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Abstract
An extremely efficient MCMC method for Bayesian adaptive testing with polyto-
mous items is explained both conceptually and in mathematical detail. Results from 
extensive simulation studies with different item pools, polytomous response mod-
els, calibration sample sizes, and test lengths are presented. In addition, the case of 
adaptive testing from pools with a mixture of dichotomous and polytomous items is 
addressed.

Keywords Adaptive testing · Bayesian optimality · Item calibration · MCMC 
algorithm · Polytomous response models

1 Introduction

The number of applications of computerized adaptive testing (CAT) has increased 
substantially over the past decade or so. For instance, it has now entered K-12 
assessment programs in the U.S. to offer individualized adaptive assessments to mil-
lions of students per annum. It has also gained popularity in the patient-reported 
health outcomes measurement arena, where it has reduced the response burden to 
patients due to the typical repeated measures designs used in clinical studies. These 
changes, along with the general trend toward more frequent, on-demand testing 
(e.g., formative assessment and ecological momentary assessment) have led to the 
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need of continuous item field testing and calibration, and consequently to pressure to 
reduce sample sizes. Hence, the renewed interest in the problem of how to deal with 
remaining parameter uncertainty in adaptive testing.

van der Linden and Glas (2000) evaluated the impact of item calibration error 
in adaptive testing. Due to the nature of its commonly used maximum-informa-
tion (MI) item-selection criterion, items with large positive error in their discrim-
ination parameters are favored, which tends to result in underestimation of the 
standard errors of the final ability estimates in fixed-length and premature ter-
mination of the test in variable-length adaptive testing. The consequences of this 
capitalization on chance are mitigated to some degree by the presence of item-
selection constraints and the use of item-exposure control methods. But, rather 
than waiting to see how these factors will actually play out in real-world testing 
programs, a more practical approach seems to directly account for the parameter 
uncertainty during ability estimation and item selection. A proper way of doing 
so is through a Bayesian treatment of the problem based on the information in the 
full joint posterior distribution of all relevant parameters. Though the approach 
has already been studied for the case of uncertainty about the ability parameter 
using empirical Bayes methods (Choi and Swartz 2009; van der Linden 1998; van 
der Linden and Pashley 2000), the necessity to account for the uncertainty about 
the item parameters during adaptive testing as well is still rather unrecognized.

As a Bayesian approach to any model uncertainty involves integration of the 
joint posterior density over its nuisance parameters, it may appear to be too time 
intensive for real-time application in adaptive testing. However, recently, for the 
case of the 3PL model, first for use in online continuous item calibration (van der 
Linden and Ren 2015) and then for item selection in adaptive testing (van der 
Linden 2018; van der Linden and Ren 2020), an optimized Markov chain Monte 
Carlo (MCMC) algorithm has been presented. The algorithm is based on Gibbs 
sampling with a Metropolis–Hastings (MH) step for the conditional posterior dis-
tribution of the intentional parameters while resampling the most recent updates 
of the distributions of all nuisance parameters. Because of rapid mixing of the 
Markov chain and simple posterior calculations, it was shown to be extremely 
efficient with running times for the 3PL model entirely comparable with those for 
the MI algorithms currently in use for adaptive testing.

As already noted, interest in adaptive testing with polytomous items has grown 
considerably, initially outside the educational testing arena (e.g., patient-reported 
outcomes measurement) but now also in educational testing (e.g., use of tech-
nology-enhanced items). In principle, application of the algorithm to the case 
of one of the common polytomous models may seem to require the replacement 
of a few key mathematical expressions only. However, there are critical factors 
that may affect its performance for these models as well, among them the facts 
that their information functions are multi-modal and typically span a much wider 
ability range than for the 3PL model. Consequently, the algorithm may behave 
differently as a function of the calibration sample size, item-pool composition, 
and the test length, for instance. The goal of the research reported in the cur-
rent paper was to find the modifications necessary to implement the algorithm for 
polytomous items and evaluate their consequences. More specifically, this paper 
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presents the derivation of all necessary mathematical expressions for ability esti-
mation and item selection for the main polytomous response models, as well as 
the outcomes of extensive simulation studies to assess the performance of the 
algorithm relative to those for conventional adaptive testing with all item param-
eters treated as if they were known.

