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Abstract Structural mean models (SMMs) have been proposed for estimating

causal treatment effects in the presence of non-ignorable non-compliance in clinical

trials. To obtain a valid causal estimate, we must impose several assumptions. One

of these is the correct specification of the parametric part of the SMMs. Model

checking is an important task for data analysts to detect any departure of an assumed

model from the true one. However, little work has been done on the goodness-of-fit

(GOF) test for the SMMs. In this article, we propose a global GOF test of SMMs.

Numerical studies show the proposed test can control type I errors if the SMM is

correctly specified. Furthermore, the proposed test detects non-linear effect modi-

fication of continuous covariates powerfully, while an existing test does not. We

apply the proposed method to data derived from a randomized trial to evaluate the

impact of a primary care-based intervention on depression.

Keywords Causal inference � Effect modification � Goodness-of-fit test �
Instrumental variable � Non-compliance � Structural mean models

1 Introduction

In a typical clinical trial, patients are randomly assigned to different groups with

specific treatments; each patient is expected to receive that treatment throughout

follow-up to assess its effect on some outcome. However, most clinical trials are not
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ideal; patients often fail to adhere to their assigned treatment and switch to another

trial treatment. Such non-compliance with assigned treatments is a common feature

of clinical trials.

Robins (1994) developed structural mean models (SMMs) to cope with non-

compliance without having to specify the mechanism of non-ignorable non-

compliance (Rubin 1976) using randomization as an instrumental variable. One

attractive feature of SMMs is their modeling flexibility, which allows for the

expression of the causal effect of received treatments as a function of treatments and

covariates through a finite number of unknown causal parameters without

specifying the conditional expectation of potential outcomes under the control

treatment. SMMs have now been proposed for continuous, discrete, and binary

outcomes (Robins 1994; Vansteelandt and Goetghebeur 2003), and related

structural distribution models have been developed for survival outcomes (Mark

and Robins 1993; Loeys and Goetghebeur 2003).

To obtain a valid causal estimate, we must impose several assumptions. One of

these is the correct model specification of the structural model. This can be

numerically checked by evaluating the goodness of fit (GOF) of postulated SMMs

to the data. For continuous outcomes, Comte et al. (2009) developed a test of the

interaction between treatment and a baseline covariate, and Fischer et al. (2011)

proposed a local GOF test which can detect a linear effect modification with a

covariate but cannot detect a non-linear effect modification. Taguri et al. (2014)

recently proposed a model selection criterion as an extension of Akaike’s

information criterion (Akaike 1973) for evaluating the relative fitting of candidate

models using the expected Kullback–Leibler distance as a metric. However, none of

them proposed a global GOF test which can detect any misspecifications of the

assumed model structure.

In general, the validity of the estimating equations depends on whether the

parametric part of the SMM is correctly specified. If the SMM is misspecified, the

resultant estimating equations deviates in expected value from zero, thus an

inconsistent estimator will be yielded. To get a valid inference, it is desirable to

assess the unbiasedness of the estimating equations. Diagnostic tools such as

residuals have been widely used to assess the appropriateness of a generalized linear

model (Su and Wei 1991; Lin et al. 2002). However, such methods cannot apply to

non-compliance data with an instrumental variable. The aim of this article is to

develop a global GOF test of linear SMMs. The idea is based on testing for the

unbiasedness of g-estimating equations (Robins 1994). The residual processes will

be constructed in the same spirit of Su and Wei (1991), Lin et al. (2002), Pan and

Lin (2005), and Chen and Qin (2014). Under the null hypothesis that g-estimating

equations are unbiased, the residual processes will fluctuate about zero. Thus a large

absolute value of the residuals leads to the conclusion of model misspecification.

Numerical studies show that the proposed test can control type I errors if the SMM

is correctly specified. Furthermore, the proposed test detects non-linear effect

modification of continuous covariates with high probability, while Fischer et al.’s

test does not.

