ek

)}
 . In this setting, at time tm , 

P
�
s = sm�Ek

�
=

�s∑
h∈k �h

, ∀ s ∈ k is the probability of sender s being active. The 
probability of actor r being the receiver given that s is the sender is given by 
P
�
rm = r�sm = s,Ek

�
=

�r�s∑
h∈k �h�s

, ∀ r ∈ k.
The likelihood in Eq. (2) is a product of the two pieces. The first one, represent-

ing the sender model, is a piece-wise constant exponential likelihood

and the second one, representing the receiver model, is a multinomial likelihood

In the literature, it has been shown that both of these models are special cases of the 
Poisson model. Holford (1980) and Laird and Olivier (1981) are examples of cases 
where the Poisson representation of the piece-wise exponential model is discussed. 

(2)

p(E��,Z,X) =
K�
k=1

Mk�
m=1

��
�sm

�
tm�Ek

��
s∈k

Ss

�
tm − tm−1�Ek

��
×

×
�rm�sm

�
tm�sm,Ek

�

∑
r∈k �r�sm

�
tm�sm,Ek

�
�
×
�
s∈k

Ss

�
�k − tMk

�Ek

�
,

psender(E|�,Z,X) =
K∏
k=1

Mk∏
m=1

[(
�sm

(
tm|Ek

)∏
s∈k

Ss

(
tm − tm−1|Ek

))]
,

preceiver(E��,Z,X) =
K�
k=1

Mk�
m=1

⎡⎢⎢⎢⎣

�rm�sm
�
tm�sm,Ek

�

∑
r∈k �r�sm

�
tm�sm,Ek

�
⎤⎥⎥⎥⎦
.
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Baker (1994) extensively discusses the multinomial-Poisson transformation and how 
their likelihoods yield identical estimates. For proofs, see Appendix A. The Poisson 
regression model has been extensively studied, and it is well understood in the sta-
tistical literature (Frome 1983; Consul and Famoye 1992; Hayat and Higgins 2014).

The second level of the hierarchical actor-oriented relational event model speci-
fies the multivariate distributions of network effects across the K sequences. We fol-
low the standard approach in multilevel modeling by assuming multivariate normal 
distributions for �k under the sender model and for �k under the receiver model, i.e.,

for k = 1,… ,K . The mean vectors quantify the overall, global effect of the net-
work effects and the unstructured covariance matrices quantify the variability of 
the effects across clusters and the dependency structure between the effects across 
clusters. Thus, when estimating these distributions when fitting the multilevel model 
using independent relational event sequences, the estimated means and (co)vari-
ances of the second level are used to improve the estimates of the specific param-
eters in the separate sequences (especially in the case of short sequences).

2.2  Prior specification

In a Bayesian approach, prior distributions have to be specified which reflect our 
uncertainty about the model parameters before observing the data. Throughout this 
paper, we shall work with vague, noninformative priors (which are completely dom-
inated by the data).

The prior choice of the random-effects covariance matrices is most important. We 
decompose the random-effects covariance matrix under the receiver model accord-
ing to

where ��∶=diag(��,1,… , ��,P) is a diagonal matrix of standard deviations and �� is 
a correlation matrix (Gelman and Hill 2006). Following Carpenter et al. (2017), � 
will have a Lewandowski–Kurowicka–Joe (LKJ) prior and � a half-Cauchy prior as 
follows

• ��,p ∼ half-Cauchy(0, ��), p = 1,… ,P,

• �� ∼ LKJCorr(��).

It has been shown that a half-Cauchy prior for the random-effects standard deviation 
results in desirable estimates in the case of multilevel data with few clusters (Gel-
man and Hill 2006). Furthermore, by setting very large prior scale parameters, we 
can obtain approximately flat priors for the standard deviations. Further note that a 
half-Cauchy prior for the standard deviation corresponds to a F distribution on the 

�k ∼N(�� ,��),

�k ∼N(� � ,�� ),

(3)�� = �� ×�� × �� ,
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variance (Mulder and Pericchi 2018), which is a common distribution for modeling 
variance components.

The LKJ prior is defined as LKJCorr(�|�) ∝ det(�)�−1 , with � ∈ IR+ . This dis-
tribution allows us to sample uniformly from the space of positive definite correla-
tion matrices and has a behavior similar to the beta distribution (Wang et al. 2018; 
Lewandowski et  al. 2009). For example, when � = 1 , it has a uniform behavior, 
when 𝜂 < 1 it favors stronger correlation; whereas when 𝜂 > 1 , it favors weaker cor-
relation. For the random-effects covariance matrix under the sender �� , the same 
prior is specified.

Finally, multivariate normal priors are specified for the fixed effects and random 
effects, i.e.,

For the prior covariance matrices, diagonal matrices are specified with very large 
variances. This builds upon existing knowledge of weakly informative prior specifi-
cation for mixed effects generalized linear models, which have become the standard 
approach under this class of mixed effects models (Gelman et al. 2013; Gelman and 
Hill 2006).

2.3  Reparameterization to improve Bayesian computation

Due to the hierarchical structure of the data, the random-effects parameters �k and 
�k are highly correlated with the population parameters � , � and � . This introduces 
severe computational inefficiencies in the sampling process. When the data are 
sparse, which is a characteristic of most social network data, the geometry of the 
posterior distribution makes it very difficult to sample from the highest posterior 
density areas. Betancourt and Girolami (2015) called these issues pathologies of the 
hierarchical model. Therefore, to ease the burden on the sampler, we take advantage 
of the multivariate normal structure of the random effects and apply a non-centered 
linear transformation to those parameters.

Lemma 1 Let � ∼ N(�,�) , where � ∈ IRp . Then, with � ∈ IRp and A being a 
p × p matrix, such that AA� = � , one can write � = AZ + � , where Z ∈ IRp and 
Z ∼ N(0, I) , where I is a p × p identity matrix.

This transformation can be applied to both � and � . A natural candidate for matrix 
A is the Cholesky factorization of the covariance matrix � . For details see appendix 
B.

This reparameterization is more efficient for two reasons. First, it reduces the 
dependency between the random-effects parameters and the population parameters by 
sampling from independent standard normal distributions. This simplifies the geometry 

� ∼N(0,��),

� ∼N(0,�� ),

�� ∼N(0,��),

�� ∼N(0,�� ).
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of the posterior and avoids inverting � at every evaluation of the multivariate normal 
density (Carpenter et al. 2017). Therefore, we can safely and efficiently transform the 
random-effects parameters without causing any change in the prior specification of 
population parameters.

The model has been implemented in Stan, a probabilistic programming language 
that employs Hamiltonial Monte Carlo (HMC) algorithms to sample from posterior dis-
tributions. The advantage of HMC methods is that they avoid the random walk behav-
ior and the sensitivity to posterior correlations that plague many Bayesian applications 
(Hoffman and Gelman 2014), including hierarchical models. This particularities allow 
HMC to generally converge to high dimensional distributions much faster than Metrop-
olis–Hastings or Gibbs sampler methods (Hoffman and Gelman 2014; Betancourt and 
Girolami 2015).

3  Bayesian hypothesis testing under the actor‑oriented multilevel 
relational event model

In multilevel analysis, researchers are usually interested in testing which theories 
receive the most support from the observed data, so that inferences about the popula-
tion can be conducted. This kind of analysis is carried out through a process called 
hypothesis testing. From a Bayesian perspective, those tests are usually performed by 
the computation of Bayes factors (BF) (Jeffreys 1961). The BF is given by the ratio 
of marginal likelihoods under the parameter space of competing hypotheses, which 
quantifies the probability of observing the data under one hypothesis relative to another 
hypotheses, and thereby providing a quantification of the relative evidence in the data 
between the hypotheses. Let E be the observed data, � a vector of parameters in the 
space � , and H0 ∈ �0 be a hypothesis that will be tested against H1 ∈ �1 , then BF01 is 
expressed as

where m(E|Hi) = ∫
�i∈�i

p(E|�i)p(�i)d�i , for i = 0, 1 , with p(E|�i) being the likeli-
hood and p(�i) the prior. Also, �0 ∩�1 = ∅ , with both �0 and �1 being subsets of 
� . Kass and Raftery (1995) provide a rule-of-thumb for Bayes Factors interpreta-
tion. In their setting, the evidence provided by the BF01 in favor H0 can be seen as 
“insufficient" if 1 < BF01 < 3 , “positive" if BF01 > 3 , “strong" if BF01 > 20 , and 
“very strong" if BF01 > 150 . These are rough guidelines to aid the interpretation of 
Bayes factors and should not be used as strict cut-off values.