As for the impact of a fully Bayesian approach on the statistical properties of the 
ability estimates, two opposite effects should be expected. On one hand, as already 
noted, ignoring the remaining error in the item parameters implies overestimation of 
our certainty about them and consequently the report of too optimistic estimates of 
the accuracy of the final ability estimates. Use of this approach to adaptive testing is, 
therefore, expected to result in more realistic, larger estimates of their inaccuracies. 
On the other hand, due to its honesty, the earlier problem of capitalization on error in 
the item parameters is avoided and we should profit from an improved design of the 
adaptive test. Ideally, the latter should compensate for the former, which indeed was 
observed in the earlier study for the 3PL model (van der Linden and Ren 2020). As 
both effects depend on the nature of the response model, it is yet unknown whether 
the same kind of tradeoff would hold for adaptive testing with polytomous items.

Two different real-world measurement settings involving polytomous items with 
contrasting objectives and constraints were used. The first was a health-related qual-
ity of life (HRQOL) measurement setting where self-reported outcomes such as 
anxiety, depression, fatigue, pain, and physical functioning were measured through 
items with Likert-type response categories (e.g., Never, Rarely, ..., Always). The 
second was an educational setting with ability measured through short partial-credit 
scoring of constructed-response items and technology-enhanced items. HRQOL 
measures commonly tap into one highly specialized (and often narrowly-defined) 
domain at a time, with a high-level of homogeneity of items within each domain. 
As a result, its items tend to carry a substantial amount of information, support-
ing extremely short adaptive tests (e.g., less than five items). Contrastingly, educa-
tional tests usually need to encompass different content categories, item types, and 
response formats. Though their items are still amenable to unidimensional scal-
ing, their level of homogeneity is often less compared to HRQOL and may require 
longer test lengths. Furthermore, it would be unusual for educational testing to be 
based solely on polytomously scored items; a more common scenario would be test-
ing with a mixture of both dichotomous and polytomous items. The two entirely dif-
ferent measurement settings in this study were chosen, because together they give a 
robust impression of the results of Bayesian adaptive testing with polytomous items.

2  Models

Two models commonly fitted to ordered polytomous responses are the graded 
response model (GRM; Samejima 1969) and the generalized partial credit model 
(GPCM; Muraki 1992). The GRM defines the probability of selecting the ordered 
response categories c = 0, 1,… ,mi − 1 of item i as
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where mi is the number of response categories, � is the examinee ability or trait 
parameter, and P∗

ic
(�) is defined as

with ai and bic denoting discrimination and category-boundary parameters, 
respectively.

The GPCM defines the probability of receiving a score on item i in category c as

with

where c, mi and ai are defined as before but bi� now is a step difficulty parameter and 
bi0 = 0 . Though the two models are equivalent for mi = 2, their item parameters are 
not directly comparable when mi > 2.

For convenience, for both models, we use �i ≡ (
ai, bi1,… , bi(mi−1)

)
 to represent 

the parameters of item i . Generally, the GRM has been favored for fitting rating scale 
responses (e.g., Likert-type data) whereas the GPCM has been used to score responses 
to items in cognitive tests. However, for most practical applications, the choice between 
the two models has been shown to be rather inconsequential.

3  Methods

3.1  MCMC algorithm

The proposed MCMC algorithm is a special Gibbs sampler alternating in real-time 
between the sampling of the conditional posterior distributions of � and the item param-
eters. However, the latter are just the marginal posterior distributions obtained during 
their calibration. Therefore, an efficient approach is to save short vectors of draws from 
these distributions during item calibration and randomly resample them during opera-
tional testing. The only remaining part is sampling of the posterior distribution of a 
single ability parameter for which, because of the sequential nature of adaptive test-
ing, an efficient Metropolis–Hastings (MH) step is possible. The following two sections 
describe the algorithm more formally.