The reminder of this article is as follows. In Sect. 2, we briefly overview the

SMMs and the g-estimation procedure. In Sect. 3, we review the method by Fischer

254 Behaviormetrika (2017) 44:253–262

123



et al. (2011) and propose a GOF test. In Sect. 4, we present a simulation study to

investigate the performance of our proposed test. In Sect. 5, we apply the proposed

method to data derived from a randomized trial to evaluate the impact of a primary

care-based intervention on depression. Finally, in Sect. 6, we conclude with a

discussion.

2 Structural mean models

We consider a randomized two-arm trial, where n patients are randomized to one of

the two treatments. Let R be the indicator of treatment assignment, equal to 1 (0) for

the test (control) treatment. Let A be the actual treatment whether an individual

received test treatment (1: test, 0: control), X is the vector of baseline covariates,

and Y is the continuous outcome measured at the end of the trial. We assume the

observed data Oi = (Ri, Xi
T, Ai, Yi)

T, i = 1,…, n are n independent and identically

distributed random vectors. Thus, we omit the subscript i unless necessary. In

contrast to the observed outcome variable Y, we define Yra with r, a = 0, 1 as the

potential outcome (Rubin 1974) that would be observed if possibly contrary to the

fact that R were set to r and A were set to a. We make the following three

assumptions to estimate causal treatment effects:

(A1) Stable Unit Treatment Value Assumption (SUTVA)

The potential outcome for each patient does not depend on the treatment

assigned or the treatment actually received by any other patient. SUTVA also

implies the consistency assumption, which means that a patient’s potential

outcome under his/her treatment is precisely his/her observed outcome. In

notation, SUTVA implies that

Y ¼ RAY11 þ R 1�Að ÞY10 þ 1�Rð ÞAY01 þ 1�Rð Þ 1�Að ÞY00:
(A2) Exclusion restriction

Treatment assignment only affects the outcome through its effect on

treatment received. This assumption implies that Yra = Ya with r, a = 0, 1.

Under this assumption, Y11 = Y01 = Y1 is the potential outcome under test

treatment, while Y10 = Y00 = Y0 is that under control treatment.

(A3) Randomization assumption

The random assignment R and Y0 are conditionally independent given

baseline covariates X, i.e., Y0
‘

R |X.

Furthermore, we assume that the average causal treatment effects follow linear

SMMs (Robins 1994; Goetghebeur and Vansteelandt 2005):

E½Y � Y0jA;X;R� ¼ AZðX;RÞTh; ð1Þ

where Z(X, R) is a v-dimensional (v C 1) vector that depends on (X, R) and h is the

unknown v-dimensional causal parameter vector of interest. Note that from (1),

E Y1 � Y0jA ¼ 1;X;R½ � ¼ Z X;Rð ÞTh is the effect of the treatment on the treated

conditional on the baseline covariates and the randomization indicator (X, R). For
example, when Z(X, R)T = (1, XT), we allow for the possibility that the average
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causal effect on the treated is not constant with levels of X and changes linearly with

X.
Because the full data (Y1, Y0, A, R, X

T) is only partially observed for each patient

i, no regression methods for the complete data can be used to fit the model (1).

However, from (1) and the assumption A3, it follows that E½Y �
AZðX;RÞThjX;R� ¼ E½Y0jX;R� ¼ E½Y0jX�: Using this, a consistent estimator of h

can be obtained from a class of unbiased g-estimating functions (Robins 1994):

wðhÞ ¼ ðR� pÞwðXÞfUðhÞ � qðXÞg; ð2Þ

where p ¼ Pr½R ¼ 1jX� ¼ Pr½R ¼ 1� is the randomization probability known by

design, UðhÞ ¼ Y � AZðX;RÞTh; w(X) is a v-dimensional vector function, and q(X)
is a scalar function. For some w(X) and q(X), a consistent estimator of h (called the

g-estimator) is analytically obtained by solving g-estimating equationsPn
i¼1 wiðhÞ ¼ 0; where wiðhÞ is the i-th sample value of wðhÞ: The optimal choices

for w(X) and q(X) from the viewpoint of efficiency that lead to a semiparametric

efficient estimator of h were derived by Robins (1994). Under the homoscedasticity