Furthermore, when prior probabilities of the hypotheses have been formulated 
before observing the data, the prior odds can be updated with the Bayes factor to obtain 
the posterior odds of the hypotheses, i.e.,

(4)BF01 =
m(E|H0)

m(E|H1)
,

P(H0|E)
P(H1|E) = BF01 ×

P(H0)

P(H1)
.
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For example, when both hypotheses are equally likely a priori, i.e., 
P(H0) = P(H1) =

1

2
 , the posterior probabilities of the hypotheses are given by 

P(H0|E) = BF01

BF01+1
 and P(H1|E) = 1

BF01+1
 . These posterior probabilities quantify the 

probabilities that each of these hypotheses are true after observing the data (when 
assuming that one of these hypotheses is true). Because Bayes factors are consistent 
under mild conditions, the evidence for the true hypothesis goes to infinity and the 
posterior probability of the true hypothesis goes to 1 as the sample goes to infinity.

Below, we introduce Bayes factors for three types of hypothesis testing problems 
for the multilevel relational event modeling literature. Test I is useful for testing the 
homogeneity of network effects across independent sequences. Test II is useful for 
testing the degree of heterogeneity of network effects across sequences using order 
constraints on random-effects variances. Test III is useful to test equality and order 
constraints on fixed effects. Prior specification and numerical computation, which 
are important aspects when computing Bayes factors and posterior probabilities of 
the hypotheses, are discussed for each test separately.

3.1  Test I: testing for homogeneous social interaction behavior across sequences

When building multilevel relational event models, a central question is whether a 
driver of specific social interaction behavior (as quantified via the network effects) is 
constant over the sequences or whether it varies across the sequences. Testing this is 
important from a statistical point of view (i.e., to keep the model as parsimonious as 
possible, and thus to avoid an enormous overparameterization using different effects 
across all K sequences) but also from a substantive point of view (i.e., to understand 
which drivers of social interaction behavior in relational event data are constant 
across sequences and which (highly) differ). Thereby, testing this contributes to a 
better understanding of the heterogeneity of social interaction behavior.

The hypothesis test for the pth random network effect in the receiver model 
can be formulated as H0 ∶ ��,p = 0 versus H0 ∶ 𝜎𝛽,p > 0 , or equivalently as, 
H0 ∶ �p,1 = … = �p,K versus H1 ∶ not H0 . The second formulation of the hypothesis 
is simpler as we avoid the need of testing whether the variance is equal to the bound-
ary of 0, but instead we only need to test whether the random effects are equal across 
the K clusters. Using the fact that the distribution of the random effects effectively 
serves as a prior for the random effects on the first level, we can simply compute a 
Savage–Dickey density ratio using the estimates of the random-effects distribution 
from the data, i.e.,

where �p,k = �p,k − �p,k−1 , for k = 2,… ,K , are the differences between the random 
effects.

To compute the posterior and prior densities at the null value, we use the fact 
that our actor-oriented multilevel relational event model can be written as two 

BF01 =
�(�1,… , �K−1 = 0|E)
�(�1,… , �K−1 = 0)

,
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independent mixed effects Poisson regression models having specific forms (Appen-
dix A). Thus, the two independent components of the model belong to the family 
of generalized linear mixed effects models, which is well understood in the statis-
tical literature (e.g., Gelman and Hill 2006; Bürkner 2017). Moreover, the model 
results in unimodal posteriors when using weakly informative priors, as done in this 
paper. Additionally, we use the general property that posterior distributions converge 
to Gaussian distributions in well-behaved problems following large sample theory 
(Gelman et al. 2004, Ch. 4; Rafter 1995; Kim and Ibrahim 2000). We illustrate the 
accuracy of this Gaussian approximation later in this paper. The Gaussian approxi-
mation of the posterior is then used to compute the numerator (then having an ana-
lytic expression). Moreover, the prior distribution, which is needed to compute the 
denominator, follows a multivariate Gaussian distribution by definition because it is 
the second level of our multilevel model, �k ∼ N(�� ,��) , and thus the joint prior 
distribution of the contrasts ( � ) also follows a multivariate Gaussian distribution.

One interesting aspect of this Bayes factor is that the prior is fully determined 
from the data, similar to empirical Bayesian estimation of hierarchical models. This 
property is especially useful here as Bayes factors are known to be sensitive to the 
choice of the prior. Note that empirical Bayesian approaches to obtain Bayes factors 
have been proposed for testing regression coefficients using g priors (e.g., see Liang 
et al. 2008, and the references therein), but (to our knowledge) not for testing vari-
ance components as we do here. The advantage of this approach is that no external 
prior information is required and no other ad hoc choices for prior distributions are 
needed. The outcome of the test can be used to quantify the relative evidence in the 
data of whether a hierarchical structure for the network effects is applicable or not 
given the observed data.

3.2  Test II: testing the degree of heterogeneity of network effects 
across sequences

After establishing which network effects are heterogeneous across sequences (using 
the test from the previous subsection), it is useful to investigate the relative degree 
of heterogeneity of network effects across sequences, again with the goal to better 
understand the heterogeneity of social interaction behavior across independent rela-
tional event sequences. This comes down to testing whether a specific random effect 
varies more across sequences than another random effect, or, equivalently, whether 
one random-effect variance is larger than another. When generalizing this further, 
we would test specific orderings of random-effect variances (see also Böing-Mess-
ing et al. 2020, who consider testing order constraints on variances in a nonhierar-
chical setting).

Two different tests are proposed for this purpose. First, a confirmatory test is pro-
posed of whether an anticipated ordering regarding the degree of heterogeneity of 
network effects across sequences is present:
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Second, an exploratory test is proposed to determine which ordering out of all P! 
possible orderings receives most evidence from the data, i.e.,

Following the existing Bayesian literature on order-constrained hypothesis testing 
(e.g., Klugkist et al. 2005), we specify the prior under an order-constrained hypoth-
esis as a truncated version of an unconstrained prior truncated in the order-con-
strained subspace. The Bayes factor of an order-constrained hypothesis against the 
unconstrained hypothesis,Hu , can then be expressed as the ratio of the posterior and 
prior probability that the constraints hold (Appendix C):

The Bayes factors between constrained hypotheses of interest can then be obtained 
using the transitive property of the Bayes factors, e.g., B12 = B1u∕B2u.

The Bayes factor will not be sensitive to the prior as long as very vague identi-
cal priors are specified for the variances. In this case, the prior probability in the 
denominator will be equal to (P!)−1 , and the posterior probability will be fully deter-
mined by the information in the data (similar as in Bayesian estimation). Bartlett’s 
paradox is, thus, not an issue in Bayesian order or one-sided hypothesis testing (Jef-
freys 1961; Klugkist and Hoijtink 2007; Liang et al. 2008; Mulder 2014a).

To compute the posterior probability that the order constraints hold under the 
unconstrained model, we can simply fit the unconstrained model (using independent 
vague priors) and compute the proportion of draws satisfying the order constraints. 
The current test extends the use of Bayes factors for testing order hypotheses on 
variance components (Böing-Messing et  al. 2017; Mulder and Fox 2019; Böing-
Messing et al. 2020, e.g.,) to multilevel relational event models.