(1)Pic(�) ≡ P∗
ic
(�) − P∗

i(c+1)
(�),

(2)P∗
ic
(𝜃) ≡

⎧
⎪⎨⎪⎩

1
exp[ai(𝜃−bic)]

1+exp[ai(𝜃−bic)]

0

c = 0

0 < c < mi

c = mi,

(3)Pic(�) ≡ exp
�∑c

�=0
Zi�(�)

�
∑mi−1

c=0
exp

�∑c

�=0
Zi�(�)

�

(4)Zi� ≡ ai(� − bi�),
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3.2  Sampling the conditional posterior distribution of �
i

Let �(s)
i

=

(
�
(1)

i
,… , �

(S)

i

)
 be the vector with S draws for the parameters of item i 

saved from its calibration for use during operational testing. Random resampling of 
the vector during the Gibbs iterations amounts to the use of an independence sam-
pler, that is, an MH step with a proposal distribution that does not depend on the 
previous draw (Gilks et al. 1996, sect. 1.4.1). Choice of this independence sampler 
has two extremely efficient features: (i) its proposal distribution already matches the 
stationary distributions for the item parameters and (ii) the acceptance probabilities 
for each of these parameters are equal to one. A formal proof of these claims was 
provided by van der Linden and Ren (2015).

3.3  Sampling the conditional posterior distribution of �

A regular MH step is used to sample the only remaining conditional posterior dis-
tribution, the one for the test taker’s ability parameter, � . Under mild conditions, the 
distribution is known to converge to a normal centered at its true value (Chang and 
Ying 2009). Practical experience has shown the convergence to be fast.

The focus is on the update of the posterior distribution of � upon item i in the 
pool administered as the kth item to the examinee. Suppose the examinee’s response 
to the item was in category c. Let �(s)

k−1
≡ (�

(1)

k−1
, ..., �

(S)

k−1
) be the draws saved from the 

stationary part of the Markov chain during the previous update, where �(s)
i

 and �(s)

k−1
 

are taken to be of equal length for notational convenience only (for the case of une-
qual length, the shorter vectors are assumed to be recycled against the longer). An 
obvious choice is to use a prior distribution with mean and variance equal to those of 
the last posterior distribution. More formally, the prior distribution is N(�k−1, �

2
k−1

) 
with

and

During iterations r = 1,… ,R of the MH step, the proposal density q(r)
k

 is

where �(r−1) is the immediately preceding draw and �2
k−1

 is the previous posterior 
variance in (6). It follows that the probability of accepting the candidate value �∗ as 
the rth draw of � is equal to

(5)�k−1 ≡ S−1
S∑

s=1

�
(s)

k−1

(6)�2
k−1

≡ S−1
S∑

s=1

(
�
(s)

k−1
− �k−1

)2

.

(7)qk
(
�|�(r−1)) ≡ N

(
�(r−1), �2

k−1

)
,
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where �(r)
ik

 is the rth value sampled from the vector of draws �(s)
ik

 stored in the system 
for item ik . Observe that the only thing required to calculate the numerator is the 
simple product of a normal density with the probability of the observed response. 
The denominator was already calculated in the preceding iteration step.

Of course, both the prior and proposal distributions are always a little wider than 
the posterior distributions at the current update. But this is exactly what we want these 
distributions to be in an MH step for a low-dimensional parameter (Gelman et al. 2014, 
sect. 12.2).

3.4  Item‑selection criteria

The (expected) Fisher information for a response to item i is defined as

The conventional MI criterion uses the information measure with point estimates 
substituted for all of its parameters. That is, it selects the next item as

where Rk+1 is the set of items available in the item pool to select the (k+1)th item 
and �̂j and �̂�k are point estimates of the parameters of item j and the examinee’s abil-
ity parameter after the response to the kth item in the test, respectively.

The fully Bayesian (FB) version of the criterion uses the posterior expected informa-
tion of (8) defined as

where f
(
�|u

k

)
 is the posterior density of ability parameter � given the examinee’s 

response vector uk for the first k items and f
(
�ik

)
 is the posterior density of item 

parameter vector �ik . The next item selected is

min

⎧
⎪⎨⎪⎩

N(�∗;�k−1, �
2
k−1

)Pikc
(�∗;�

(r)

ik
)

N(�(r−1);�k−1, �
2
k−1

)Pikc
(�(r−1);�

(r−1)

ik
)
, 1

⎫
⎪⎬⎪⎭
,

(8)

I(�) ≡ E

[(
�

��
logPic(�)

)2

∣ �

]

=

mi−1∑
c=0

(
�

��
logPic(�)

)2

Pic(�)

=

mi−1∑
c=0

1

Pic(�)

(
�

��
Pic(�)

)2

.