assumption that the error variance of the regression of U(h) on (R, X) is constant,
these choices are given by woptðXÞ ¼ doptðXÞE½ZðX;RÞjX� and qoptðXÞ ¼
E½UðhÞjX�; where dopt Xð Þ ¼ Pr A ¼ 1jR ¼ 1;X½ ��Pr A ¼ 1jR ¼ 0;X½ � is called the

compliance score (Joffe and Brensinger 2003). dopt(X) upweights participants

characterized by X for whom the effect of treatment assignment on the treatment

received is large, thus contributing information to estimate the effect of the treat-

ment on the outcome. Since the optimal choices are unknown functions of X, it is
often assumed parametric models for dopt(X) in wopt(X) and q(X). In our simulation

and data analysis, we estimate Pr[A = 1|R, X] in dopt(X) by a logistic regression. We

assume qopt(X) is linear in X, which leads to an analytical estimator of ĥ (Fischer

et al. 2011). A consistent variance estimator of ĥ is obtained as

n�1X̂ðĥÞ�1K̂ðĥÞðX̂ðĥÞ�1ÞT; where XðhÞ ¼ �E½owðhÞ=ohT�, KðhÞ ¼ var½wðhÞ�:

3 Goodness of fit tests for structural mean models

3.1 Goodness of fit test proposed by Fischer et al. (2011)

Before discussing our method for assessing the fit of the SMM (1), we briefly review

the GOF test proposed by Fischer et al. (2011). Their methods are essentially based

on the fact that if model (1) is correctly specified, then the expected ‘‘treatment-

free’’ outcomes UðĥÞ in both arms R = 1 and R = 0 will have the same regression

functions on X. The GOF test was conducted using the following linear regression

model for UðĥÞ on (X, R):

E½UðĥÞjX;R� ¼ b0 þ bT1X þ b2R þ bT3RX: ð3Þ
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To assess whether the model is a good fit, we conducted the test of the following

null hypothesis: H0 : b3 ¼ 0: If we find the interaction terms significant (that is, H0

is rejected), then there is an evidence for the lack of fit. Note that this GOF test

would not detect a non-linear effect modification by X because (3) includes only

linear terms of X. We additionally note that model misspecification will usually

occur in the model (3). To see this, let h* be the true value of h. For an arbitrary h,

the following equation holds by the SMM (1):

E½UðhÞjX;R� ¼ E½Y0jX� þ E½AjX;R�ZðX;RÞTðh� � hÞ: ð4Þ

The third term of (4) with h ¼ ĥwill be apparently nonlinear in Xwhen A is binary

unless ĥ ¼ h� holds. In such cases, (3) is a misspecified model. This misspecification

could affect the power of the GOF test, although the size of the test should be

asymptotically equal to the nominal level because the third term of (4) with h ¼ ĥ has

asymptotically zero expectation under the correct specification of (1).

3.2 Proposed goodness of fit test

Rather than assuming a parametric model for UðĥÞ such as (3), we can construct a

GOF test in the spirit of Su and Wei (1991), Lin et al. (2002), Pan and Lin (2005),

and Chen and Qin (2014). The idea is based on testing for the unbiasedness of the g-

estimating equations under the correct model specification. To check the validity of

the assumed SMM (1), we consider the following statistics:

VnðxÞ ¼ n�1=2
Xn

i¼1

IðXi � xÞðRi � pÞdoptðXiÞfUiðĥÞ � qoptðXiÞg; ð5Þ

where x is a real-valued vector of length v. Under the null hypothesis that the SMM

(1) is correctly specified, (5) has zero expectation for all values of x. Thus, a large

value of the following omnibus test statistic Gn ¼ supx2Rv jVnðxÞj leads to the

conclusion of model misspecification.