3.3  Test III: testing common and average network effects over all sequences

In most applications, hypothesis tests are formulated on the common network 
parameters across clusters (i.e., the fixed effects) and on the average of the random-
effects across clusters (i.e., the global random-effects means). Since both parame-
ters have the same role, hypothesis tests of these parameters are both discussed here 
using the same methodology.

First, a common test is of whether a network statistic has no effect, a negative 
effect, or a positive effect on the interaction behavior, which could be formulated as

H0 ∶ 𝜎1 < 𝜎2 < … < 𝜎
P

H1 ∶ notH0.

H1 ∶ 𝜎1 < 𝜎2 < ⋯ < 𝜎P

H2 ∶ 𝜎2 < 𝜎1 < ⋯ < 𝜎P

⋮

HP! ∶ 𝜎P < 𝜎P−1 < ⋯ < 𝜎1.

(5)BF1u =
P(𝜎1 < 𝜎2 < ⋯ < 𝜎P|E,Hu)

P(𝜎1 < 𝜎2 < ⋯ < 𝜎P|Hu)
.
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for the first fixed effect of the receiver model, for instance. Second, hypotheses are 
often formulated on combinations of parameters using equality and/or order con-
straints on multiple parameters of interest based on existing theories or scientific 
expectations (Hoijtink et al. 2019), e.g.,

where hypothesis H1 assumes that the first effect ( �1 ) is equal to the second effect 
( �2 ) and larger than the third effect ( �3 ), and hypothesis H2 assumes the comple-
ment is true. Third, when testing the effects of categorical (dummy) variables on the 
event rate, scientific expectations may be formulated which categorical variable has 
the largest impact on the event rate. A challenging testing problem is when the inter-
est is in assessing which categorical variable has the largest impact when it is not 
known which category of each categorical variable results in the largest event rate. 
For example, it may be of interest whether the dichotomous gender variable (0 or 1) 
has a larger, equal, or smaller impact on the event rate than a dichotomous race vari-
able (0 or 1), but it is not of particular interest which category results in the largest 
rate. This could be translated to constrained hypotheses on the absolute values of the 
effects of these two categorical variables according to

Finally, it is possible to test parameters between the sender model and the receiver 
model. This allows researchers to assess whether variable has a larger/equal/smaller 
to predict the next sender than to predict the next receiver.

The procedure for Test III builds on default Bayes factor methodology where 
the information in the data is split between a minimal subset, which is used for 
default prior specification (in combination with a noninformative prior) and a maxi-
mal subset which is used for hypothesis testing (O’Hagan 1995; Pérez and Berger 
2002, among others). When using these methods, the resulting Bayes factors do not 
depend on the undefined normalizing constants of the improper priors (O’Hagan 
1995), which practically means that arbitrarily vague priors can be used, as we do in 
this paper. These Bayes factors can be computed in an automatic fashion and manual 
prior specification can be avoided.1 Here, we use fractional Bayes factors where a 
(minimal) fraction of the data, denoted by b, is used to construct a (default) frac-
tional prior, given by

H0 ∶ 𝜓1 = 0 versus H1 ∶ 𝜓1 < 0 versus H2 ∶ 𝜓1 > 0

H1 ∶ 𝜓1 = 𝜓2 < 𝜓3 versus H2 ∶ ‘notH�
1
,

H0 ∶ |𝜓1| = |𝜓2| versus H1 ∶ |𝜓1| < |𝜓2| versus H2 ∶ |𝜓1| > |𝜓2|.

(6)�(�,� ,�, � ,�� ,�� |Eb) ∝ p(E|�,� ,�, � ,�� ,�� )
b�(�,� ,�, � ,�� ,�� ),

1 Alternatively, JZS priors (Bayarri and García-Donato 2007; Rouder et al. 2009; Wetzels et al. 2012) 
could also be considered for this test but, to our knowledge, this class of priors has not yet been proposed 
for generalized linear mixed effects models. Moreover, note that the prior scale of the key parameter that 
is tested still needs to be manually specified, unlike the proposed fractional Bayes factor using a mini-
mally informative fractional prior.
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and the remaining fraction is used for hypothesis testing. It has been shown that 
fractional Bayes factors follow many important properties which are not shared by 
all default Bayes factors, such as large sample consistency, satisfying the likelihood 
principle, invariance to transformations of the data (O’Hagan 1997), and informa-
tion consistency (Mulder 2014b). To properly incorporate the model complexity of 
order-constrained hypotheses, we apply a prior adjustment of the fractional prior 
(Mulder 2014b), and Gaussian approximations are applied to the posterior and frac-
tional prior to simply the computation (Kim and Ibrahim 2000; Gu et al. 2017). The 
accuracy of the Gaussian approximations will be discussed in the next section. The 
approximated fractional Bayes factor of a constrained hypothesis (e.g., with any 
set of equality and/or constraints on certain parameters) against an unconstrained 
model is then computed as the integral over the unconstrained posterior over the 
constrained subspace divided by the integral over the unconstrained fractional prior 
over the constrained subspace as a Savage–Dickey density ratio (Mulder 2014b). 
Existing functions in R using the ‘mvtnorm’ package (Genz et al. 2021) can be used 
to compute the Bayes factors (Mulder et al. 2021).

The choice of the fraction ‘b’ is based on the recommendation by Mulder and 
Fox (2019), which implies selecting a minimal sample that is based on the ratio 
between the total number of parameters (excluding group specific effects) and the 
total number of observations. Since sender and receiver models are two different 
processes assumed to be conditionally independent given the past, we have to 
define two difference fractions, one for each model (Hoijtink et al. 2019, see also). 
In the sender model, we have P random effects and Q fixed effects, hence the frac-
tion is bSnd =

(P(P+1)∕2)+(P+Q)∑K

k=1
Nk

 and in the receiver model we have V random effects 
and U fixed effects, resulting in the fraction bRec =

(V(V+1)∕2)+(V+U)∑K

k=1
Nk

.

4  Estimating and testing classroom dynamics using the multilevel 
relational event model

The data that are considered here were collected by McFarland (2001) in a study 
to investigate student rebellion in the classroom. The data feature observations 
of interactions among high-school students in two different schools in the United 
States. For this illustration, we consider 15 independent classrooms from Mag-
net High School during the 1996–1997 school year. The student body of this 
high school can be considered academically homogeneous. The data were col-
lected through classroom observations in which the conversations within the 
classroom were coded. In each of these fifteen classes, a teacher is present in 
addition to the students. The number of events (the number of times one person 
said something to another person) ranges from 86 to 628, and the number of per-
sons (the students plus the teacher) ranges between 19 and 30 across the event 
sequences. The conversations happened in an orderly lecture-like fashion, so 
only one person was speaking at each time. The aim of this application is two-
fold. At first, we present a sequential analysis that is used as proof of concept for 
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the proposed model and statistical testing procedures. Second, we aim to provide 
insights into classroom dynamics by showing the evolution of network effects 
over time and extensively applying our tests to showcase multiple substantively 
interesting hypothesis tests. Below, we first discuss the actor-oriented multilevel 
relational event model that we use to analyze the data.

4.1  Model specification

We fit the hierarchical actor-oriented relational event model (described in Sect. 2) 
to the data. Initially, all effects are considered random, so the need for a hierarchi-
cal structure can be evaluated using the Bayes factor presented in Sect. 3. This first 
step will allow us to determine whether some effects can be treated as fixed and the 
model can hence be simplified.

We set the prior parameters to �2
�
= �2

��
= �2

�
= �2

��
= �� = 10 , making the priors 

for the fixed and random effects relatively vague, and � = 2 , slightly favoring smaller 
correlations. For our illustration of the proposed methods, we will include the fol-
lowing covariates into the model:

Teacher: A dummy variable that indicates whether the actor is the teacher (one if 
the actor is the teacher and zero otherwise).

Gender: A dummy variable that indicates the gender of the actor (one if the actor 
is male and zero otherwise).

Race: A dummy variable that indicates the race of the actor. McFarland (2001) 
notes that 50 percent of the Magnet High population is Caucasian. Hence, the vari-
able is one if the actor is Caucasian and zero otherwise.