(9)ik+1 = argmax
j

{
Ij
(
𝜃k;�̂j

)
∶ j ∈ Rk+1

}
,

(10)IB
i
≡ � � I

(
�;�ik

)
f
(
�|uk

)
f
(
�ik

)
d�d�ik ,
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For the GRM, the partial derivative in (8) is equal to

with

Thus, for this model, the Fisher information can be written as

Again, rather than plugging point estimates of all parameters into the expression, the 
FB criterion is calculated averaging over the current posterior samples; that is, as

For the GPCM, the partial derivative in (8) is equal to

(11)ik+1 = argmax
j

{
IB
j
∶ j ∈ Rk+1

}
.

(12)�Pic(�)

��
=

�P∗
ic
(�)

��
−

�P∗
i(c+1)

(�)

��

(13)
�P∗

ic
(�)

��
= aiP

∗
ic
(�)(1 − P∗

ic
(�)) for c = 0,… ,mi.

(14)

I(�) =

mi−1∑
c=0

a2
i

Pic(�)

(
P∗
ic
(�)(1 − P∗

ic
(�)) − P∗

i(c+1)
(�)(1 − P∗

i(c+1)
(�))

)2

=

mi−1∑
c=0

a2
i

Pic(�)

[(
P∗
ic
(�) − P∗

i(c+1)
(�)

)(
1 − P∗

ic
(�) − P∗

i(c+1)
(�)

)]2

=

mi−1∑
c=0

a2
i
Pic(�)

(
1 − P∗

ic
(�) − P∗

i(c+1)
(�)

)2

.

(15)
IB
i
≡ S−1

S∑
s=1

mi−1∑
c=0

(
a
(s)

i

)2

Pic(�
(s);a

(s)

i
, b

(s)

ic
)

×

(
1 − P∗

ic
(�(s);a

(s)

i
, b

(s)

ic
) − P∗

i(c+1)
(�(s);a

(s)

i
, b

(s)

ic
)

)2

.

(16)

�Pic(�)

��
=

exp
�∑c

�=0
Zi�(�)

�
×
∑c

v=0
ai∑mi−1

c=0
exp

�∑c

�=0
Zi�(�)

� −
exp

�∑c

�=0
Zi�(�)

�
�∑mi−1

c=0
exp

�∑c

�=0
Zi�(�)

��2

×

mi−1�
c=0

��
c�

v=0

ai

�
exp

�
c�

�=0

Zi�(�)

��
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Thus,

Similarly, averaging over the sampled values of all parameters, the criterion value 
for item i is calculated as

Observe that, as 
∑mi−1

c=0
cPic(�) is the examinee’s expected score on item i, the infor-

mation in (18) is equal to a2
i
 times the variance of the item score. This property 

holds for any exponential-family model. The GRM does not belong to this family 
and fails to have the property.

4  Simulation studies

4.1  Item pools

Two item pools were included in this study, one for each model. The item pool 
for the GPCM had 95 items. The items were extracted from multiple years of the 
National Assessment of Educational Progress (NAEP) Reading tests. Their number 
of score points varied from two to four. The item pool for the GRM was from an 
HRQOL questionnaire. It also consisted of 95 polytomous items, but each of the 
items had five response categories. As the two pools differed substantially in item 
difficulty and we did not want our comparisons to be confounded by this difference, 
the values of the b parameters in the GRM item pool were shifted to give them the 
same mean as for the GPCM pool. Summary statistics of the item parameters for 
both pools are given in Table 1.

(17)

= (c + 1)aiPic(�) − aiPic(�) ⋅

mi−1∑
c=0

(c + 1)Pic(�)

= aiPic(�)

(
c + 1 −

mi−1∑
c=0

(c + 1)Pic(�)

)

= aiPic(�)

(
c −

mi−1∑
c=0

cPic(�)

)
.

(18)

I(�) =

mi−1∑
c=0

1

Pic(�)

(
aiPic(�)

(
c −

mi−1∑
c=0

cPic(�)

))2

=

mi−1∑
c=0

a2
i
Pic(�)

(
c −

mi−1∑
c=0

cPic(�)

)2

.