Inertia: Inertia captures the persistence of the communication, where past inter-
action is likely to be repeated (Leenders et al. 2016). It is computed as the accumu-
lated volume of past communication from a specific sender to a specific receiver. 
Because this statistic is dyadic, it will be included only in the receiver model.

Participation shifts: These statistics are used to reflect expectations of adherence 
of communication norms in small groups (Butts 2008). Gibson (2005) describes the 
framework for several types of participation shifts. In this application two distinct 
types of participation shifts will be included. The first belongs to the group of “turn-
receiving" and is represented by the event pattern ABBA: an interaction from person 
A to person B is immediately followed by an interaction from B to A. The second is 
ABAB, which can be considered as a special case of "turn-continuing": an interac-
tion from person A to B is immediately followed by another interaction event from 
A to B.

The ABBA and ABAB participation shifts are concerned with dyads, therefore 
they will be included in the receiver model only. However, we do include adapted 
versions in the sender model. Here, the statistics become ABB (after A has spoken 
to B, the next event is B starting the conversation) and ABA (after A has spoken to 
B, A speaks again).

Activity: This set of covariates captures the effect of actor activity as a sender or 
as a receiver (Vu et al. 2017). The first is the outgoingness of a person, defined as 
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the number of events sent by one actor up until a specific point in time. This cap-
tures the tendency of the person to start conversations (or just to talk). The second 
is the popularity of a person, given by the number of events received by one actor 
up until a specific point in time. This captures the popularity of an individual as a 
receiver of the conversation.

Relational event models are vulnerable to process explosion, which happens when 
�(t) → ∞ often due to a feedback loop that may be caused by using statistics that are 
computed as cumulative sums (Aalen et  al. 2008). This is particularly a problem 
for inertia and activity statistics. One way to alleviate this problem is via z-score 
standardization at every time point, which is defined as z(t) = (x(t) − x̄(t))∕Sx(t) , 
where x(t) is the value of the statistic, x̄(t) is the sample mean, and Sx(t) is the sam-
ple standard deviation at time t. We use standardized statistics in this application.

4.2  Exploring social interaction dynamics as class time progresses

By analyzing the relational event sequences as the time during class progresses, we 
can explore how statistical certainty increases over time using the proposed multi-
level relational event model, and how interaction dynamics between children and 
the teacher evolves as class time progresses. To study this, we analyze the sequences 

Fig. 1  Trace plots of some of the random-effect parameters. The number 2 in the subscript shows that 
the parameters belong to cluster number two. The top (bottom) line shows parameters in the sender 
(receiver) model
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with increasing batches of 20% of the total number of events in each sequence (i.e., 
20%, 40%, 60%, 80%, and 100%).

4.2.1  Testing for homogeneous social interaction behavior across school classes

The first step is to fit the model with all effects considered random. We ran 2000 
MCMC iterations and discarded the first 1000 samples as burn-in. We used R̂ as a 
convergence diagnostic measure. For all models, the metric values were fairly close 
to 1 all, falling all below the 1.05 value recommended by Carpenter et al. (2017). 
As an example, Fig. 1 shows several trace plots for the model run with 100% of the 
events. The chains show convergence. The number of posterior draws is not high 
because the Hamiltonian dynamics in Stan’s algorithm allow for faster convergence 
than standard MCMC methods (Hoffman and Gelman 2014). To check this, we 
investigated the bulk effective sample size and the tail effective sample size, which 
fell between 800 and 1100 for all parameters ( Carpenter et al. (2017) recommends 
these values to be both above 100 for the sample to be considered reliable). This 
confirms the computational efficiency of the sampler. For other sample size recom-
mendations, see Hecht and Zitzmann (2021). Since a more parsimonious model is 
preferred, we consider an effect to vary across classrooms via a random effect when 
the posterior probability for the hypothesis that an effect is fixed, H0 , is less than 
0.25, corresponding to BF01 < 1∕3 (which can be interpreted as positive evidence 
that the effect varies across clusters; Kass & Raftery, 1995).

Figure 2 shows the evolution of the posterior probabilities of H0 as we increase 
the number of events. In the beginning, when the number of events is small (vary-
ing from 17 to 125 events across school classes), the uncertainty in the posterior 
is relatively large leading to considerable overlap in the posterior distributions of 
the random effects. Therefore, the posterior probabilities for a fixed effect tend to 
start out large and eventually decrease to zero when the full sequences are con-
sidered for most effects, providing strong evidence for their heterogeneous nature. 
This is the case for most effects that are clearly heterogeneous if the sample sizes 
are large enough. On the other hand, for some covariates, the posterior probability 
gets larger as the sample sizes near 100% of the events. This is the case for ABA, 

Fig. 2  Posterior probabilities of the fixed-effect hypothesis H0 in the homogeneity test for different effects
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outgoingness and popularity in the sender model and for race in the receiver model, 
resulting in posterior probabilities for a fixed effect of 0.768, 0.681 and 0.579, 0.777, 
respectively. Thus, the parameters corresponding to those effects will be fixed in our 
model. Therefore, we continue with a mixed-effect model, where the sender model 
has ABA, outgoingness, and popularity as fixed effects, and intercept, teacher, gen-
der, race, and ABB as random effects, and a receiver model where only race is a 
fixed effect and all other effects are considered random.

To understand the nonmonotonic development of the posterior probabilities 
where the lines first go down and eventually increase, it is useful to check the 
corresponding estimates of the random-effects. As an example, the top left panel 
of Fig.  3 shows random-effect estimates of the race covariate in the receiver 
model, where each line represents a five different classrooms (to keep the plot 
clear; the other classrooms showed similar patterns). As the lines show we see 
that the random effects become more heterogeneous until 80% of the events are 
included in the analysis but when all 100% of the events are included the esti-
mates become more homogeneous which explains the evidence for a fixed effect 
for the race effect in the receiver model in Fig. 2 when all 100% of the events are 
considered.

Fig. 3  Random-effect estimates for receiver (top) and sender (bottom) models for 5 groups
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In addition, in the bottom right panel of Fig. 3, which presents the random-
effect estimates for outgoingness in the sender model, a similar pattern is 
observed. The random effects becomes heterogeneous between 40% and 60% of 
the events, but they rapidly converge displaying a pattern similar to race in the 
sender model. This behavior is reflected in the posterior probabilities, with the 
line going down for 40% and 60% of the events and then getting back up again. 
On the other hand, the estimates on the left-hand side panels of Fig.  3, which 
display popularity in the receiver model and teacher in the sender model, are 
consistently heterogeneous as class time progresses. This is corroborated by the 
posterior probabilities with both effects presenting small evidence for the null.

4.2.2  Evaluating the shrinkage behavior of random effects

Given that there is asymmetry in the distribution of the number of events across 
classrooms (varying from 86 to 628 events over classrooms), there will be a vari-
ation regarding the statistical uncertainty of the estimated random effects across 
classrooms. Due to the multilevel structure of the model, estimated effects with a 
relatively large uncertainty which also deviate much from the other estimates will 
then be (slightly) pulled towards the global mean of the effect over all class rooms. 
This statistical behavior is also known as shrinkage, or borrowing information across 
groups, which is an intrinsic property of multilevel models. The current sequential 
analysis where the sample sizes grows allow us to investigate this behavior, since 
with fewer events we should have less information and, therefore, less accurate 
classroom-specific estimates.

We use the R package remstimate (Arena et al. 2022) to obtain the estimates of 
the classroom-specific effects which ignores the multilevel structure of the data. 
Figure 4 shows the shrinkage for several effects in the sender and receiver models. 
The lines were plotted using a gray scale where lighter shades mean smaller sample 
sizes. In each panel, we have the estimates based on the estimation of the separate 
classrooms at the top, and the multilevel estimates at the bottom.