(19)IB
i
≡ S−1

S∑
s=1

mi−1∑
k=0

(
a
(s)

i

)2

Pic(�
(s);a

(s)

i
, b

(s)

ic
)

(
c −

mi−1∑
c=0

cPic(�
(s);a

(s)

i
, b

(s)

ic
)

)2
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4.2  Setup

The simulation studies started with the calibration of the two item pools using Gibbs 
sampling with regular MH steps for all parameters for samples of 250, 500 and 1000 
simulated test takers with their true ability parameter values randomly drawn from 
the standard normal distribution. The different sample sizes were chosen to evalu-
ate the impact of item parameter error. The algorithm was run with a burn-in of 
5000 and post-burn-in of 15,000 iterations. The test takers’ responses were gener-
ated using the values for the item parameter reported in Table 1 as their true values. 
During all adaptive testing simulations, N(0, 1.52) was used as the initial prior distri-
bution for ability estimation, a choice amounting to a mildly informative prior. The 
items were selected either according to the earlier FB or the MI criterion. After each 
item, the posterior distribution of the ability parameter was updated using the algo-
rithm described above. After 5, 10 or 15 items, the results were recorded to evaluate 
the impact of the item parameter uncertainty on ability estimation for different test 
lengths.

The adaptive testing simulations were thus run for two different item-selection 
criteria (FB and MI), three calibration sample sizes (250, 500, and 1000), and three 
test lengths (5, 10, and 15) and two item pools (NAEP and HRQOL). The two item 
pools were not crossed with the two IRT models; both were calibrated only accord-
ing to the model that generated the original item parameters reported in Table  1. 
Hence, the result was a 2 × 3 × 3 design with a total of 18 different conditions.

4.3  Results

4.3.1  Item pool calibration

The posterior means (EAP estimates) for the items in the pool for the GPCM in 
(3) are shown in Fig. 1. Obviously, the accuracy of all estimates increased with the 
calibration sample size. In agreement with common findings, the results for the bi 
parameters were generally better than for the ai parameters. For the sample size of 
N = 500 , the estimates of the bi parameters were already quite close to their true 
values. The same held for most of the estimates of the ai parameters. In fact, the step 
to the sample size of N = 1000 was necessary only to bring the results for some of 
the ai parameters with the higher true values in line with the others.

Table 1  Summary statistics for the GRM and GPCM item pools

Pool Parameter Min 1st Qu Median Mean 3rd Qu Max

GRM a 1.174 2.822 3.269 3.175 3.678 4.773
b − 1.510 −  0.394 −  0.230 −  0.221 0.000 1.034

GPCM a 0.374 0.765 0.884 0.950 1.096 2.244
b −  1.930 −  0.795 −  0.240 −  0.221 0.425 1.950
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The calibration results of the pool for the GRM in (1) are given in Fig. 2. Just 
as for the GPCM item pool, the accuracy of the estimates of the bi parameters was 
already excellent for the calibration sample size of N = 250 . However, for the ai 
parameters, the sample size had to increase to N = 1000 to reach acceptable accu-
racy. The slightly negative bias associated with the ai parameters for the sample 
size of N = 250 can be attributed to the employment of its common prior distri-
bution (truncated normal with mean = 1.0 and SD = 2.5).

To determine the size of the vectors of post-burn-in draws from the calibration 
to be saved for use in the simulations of operational adaptive testing, autocor-
relation plots for the item parameters as a function of the lag size were prepared. 
The results are shown in Fig. 3. The autocorrelation in the Markov chains for the 
ai parameter decreased quickly and was less than 0.1 after a lag size greater than 
10. However, the autocorrelation for the bi parameters was generally much greater 
and the criterion of 0.1 was reached uniformly only for lag sizes greater than 30. 
We, therefore, thinned the post-burn-in part of the chains by a factor of 30 and 
kept vectors of S = 500 independent draws for each item parameter for use in the 
adaptive testing simulations. The means of these vectors were used as point esti-
mates (EAP estimates) of the item parameters when adaptive testing with current 
MI item selection was simulated.

Fig. 1  Calibration results for the GPCM item pool. The x-axis is for the true parameter values and the 
y-axis for their EAP estimates. The calibration sizes are N = 250 , 500, 1000. The top row is for discrimi-
nation parameters a

i
 , the bottom row for step difficulty parameters b

i
 for the items
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4.3.2  Lenght of the Markov chains

The algorithm was run for 100 replications for each of the simulated conditions to 
decide on the number of burn-in iterations for the algorithm. The proportions of 

Fig. 2  Calibration results for the GRM item pool. The x-axis is for the true parameter values and y-axis 
for their EAP estimates. The calibration sizes are N = 250, 500, 1000. The top row is for discrimination 
parameters a

i
 , the bottom row the step difficulty parameter b

i
 for the items

Fig. 3  Autocorrelation �
l
 in the Markov chains for the items parameters as a function of lag size l for 

each of the calibration sample size of N = 250 , 500, and 1000
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the number of replications that failed to meet the Gelman and Rubin (1992) con-
vergence criterion of 

√
R̂ < 1.1 as a function of the number of iterations are given 

in Fig. 4. After k = 1 item, at the true abilities � = −2 and −1 , the speed of conver-
gence for the GPCM item pool was generally faster. But for all other numbers of 
items and ability levels, there were hardly any differences. Based on these results, a 
burn-in period for the Markov chains of 350 iterations was used in our main simula-
tions of adaptive testing.

To determine the post-burn-in length of the Markov chains for the ability param-
eters, it is important to know their autocorrelation structure. Knowledge of the struc-
ture enables us to choose the thinning factor necessary to obtain draws that are inde-
pendent. Figure 5 gives the autocorrelation �l as function of lag size l. Again, except 
for the update of the posterior distribution after one item at the lower ability levels, 
where the autocorrelation tended to be smaller for the GRM item pool, all func-
tions were quite similar for all test lengths and ability levels. Using the criterion 
of 𝜌l < 0.1 , the lag size of 10 was chosen to thin the Markov chains in our main 
simulations.

Three candidate size of S = 100 , 200 and 500 for the vectors of independent 
draws from the posterior distributions of � were evaluated using 15-item adaptive 
testing. Each simulated test was replicated 100 times at � = −2(1)2 both for the 
GPCM and GRM item pool. Figures 6 and 7 show the average bias and standard 
error functions for the EAP estimates of the ability parameter for the GPCM and 
GRM item pool. The differences between these functions were completely negli-
gible. A vector size of S = 100 would, therefore, have sufficed. However, just to 
remain on the conservative side, the size of S = 500 was used in our main simula-
tions of adaptive testing, implying the need to continue the Markov chains for 5000 
iterations after burn-in.

As an introduction to the performance of the algorithm with these settings, exam-
ples of the initial segments of the trace plots for its Markov chains are given in Fig. 8 
for the GPCM item pool and Fig. 9 for the GRM item pool. The examples are for 
the case of fully Bayesian adaptive testing, items calibrated with a sample size of 
N = 1000 , and true abilities equal to � = −2(1)2 . The plots show immediate station-
arity for all simulated ability levels at any stage of testing, a result due to the stabil-
ity provided by the resampling of the already converged posterior distributions of 
the item parameters. Also, as expected, the posterior variance of these � parameters 
did decrease quickly with the length of the test.

4.3.3  Adaptive testing simulations

The results from our main simulation study of adaptive testing with the FB and MI 
approaches are presented in Fig. 10 for the case of the item pool calibrated with a 
sample size of N = 500 (the results for N = 250 and 1000 did not differ system-
atically and are not shown here to avoid redundancy). Clearly, the results improved 
with the length of the test for both approaches and models. For the GRM, the bias, 
standard error (SE), and root mean-square error (RMSE) functions for the two 
approaches were nearly identical no matter the length of the test. It seems safe to 
declare that the two opposite effects for the FB approach of a more realistic accuracy 
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Fig. 4  Proportions of replications that failed the convergence criterion of 
√
R̂ < 1.1 as a function of the 

number of iterations of the algorithm after k = 1 , 3, 5, 8, 10, 13, and 15 items for examinees simulated 
at � = −2(1)2 (sample sizes: solid curves = 250, dashed = 500, dotted = 1000; models: without cross = 
GPCM, with cross = GRM)
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for the ability estimates and better accuracy due to improved test design did com-
pensate each other completely. For the GPCM, all observed differences tended to 
be at the lowest end of the ability scale, otherwise the three functions were close for 