First, we see that there is considerably more variation of the estimated effects in 
the separate analyses (top of each panel), which ignore the multilevel structure, in 
comparison to the multilevel estimates (bottom of each panel). This confirms that 
the proposed multilevel model shows the anticipated shrinkage behavior. Second, 
we see that when using subsets of only 20% complete event sequences in the class-
rooms, we obtain more extreme estimates than when using the proposed multilevel 
model. Finally, we see that estimates for classrooms with shorter event sequences 
(represented with light gray lines) are on average more extreme than estimates for 
classrooms for longer event sequences. This illustrates that the proposed multilevel 
relational event models is particularly useful when the event sequences are relatively 
short to avoid extreme estimates.
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Fig. 4  Plots of classroom-specific effects when fitting a model separately per classroom and when jointly 
fitting the multilevel model over all classrooms. Darker (lighter) lines indicate classrooms with relatively 
many (few) events
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4.2.3  Evolution of classroom behavior

Another interesting aspect to look at in the sequential analysis is the potential change 
of the estimated of the effects as class time progresses. This will give us an insight 
into the social interaction dynamics in classrooms. Figure 5 shows the evolution of 
some mean effects in the sender and receiver models. Here, we restrict ourselves to 
some trends of average network behavior across all classrooms. Note that the inter-
vals are relatively wide because the limited lengths of the event sequences in a class 
period.

First, we see that the teacher effect in the sender model is positive and large in 
the sender model. This was expected given the dominant role of the teacher dur-
ing lectures. The plot in Fig. 5 (upper left panel) also shows a slight decrease as 
class time progresses. This suggests that the dominant role of the teacher slightly 
decreases as the lectures approach the end. This indicates that teachers may loose 
some of the control towards the end or that more students become engaged or 
activated towards the end. This is also confirmed by the ABA effect in the sender 
model (Fig. 5, upper right panel)) which is initially positive and decrease to just 
below zero towards the end of the class period. Thus, it becomes less likely that 
the sender of the previous messages (typically the teacher because these are lec-
tures) becomes the sender of the next event.

Fig. 5  The development of different drivers of interaction behavior as class time progresses from 20% to 
100% of the observed events in each classroom
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Another interesting trend can be observed for the global inertia effect across 
classrooms in the receiver model (Fig. 5, lower left panel) In the beginning of the 
class period, inertia starts out negative which indicates that it is less likely that 
actors who were the receiver of relational events in the past (typically a ques-
tion or remark by the teacher towards a student because lectures are considered) 
become a receiver of the next. This indicates that teachers aim to address differ-
ent students in the beginning of the lecture with the goal to get more students 
engaged or activated during lectures. The effect, however, gradually increases as 
the class time progressed. As the class period nears the end, the inertia effect 
becomes positive which implies that it has become more likely that a student is 
addressed by the teacher who was also addressed by the teacher in the past. This 
suggests that teachers tend to focus more on the same students (possibly the more 
motivated students) rather than trying to involve other less active students in the 
discussion. This is also confirmed by the positive and increasing ABAB effect in 
the receiver model during class time (Fig. 5, lower right panel).

4.3  Mixed‑effects analysis on the full sequences

In this subsection, we carry out the other proposed tests under the mixed-effects 
model obtained from the homogeneity tests that were carried out in the previous 

Fig. 6  Trace plots of some of the population parameters in the mixed-effects model. The top (bottom) 
line show parameters in the sender (receiver) model. The figure display one fixed effect and one random-
effect mean with its variance for each model



59

1 3

Behaviormetrika (2024) 51:37–74 

section. We only restrict ourselves to the results for the full event sequences to keep 
the discussion of the results as concise as possible. We ran 4 chains, each with 5000 
MCMC iterations with a burn-in of 2500 draws. Figure 6 shows the trace plots of a 
few parameters, all chains show convergence. Here, we also used the R̂ as a conver-
gence measure, they were essentially 1 in all chains for all parameters. In addition, 
the bulk and tail effective sample sizes were all close to around 2000 samples.

Moreover, Figs. 7 and 8 display the density estimated from each of the 4 chains 
and a Gaussian approximation on top. As can be seen, the Gaussian approximation 
seems to be acceptable in the bulk as well as in the tails of the distribution. There-
fore, empirically, the approach of conducting the tests using these approximations as 
proxies for the posterior distributions seems reasonable. From now on, given that the 
results for the four chains are virtually identical, we proceed to analyze the results of 
a single chain.

We can see that the proposed testing procedure to determine which effects are 
random and which are fixed works correctly because a similar fit to the data is 
obtained in the more parsimonious model (where some effects are fixed) compared 
to the larger (i.e., all random) model. We can see this by computing the point-wise 
deviance residuals for both models under the full multilevel model where all effects 
are random across classrooms and the mixed effects model where certain effects 
are assumed fixed across classrooms (according to the proposed Bayes factor test). 

Fig. 7  Estimated posterior density and Gaussian approximation for a some fixed effects in the sender 
model
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If a similar fit is obtained for both models, the point-wise deviance residuals for 
both models are similar meaning that none of the two models dominates the other 
in terms of fit. Figure 9 clearly shows that that is the case: most points lie around 

Fig. 9  Comparison of the point-
wise deviance residuals between 
the random-effects (x-axis) 
and the mixed-effects (y-axis) 
models. The gray line is the 
equality line

Fig. 8  Estimated posterior density and Gaussian approximation for a some fixed effects in the receiver 
model
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Table 1  Parameter estimates of the mean effects

Numbers in bold are effects that were treated as fixed, either � or � , in the mixed-effects model. Not-
bolded numbers represent random-effect means, � . Numbers between parentheses are 95% credible inter-
vals. Dashes indicate that the covariate was not included in the respective model

Parameter Estimates of Mean Effects

Random-Effects Model Mixed-Effects Model

Effect Sender Receiver Sender Receiver

Intercept −1.75 (−2.08, 
−1.37)

– −1.77 (−2.19, 
−1.32)

–

Teacher 2.22 (1.56, 2.83) 0.21 (−0.25, 0.67) 2.22 (1.60, 2.97) 0.20 (−0.21, 0.65)
Gender 0.27 (0.01, 0.53) −0.30 (−0.51, 

−0.12)
0.29 (0.02, 0.57) −0.31 (−0.49, −0.09)

Race −0.12 (−0.36, 0.11) −0.07 (−0.18, 0.05) −0.12 (−0.37, 0.14) −0.06 (−0.17, 0.04)
Inertia – 0.42 (−0.38, 1.15) – 0.36 (−0.46, 1.17)
ABB (ABBA) 1.06 (0.67, 1.46) 4.30 (3.88, 4.72) 1.08 (0.67, 1.52) 4.27 (3.79, 4.70)
ABA (ABAB) −0.06 (−0.52, 0.33) 1.29 (0.57, 1.84) −0.05 (−0.42, 0.32) 1.18 (0.53, 1.81)
Outgoingness 0.05 (−0.08, 0.20) – 0.07 (0.00, 0.12) –
Popularity 0.25 (0.12, 0.39) 0.58 (0.40, 0.77) 0.17 (0.11, 0.23) 0.59 (0.39, 0.78)

the gray diagonal where the values are equal. This indicates that the fit provided by 
both models is similar. Details of the point-wise deviance computation are provided 
in appendix E. Finally, Table 1 shows a comparison of the posterior estimates for 
both models, where the bold ones are effects treated as fixed in the mixed-effects 
model. In sum, the mixed effects model results in a comparable fit but with much 
less parameters to estimate, resulting in a more parsimonious model and a simpler 
explanation of social interaction behavior across classrooms.

4.3.1  Testing the degree of heterogeneity of network effects across school classes

By testing order constraints on the random-effects variance parameters, we can 
assess which characteristics cause most variation in the social interaction behavior 
across school classes. In particular, we focus on the random effects of the teacher, 
gender, and race variables in the sender model (which are all dummy variables). 
The same test can also be applied to the variance parameters in the receiver model in 
a similar manner. The objective is to determine the amount of evidence regarding 
the level of heterogeneity among these effects. Let �2

teacher
 , �2

gender
 , and �2

race
 be the 

between classrooms variances of the teacher, gender, and race effects, respectively, 
where these parameters are extracted from the diagonal of �� . Given the special 
(dominant) role of the teacher in a classroom, and the fact that different teachers 
have different teaching styles, it is expected that the variance of the teacher effect is 
largest. We tested all six possible order hypotheses for the random-effects variances:
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The goal is to determine which hypothesis receives most evidence from the data. 
Below, the Bayes factors for each one of these hypotheses against one another is rep-
resented in the form of an evidence matrix:

H1 H2 H3 H4 H5 H6

H1

H2

H3

H4

H5

H6

⎛
⎜⎜⎜⎜⎜⎜⎝

1.00 1.47 5788.40 615.79 5788.40 275.64

0.73 1.00 4200.00 446.81 4200.00 200.00

0.00 0.00 1.00 0.00 0.00 0.00

0.00 0.00 8.40 1.00 8.40 0.40

0.00 0.00 0.00 0.00 1.00 0.00

0.00 0.00 20.00 2.13 20.00 1.0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Each cell of the matrix represent the comparison of the hypothesis in the rows 
against the hypothesis in the columns. So, for example, the evidence for H1 against 
H2 is equal to 1.5. The evidence for H2 against H1 is then 1∕1.50 = 0.67.

The evidence matrix clearly shows that the evidence for hypotheses H1 and H2 is 
much larger than the evidence for any of the other hypotheses, which indicates that 
the teacher effect shows indeed most heterogeneity across the fifteen classrooms. 
When inspecting the estimates of the variances, this is also confirmed: 
�̄�2
teacher

= 1.65 , �̄�2
gender

= 0.25 , and �̄�2
race

= 0.22 . Note that the added value of the 
Bayes factor complementary to eyeballing the estimates is that the effect sizes and 
their uncertainty are combined in a principled manner to determine which effects are 
most heterogeneous across classrooms. Finally note that there is no clear evidence 
that either the gender effect or the race effect is more heterogeneous across class-
rooms. Thus, we can conclude that teachers have the biggest impact on the variabil-
ity of social interaction behavior across classrooms.

4.3.2  Testing the impact of nodal characteristics on classroom dynamics

In this subsection, we test the effects of nodal characteristics how they affect class-
room dynamics. In the sender model, due to the special role of the teacher to con-
trol interaction behavior during lectures, the teacher variable is expected to have the 
strongest impact on the rate at which an actor starts an interaction when compared 
to the other two personal-trait variables gender and race. No expectations are for-
mulated about which of these latter two variables has the largest effect in the model, 
or about which category of these dichotomous variables results in a positive effect. 

H1 ∶ 𝜎2
teacher

> 𝜎2
gender

> 𝜎2
race

H2 ∶ 𝜎2
teacher

> 𝜎2
race

> 𝜎2
gender

H3 ∶ 𝜎2
race

> 𝜎2
teacher

> 𝜎2
gender

H4 ∶ 𝜎2
race

> 𝜎2
gender

> 𝜎2
teacher

H5 ∶ 𝜎2
gender

> 𝜎2
teacher

> 𝜎2
race

H6 ∶ 𝜎2
gender

> 𝜎2
race

> 𝜎2
teacher

.
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This results in the following hypotheses where constraints are formulated on the 
absolute values of the respective effects of these variables

The complement hypothesis H4 is included as a “safety net” in case our expectations 
about the dominance of the teacher variable would not be supported by the data. 
Once again, we present the resulting fractional Bayes factors in an evidence matrix 
form

H1 H2 H3 H4

H1

H2

H3

H4

⎛⎜⎜⎜⎝

1.00 0.21 4.74 2.39e8

4.56 1.00 21.63 1.09e9

0.21 0.05 1.00 5.05e7

0.00 0.00 0.00 1.00

⎞⎟⎟⎟⎠

.

Again, we translate these Bayes factors to posterior probabilities when assuming 
that each hypothesis is equally likely a priori, which results in posterior probabili-
ties of 0.235, 0.723, 0.042, and 0.000, for H1 , H2 , H3 , and H4 , respectively. Based 
on these results we can safely rule out the complement hypothesis H4 . Moreover, 
hypothesis H2 (which assumes that the teacher variable has the largest effect, and the 
gender effect and the race effect are equal) receives most evidence; but only approxi-
mately 3 times more evidence than the hypothesis H1 (which assumes that gender 
plays a larger role than race after the teacher effect). In order to draw more decisive 
conclusions of whether H1 or H2 is true more data would be required. These results 
are confirmed when looking at the posterior estimates, i.e., 2.22, 0.289, 0.143, and 
their posterior standard deviations, i.e., 0.344, 0.131, 0.103, of the absolute values of 
the teacher, gender, and race effect. Note again that the Bayes factors and posterior 
probabilities are a principled probabilistic methodology to summarize these findings 
without requiring subjective eyeballing of the estimates.

Under the receiver model, we consider a more exploratory approach by consider-
ing all possible order hypotheses on the absolute effects of these nodal characteris-
tics. Note that even though the teacher still has a dominant role, this may not neces-
sarily be the case in the receiver model. The following hypotheses are considered

H1 ∶ |𝜁teacher| > |𝜁gender| > |𝜁race|
H2 ∶ |𝜁teacher| > |𝜁gender| = |𝜁race|
H3 ∶ |𝜁teacher| > |𝜁race| > |𝜁gender|
H4 ∶ neitherH1,H2, norH3.

H1 ∶ |𝜇teacher| > |𝜇gender| > |𝜇race|
H2 ∶ |𝜇teacher| > |𝜇race| > |𝜇gender|
H3 ∶ |𝜇race| > |𝜇teacher| > |𝜇gender|
H4 ∶ |𝜇race| > |𝜇gender| > |𝜇teacher|
H5 ∶ |𝜇gender| > |𝜇race| > |𝜇teacher|
H6 ∶ |𝜇gender| > |𝜇teacher| > |𝜇race|,
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where |�| is the absolute value of � , which represents the global mean of the random 
effects in the receiver model. We also display the results in the form of an evidence 
matrix which yields:

H1 H2 H3 H4 H5 H6

H1

H2

H3

H4

H5

H6

⎛⎜⎜⎜⎜⎜⎜⎝

1.00 45.52 354.37 254.63 3.82 0.44

0.02 1.00 7.78 5.39 0.08 0.01

0.00 0.12 1.00 0.69 0.01 0.00

0.00 0.18 1.44 1.00 0.02 0.00

0.26 11.91 92.69 64.25 1.00 0.12

2.28 103.89 888.80 560.61 8.73 1.00

⎞⎟⎟⎟⎟⎟⎟⎠
and translating these to posterior probabilities result in the following posterior 

probabilities for the respective order hypotheses: 0.291, 0.006, 0.001, 0.001, 0.068, 
0.633. These results indicate that almost all probabilities mass goes to H1 and H6 , 
which suggests that the race variable has the smallest impact. Furthermore, the gen-
der variable is expected to play the largest role in the receiver model among these 
nodal characteristics. These results are confirmed when looking at the posterior esti-
mates, which equal 0.243, 0.310, 0.070, and posterior standard deviations 0.172, 
0.100, and 0.045, for the absolute teacher, gender, and race effect, respective.

4.3.3  Testing the impact of network statistics on classroom dynamics

Next, we focus on testing the effects of endogenous (network) characteristics of 
actors. Specifically, we evaluate whether the fixed effects of popularity or outgoing-
ness makes actors more likely to be the next sender. Let �popularity be the mean effect 
of popularity and �outgoingness be the mean outgoingness effect, both in the sender 
model. We test the following hypotheses against one another:

Fig. 10  Posterior distribution 
of �popularity (solid line) and 
�outgoingness (traced line) and 
their difference (dotted line)
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Having more than two hypotheses, we show the Bayes factors in an evidence matrix 
form, which yields

H1 H2 H3

H1

H2

H3

⎛
⎜⎜⎝

∗ 20l1.00 48.55 0.43

0.02 1.00 0.01

2.29 110.99 1.00

⎞
⎟⎟⎠
.