Fig. 5  Autocorrelation �
l
 in the Markov chains for the ability parameter as a function of lag size l after 

k = 1 , 3, 5, 8, 10, 13, and 15 items for examinees simulated at � = −2(1)2 (sample sizes: solid curves = 
250, dashed = 500, dotted = 1000; models: without cross = GPCM, with cross = GRM)
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all practical purposes. More specifically, the FB approach showed a larger positive 
bias at � = −2 for k = 5 items. Obviously, it took the approach more than five items 
to overcome the biasing impact of the mildly informative prior distribution for the 
ability parameter. However, at the same ability level, the approach yielded a smaller 
SE. And, as shown in the last panel of Fig. 10, the tradeoff between this larger bias 
and smaller SE resulted in a smaller RMSE for the FB approach. For the longer test 
length of k = 10 , the difference between the bias at � = −2 for the two approaches 
did change sign. This time, the FB approach resulted in a somewhat smaller bias, 
without having to give up its relatively smaller SE though.

4.4  Extended simulations for the GPCM pool

The adaptive testing simulations in the previous sections revealed clear differences 
between the results for the two item pools and their respective models, with gener-
ally much better results for the pool with the GRM. For each of the simulated condi-
tions, nearly all of the RMSE and SE functions for this pool were superior.

As revealed by Table  1, the values for the ai parameters for the GPCM pool 
were much lower than for the GRM pool, a result the authors expect to hold more 

Fig. 6  Bias and SE functions for the final ability estimates in adaptive testing simulations from the 
GPCM item pool. The curves are for the three candidate vector sizes of 100 (dotted curve), 200 (dashed 
curve), and 500 (solid curve) independent draws from the posterior distributions of the ability parameter
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generally for the domains of educational and health outcomes measurement due to 
the more homogenous types of items typically used in the latter. As discrimination 
parameters are the main determinants of the Fisher information, additional simula-
tions were conducted for the GPCM item pool to determine whether this explanation 
explained the observed differences. In one set of the simulations, the size of the ai 
parameters for the GPMC pool was just increased; in another the length of the adap-
tive testing was increased.

4.4.1  Adjusted a
i
 parameters

The ai parameters for the GPCM item pool were adjusted by a factor equal to the 
ratio of the means of these parameters for the GRM and GPCM item pools. Plots of 
sums of the item response functions and information functions for the original and 
adjusted GPCM pools are shown in Fig. 11 along with the same plots for the GRM 
pool as a reference. Clearly, the curves for the adjusted pool are much closer to the 
curves for the GRM pool than those for its original version. The remaining differ-
ences between the two pools can be attributed to the differences between the number 
of response categories between the items in the two pools. All GRM items had five 

Fig. 7  Bias and SE functions for the final ability estimates in the adaptive testing simulations from the 
GRM item pool. The curves are for the three candidate vector sizes of 100 (dotted curve), 200 (dashed 
curve), and 500 (solid curve) independent draws from the posterior distributions of the ability parameter
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Fig. 8  Examples of the trace plots of the Markov chains for the posterior distributions of the ability 
parameters for test takers with true abilities at � = −2,−1, 0, 1, 2 after k = 1 , 3, 5, 8, 10, 13, 15 items on 
adaptive tests from the GPCM item pool
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Fig. 9  Examples of the trace plots of the Markov chains for the posterior distributions of the ability 
parameters for test takers with true abilities at � = −2,−1, 0, 1, 2 after k = 1 , 3, 5, 8, 10, 13, 15 items on 
adaptive tests from the GRM item pool
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response categories whereas the number of categories for the GPCM items varied 
from two to four.

The adaptive testing simulations were repeated for the adjusted GPCM item pool. 
The results are shown in Fig. 12. All curves are now more comparable with those 
for the GRM pool in Fig.  10. Also, the difference in bias for the two approaches 
at � = −2 for the shortest test length disappeared. For a pool of more informative 
items, it takes the FB approach fewer items to overcome a bias due to the initial 
prior distribution for the ability parameter.