Assuming equal prior probabilities of the three hypotheses, the posterior prob-
abilities are equal to P(H1|E) = 0.384 , P(H2|E) = 0.006 , and P(H3|E) = 0.610 . 
The results indicate that H3 is most likely to be true after observing the data, being 
approximately twice more likely than H1 , and approximately 100 times more likely 
than H2 . For this reason, we can with almost complete certainty state that the popu-
larity effect is not smaller than the outgoingness effect. This is confirmed by the 
posterior estimates of the popularity and the outgoingness effect which are equal to 
0.17 and 0.07, respectively; see also the posteriors in Fig. 10. More data are required 
to obtain more decisive evidence of whether H1 or H3 is true.

In addition to testing the fixed effects as above, we can also test the global 
means of random effects. Here, we test the participation shift ABBA is more 
likely than the participation shift ABAB (both are random effects) after con-
trolling for the other effects in the receiver model. Let �abba be the global mean 
effect of ABBA and �abab be the global mean effect of ABAB. This compari-
son captures the tension between an individual’s tendency to continue to speak 
to the same individual or the societal norm of reciprocity where the previous 
receiver because the sender of the next event and the previous sender because 
the receiver. In polite conversation norms, we would expect to see more turn-
switches between two individuals (A speaks to B and then B responds to A) than 
turn-continuing (where A directs a comment to B and then continues to speak 
without giving B the opportunity to respond first). The estimates in Table 1 sug-
gests that this is indeed the case since the mean effect of ABBA is almost four 
times as large as the mean effect of ABAB, 4.27 and 1.18, respectively. Here, we 
formally test this by considering the following three hypotheses:

This yields the following evidence matrix:

H1 ∶ 𝜙popularity = 𝜙outgoingness

H2 ∶ 𝜙popularity < 𝜙outgoingness

H3 ∶ 𝜙popularity > 𝜙outgoingness.

H1 ∶ 𝜇abba = 𝜇abab

H2 ∶ 𝜇abba < 𝜇abab

H3 ∶ 𝜇abba > 𝜇abab.
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H1 H2 H3

H1

H2

H3

⎛
⎜⎜⎝

∗ 20l1.00 143.26 0.00

0.00 1.00 0.00

4.19 × 1012 6.00 × 1014 1.00

⎞
⎟⎟⎠
.

The evidence favoring H3 is overwhelmingly larger than the evidence for any 
other hypothesis, strongly supporting the hypothesis that the effect of immedi-
ate reciprocity is larger than that of immediate inertia across these fifteen class-
rooms at Magnet High school. This is also confirmed by the posterior proba-
bilities P(H1|E) = 0.000 , P(H2|E) = 0.000 , and P(H3|E) = 1.000 , when assuming 
equal prior probabilities.

Finally, we showcase a hypothesis test of network effects between the receiver 
model and the sender model. Specifically, we test whether the teacher variable has a 
larger effect on the rate of being a sender or on the rate of being chosen as receiver. 
Given the dominant role of the teacher as a sender, we expect the teacher effect is 
larger in the sender model. We formulate the hypotheses as follows:

where hypothesis H3 corresponds to our scientific expectation.
The resulting evidence matrix for the Bayes factors is:

H1

H2

H3

H1 H2 H3

⎛⎜⎜⎝

20l1.00 92.15 0.00

0.01 1.00 0.00

5.84 × 104 5.38 × 106 0.00

⎞⎟⎟⎠
.

Indeed, the evidence matrix shows convincing evidence that the teacher effect 
is larger in the sender model than in the receiver model. The posterior prob-
abilities of the three hypotheses are equal to P(H1|E) = 0.000 , P(H2|E) = 0.000 , 
and P(H3|E) = 1.000 , when assuming equal prior probabilities, which results in 
the same conclusion. The results are also confirmed by the estimates which are 
equal to 𝜁teacher = 2.22 and �̄�teacher = 0.20.

5  Discussion

In this paper, we presented a Bayesian actor-oriented multilevel relational event model 
for studying social interaction behavior from independent relational event sequences. 
This model allows for inferences at the actor level, thus opening the possibility of 
unveiling effects that make an actor more prone to send or receive an interaction in the 
population under study. Our results show that the model is able to capture the effects 
that have the largest impacts in actors preferences, even when those effects are different 
in the sender activity and receiver choice rates. The models can be estimated using the 
Stan programming language, the Stan code for the actor-oriented relational event model 
is available on Github (https:// github. com/ Fabio- Vieira/ bayes ian_ dynam ic_ netwo rk).

H1 ∶ 𝜁teacher = 𝜇teacher

H2 ∶ 𝜁teacher < 𝜇teacher

H3 ∶ 𝜁teacher > 𝜇teacher,

https://github.com/Fabio-Vieira/bayesian_dynamic_network
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Furthermore, a flexible set of hypothesis testing procedures was proposed for this 
class of models, facilitating inferences on population parameters of the estimated 
effects. These tests can be used for testing whether effects should be treated as fixed 
or random across sequences, for testing the relative heterogeneity of different network 
effects across sequences, and for testing equality and order constraints on the fixed 
effects, even on their absolute values. These tests are useful to get a better understand-
ing about the heterogeneity of social interaction behavior across independent relational 
event sequences. These novel testing procedures can also be applied to other mixed 
effects models to better understand the heterogeneity in other types of multilevel or 
clustered data.

The computational issues originating from the inefficiencies that result from the 
hierarchical structure of the model are the main limitations in the estimation pro-
cess. We have taken advantage of the multivariate normal structure of the hierarchi-
cal prior to induce a non-centered transformation in the random-effects parameters, 
which is more efficient in practice for the reasons aforementioned. An issue that we 
have not directly addressed in our paper is the sparsity of relational event data which 
may cause the geometry of the posterior distribution to be highly complex (Betan-
court and Girolami (2015)). The alien form of the likelihood of the relational event 
model also presents a challenge to the estimation of hierarchical relational event 
models. An especially attractive next step would to construct alternative representa-
tions of the model so that posterior distributions in closed form could be derived, 
improving efficiency in the estimation process.

Another promising direction to improve computational feasibility when fitting 
multilevel relational event models to the large clustered relational event sequences is 
using meta-analytic approximations (Borenstein et al. 2010). A Gibbs sampler could 
be derived using the point estimates from the independent relational event sequences as 
data observations. The question would then be how large the relational event sequences 
should be in order for these meta-analytic approximation to be accurate enough to make 
reliable statistical inferences. Our flexible Bayes factor tests could then be built on top 
of that. Finally, another important direction for future research would be to model time-
varying coefficients across sequences in order to discover complex temporal changes of 
the network drivers of social interactions over time.

A Actor‑oriented relational event model as a Poisson regression 
model

The likelihood of the actor-oriented relational event model is a product of a piece-wise 
constant exponential likelihood and a multinomial likelihood. Where the former cor-
responds to the sender model and the latter to the receiver model. Both of these models 
are special cases of the Poisson model.