4.4.2  Increased test lengths

In real-world educational testing, it may be impossible to produce pool of items with 
discrimination parameters as large as those typical of health outcomes measure-
ment. Therefore, as a more practical alternative, the test length for the GPCM pool 
was increased to k = 20 , 25, and 30 items. Figure  13 shows the results for these 
increased test lengths. Though the result are generally much better, a test length of 
more than 30 items might be needed for the GPCM to obtain obtain RMSE and the 
SE functions comparable to a test length of k = 15 items for the GRM pool.

Fig. 10  Bias, SE, and RMSE functions of the final ability estimates in the main adaptive testing simula-
tions from the GPCM and GRM pools with burn-in length of the algorithm of 350 iterations and vectors 
of 500 independent posterior draws saved for the item and ability parameters. The curves are for two item 
selection criteria (FB: solid curves; MI: dashed curves) and test lengths of k = 5 (plain curves), k = 10 
(curves with triangles) and k = 15 items (curves with crosses)
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Fig. 11  Plots of sums of the response functions (upper row) and information functions (lower row) for 
the items in the pools without (left-hand column) and with (right-hand column) the adjusted a

i
 param-

eters (GPCM: solid curves; GRM: dashed curves)

Fig. 12  Bias, SE, and RMSE functions of the final ability estimates in the main adaptive testing simula-
tions from the GPCM item pool with adjusted a

i
 parameters and a burn-in length of the algorithm of 350 

iterations and vectors of 500 independent posterior draws saved for the item and ability parameters. The 
curves are for two item selection criteria (FB: solid curves; MI: dashed curves) and test lengths of k = 5 
(plain curves), k = 10 (curves with triangles) and k = 15 items (curves with crosses)
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4.5  Alternative model parameterization

The parameterization in Eqs.  2 and 4 is frequently used to model the response 
probabilities on polytomous items. However, it is not uncommon to find a regres-
sion-type parameterization as an alternative, with

for the GRM in (1) and

for the GPCM in (3). All our simulations above were repeated to evaluate the robust-
ness of the proposed algorithm with respect to differences between these two alter-
native parameterizations. Basically, our results showed no systematic impact of the 
choice of parameterization on any of the properties of the final ability estimates for 
both models and adaptive testing approaches. Because of space limitation, more 
detailed results from these simulations are omitted here.

5  Running times

All simulation were run on a MacPro laptop with 2.5 GHz Intel Core i7 processor 
and 16 GB memory. The average running time was 0.027 s per item to update the 
posterior distribution of � and select the next item from the GPCM item pool. For 
the GRM pool, the average running time was 0.020 s per item.

(20)P∗
ik
(𝜃) ≡

⎧⎪⎨⎪⎩

1
exp[𝛼i𝜃+𝛾ik)]

1+exp[𝛼i𝜃+𝛾ik)]

0

k = 0

0 < k < mi

k = mi

(21)Zi� ≡ �i� + �i�

Fig. 13  Bias, SE, and RMSE functions of the final ability estimates in the main adaptive testing simula-
tions from the GPCM item pool with the extended test lengths and a burn-in length of the algorithm of 
350 iterations and vectors of 500 independent posterior draws saved for the item and ability parameters. 
The curves are for two item selection criteria (FB: solid curves; MI: dashed curves) and test lengths of 
k = 20 (plain curves), k = 25 (curves with triangles) and k = 30 items (curves with crosses)
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6  Concluding comments

The results from this study illustrate the practical feasibility of the proposed MCMC 
implementation for polytomously scored test items. Running times in the range of 
0.02–0.03 s to update the posterior distribution of the ability parameter and select 
the next item under the realistic conditions simulated in the study are entirely com-
parable with those for the currently popular case of maximum-information selection 
which ignores remaining error in the item parameters. As for the accuracy of the 
final ability estimates, just as for the case of dichotomous items, it appears to be pos-
sible again to give up the current practice of underreporting their standard errors. 
A fully Bayesian approach to adaptive testing does so while paying for itself in the 
form of better item selection and, therefore, better designed tests. Another practical 
advantage, not yet highlighted in this paper, is a possible substantial reduction of the 
size of the calibration samples required to prepare item pools for adaptive testing. 
Sample sizes of N = 250 or 500 showed to perform already remarkably well in our 
study. The question of how low we actually could go under precisely what condi-
tions certainly deserves further study.
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