Sender model as a Poisson regression

Proof Assuming M events are observed, and the risk set contains N actors,
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where ysm = 1 if actor s is observed and zero otherwise. As a result, the factorial 
term in the Poisson likelihood will always be equal to one, since 1! = 1 .   ◻

Receiver model as a Poisson regression:

Proof Once again, assuming M events are observed, and the risk set contains N 
actors, the likelihood function of the receiver model has the following form

Taking the logarithm of p(E|�) yields 

log(p(E|β)) =
M∑

m=1

βx′
smrm −

( ∑

r∈R

exp{βx′
smr}

)
(�)

Then, when considering an alternative formulation using a Poisson model, an 
equivalent likelihood can be written as

where �m is an event-specific intercept and Ỹr|s = 1 if the dyad (s, r) was observed 
and zero otherwise. The likelihood of the Poisson model can then be written

P(E | �) =
M∏

m=1

P
(
(sm, tm)|�, (e1,… , em−1)

)
=

=

M∏
m=1

�sm × exp

{
−(tm − tm−1)

∑
s∈R

�s

}

=

M∏
m=1

exp
{
�x�

sm

}
× exp

{
− exp

{
�m

}∑
s∈R

exp
{
�x�

sm

}} (
�m = log(tm − tm−1)

)

∝

M∏
m=1

exp{�m + �x�
sm
} ×

∏
s∈R

exp{− exp{�m + �x�
sm
}}

=

M∏
m=1

∏
s∈R

exp{�m + �x�
sm
}
ys × exp{− exp{�m + �x�

sm
}}

=

M∏
m=1

∏
s∈R

P
(
ysm |�sm = exp{�m + �x�

sm
}
)
,

P(E��) =
M�

m=1

�rm�sm∑
r∈R �r�sm

=

M�
m=1

exp{�x�
smrm

}
∑

r∈R exp{�x�
smr

}
.

Ỹrm|sm ∼ Poisson
(
exp{�x�

smrm
+ 𝛼m}

)
,
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where ỹrm|sm = 1 . To write the likelihood as a function of � , we need to derive the 
maximum likelihood estimate of �m . Take the logarithm and deriving with respect to 
�m yields the following MLE expression

Plug in the MLE into the likelihood

which is equal to (⋆) .   ◻

B Linear transformation of multivariate normal distribution

Here, we show that the transformation of the random-effects parameters is valid. 
Let X be a p-dimensional random variable, with X ∼ N(�,�) , where � ∈ IRp is the 
mean vector and � is a p × p covariance matrix. Thus, the moment generating func-
tion of X is given by

Now, assuming we can write X = � + AZ , where A is a p × p matrix, with � = A
�
A , and  

Z = (Z
1

, Z
2

,… , Z
p
) is an independent normal random vector, with Zi ∼ N(0, 1), for i = 1,… , p . 

Therefore, if we can show that MX(t) = M
(�+AZ)(t) , then the transformation holds. So, we 

derive the moment generating function of the transformation as

Proof 

  ◻

P(Ỹr|s|�,�) =
M∏

m=1

∏
r∈R

(
exp{�x�

smrm
+ 𝛼m}

)ỹrm |sm
×

× exp{− exp{�x�
smr

+ 𝛼m}} × ỹ−1
rm|sm ,

�̂�m = − log
(∑

r∈R

exp{�x�
smr

}
)
.

,

MX(t) = exp
{
t
�� +

1

2
t
�
�t

}
.

M(�+AZ)(t) = E(et
�X) = E(et

�(�+AZ))

= et
�� E(el

�
Z), where l� = t

�
A

= et
�� E

�
e
∑p

i=1
liZi

�

= et
��

p�
i=1

E(eliZi)

= et
��

p�
i=1

el
2
i
∕2

= exp
�
t
�� +

p�
i=1

l2
i

2

�
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Thus, MX(t) = M(�+AZ)(t) . Hence, we can transform the random-effects param-
eters in an MCMC algorithm by following the steps, 

1. Obtain posterior samples of mean vector � ∈ IRp;
2. Obtain posterior samples of the p × p covariance matrix �;
3. Compute the Cholesky factor A of �;
4. Sample a p-dimensional vector of independent and identically distributed standard 

normal variables Z;
5. Compute the transformation � = � + AZ.

C Bayes factor of constrained against unconstrained hypotheses

Let us suppose that we wish to test an informative hypothesis Hi ∶ � ∈ �i , where �i 
can be seen as a truncation of the space of � ∈ � , with �i ⊂ � . Thus, if we define 
the prior in the space �i as a truncation of the prior in � , such as 
�i(�) = c−1�(�) I{� ∈ �i} , where c is a normalizing constant of the form 
c = ∫

�∈�i
�(�)d� and �(�) is the prior under the unconstrained space. Then, the 

Bayes factor of Hi against Hu will be given by

Therefore, the Bayes factor of a constrained against an unconstrained hypothesis can 
be reduced to a ratio of posterior and prior probabilities in the space of the con-
strained hypothesis. In case of an exact hypothesis, such as H ∶ � = 0 , the ratio of 
probabilities becomes the Savage–Dickey density ratio (Dickey 1971).

D Bayes factor for testing random‑effect structures

In this appendix, we show details on the derivation of the parameters in the Bayes fac-
tor for testing random-effect structures. Assuming we have K social networks and each 
of them has its own �k, for i = 1,… ,K , regression parameter. Where �k ∼ N(�, �2) . 
Thus, let �̄� , �̄�2 , 𝛽k be posterior estimates for � , �2 and �k, ∀ k . Also, let 𝜏2

k
 be the point 

estimate for the variance of the posterior distribution of �k . Then, we can write

BFiu =
m(E|Hi)

m(E|Hu)
=

∫
�∈�i

�i(�)�(E|�)d�
∫ �(�)�(E|�)d� = c−1 ��∈�i

�(�)�(E|�)d�
∫ �(�)�(E|�)d� =

= c−1 ��∈�i

�(�|E)d� =
∫
�∈�i

�(�|E)d�
∫
�∈�i

�(�)d�
=

P(� ∈ �i|E)
P(� ∈ �i)

.

(7)
posterior: 𝛽k|Ek ∼ N(𝛽k, 𝜏

2
k
)

prior: 𝛽k ∼ N(�̄�, �̄�2).
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Assuming we want to test H0 ∶ �1 = ⋯ = �K against H1 ∶ "at least one is different" . 
Thus we can do so by writing �j = �j+1 − �j , for j = 1,… ,K − 1 . Therefore, we can 
approximate the joint distribution of � = (�1,… , �K−1) by a multivariate normal

Thus, we can derive the parameters of the distributions of every component 
j = 1,… ,K − 1 of � as follows

The parameters in the prior are derived in the same way with E(�j) = 0 , Var(𝜉j) = 2�̄�2 
and Cov(𝜉j, 𝜉j+h) = −�̄�2 , if h = 1 , and zero otherwise.

E Point‑wise deviance residuals

After estimation, it is common practice to check how the proposed model fits the 
data under study. In DuBois et  al. (2013), they used the posterior draws to evalu-
ate the log likelihood at every data point to determine the dynamic adequacy of the 
model to every data point. Thus, for the actor-oriented relational event model, for 
k = 1,… ,K and m = 1,… ,Mk , this quantity would be computed as

This measure is usually called residual deviance (Collett 2015), and it is useful to 
compare models and see which one fits better each data point by having smaller 
values of Resm.

posterior: �|E ∼ N(�̄
𝜉
, �̄

𝜉
)

prior: � ∼ N(0, �̄
𝜉
).

E(�j|E) =E(�j+1 − �j)

=E(�j+1) − E(�j) = �̄j+1 − �̄j,
Var(�j|E) =Var(�j+1 − �j)

=Var(�j+1) + Var(�j) = �̄2j+1 + �̄2j ,

Cov(�j, �j+h|E) =E(�j�j+h) − E(�j)E(�j+h)

=E
(

(�j+1 − �j)(�j+h+1 − �j+h)
)

− E
(

(�j+1 − �j)
)

E
(

(�j+h+1 − �j+h)
)

=E(�j+1�j+h+1) − E(�j+1�j+h) − E(�j�j+h+1) + E(�j�j+h)−
− E(�j+1)E(�j+h+1) + E(�j+1)E(�j+h) + E(�j)E(�j+h+1) − E(�j)E(�j+h)

=

{

−Var(�j+1) = −�̄2j+1, if h = 1
0, if h > 1.

(8)

Resm = −2

{
log

(
�sm

(
tm|Ek

))
+ log

(
�rm|sm

(
tm|sm,Ek

))
−

− log

(∑
s,r

�r|sm
(
tm|sm,Ek

))
− (tm − tm−1)

(∑
i

�s(tm|Ek

))}
.
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