To make a GOF test, we need to specify the distribution of Vn(x). The

cumulative-sum process Vn(x) converges in distribution to a zero-mean Gaussian

process under the null hypothesis that the SMM (1) is correctly specified. Using the

Taylor expansion of (5) about ĥ around the true value h�; we have

VnðxÞ � n�1=2
Xn

i¼1

IðXi � xÞðRi � pÞdoptðXiÞfUiðh�Þ � qoptðXiÞg þ gðx; hÞTn1=2ðĥ� h�Þ;

ð5Þ

where gðx; hÞ ¼ n�1
Pn

i¼1

IðXi � xÞðRi � pÞdoptðXiÞoUiðhÞ=oh and A � B means

A-B = op (1). Using a similar Taylor expansion, we obtain

n1=2ðĥ� h�Þ ¼ Xðh�Þ�1
n�1=2wiðh�Þ; ð6Þ
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Thus, from (5) and (6), we have

VnðxÞ � n�1=2
Xn

i¼1

½IðXi � xÞðRi � pÞdoptðXiÞfUiðh�Þ � qoptðXiÞg

þ gðx; h�ÞTXðh�Þ�1
wiðh�Þ�: ð7Þ

Although it is hard to specify the explicit distribution form of (7), Su and Wei

(1991) proposed a simulation-based method to approximate the null distribution of

Vn(x). The idea is as follows. Suppose that S1,…, Sn are independent and identically

distributed variables from F(S), with l = E[S] = 0 and r2 = E[S 2]\?, then

based on the central limit theorem, we have n�1=2
Pn

i¼1 Si ! N 0; r2ð Þ. Let Z1,…, Zn
be independent standard normal random variables. Then conditional on the original

data S1,…, Sn, n�1=2
Pn

i¼1 ZiSi �Nð0; n�1
Pn

i¼1 S
2
i Þ ! N 0; r2ð Þ. That is,

n�1=2
Pn

i¼1 ZiSi has the same asymptotic distribution as that of n�1=2
Pn

i¼1 Si.

Using these results, for large n, the distribution of Vn(x) is approximated by

~VnðxÞ � n�1=2
Xn

i¼1

½IðXi � xÞðRi � pÞdoptðXiÞfUiðĥÞ � qoptðXiÞg

þ gðx; ĥÞT X̂ðĥÞ�1
wiðĥÞ� Zi; ð8Þ

where (Z1,…, Zn) is a random sample from N(0,1). To approximate the null dis-

tribution of Vn(x), we generate large number of samples (Z1,…, Zn) from N(0,1)

while fixing the data at their observed values.

4 A simulation study

In this section, the performance of the proposed method is evaluated via a

simulation study. The following data (R, X, A, Y) were generated as follows. Let X

be distributed as N(0,1) and the treatment assignment R be generated from

Bernoulli(0.5). Next, the received treatment A was assigned according to the logistic

model logit½PrðA ¼ 1jR;X; cÞ� ¼ �1þ 4Rþ X þ c; where c follows N(0,0.25).

Then, outcome Y was generated from N(3X ? A(k0 ? k1X ? k2X
2) ? 0.5c, 0.25).

This leads to the true SMM: E[Y1 - Y0|A = 1, X] = k0 ? k1X ? k2X
2. The shared

random effect, c, gave rise to non-ignorable non-compliance. We set

(k0,k1,k2) = (3,0,0) for no effect modification by X, (k0,k1,k2) = (3,0.1,0),

(3,0.2,0), (3,0.3,0), (3,0.4,0), (3,0.5,0), (3,2,0), (3,5,0) for linear effect modifica-

tions, (k0,k1,k2) = (-0.2,0,0.4), (-0.4,0,0.8), (-0.6,0,1.2), (-0.8,0,1.6), (-1,0,2),

(-2,0,4), (-4,0,8) for quadratic effect modifications. We set the sample size

n = 500. For each setting, we ran 1000 simulations.

For the analysis of the simulated data, we assumed the main effect model:

E Y1 � Y0jA ¼ 1;X½ � ¼ h. We investigated four GOF tests: (i) Fischer: Fisher et al.’s

GOF test; (ii) V1n(x): proposed GOF test with VnðxÞ ¼ n�1=2
Pn

i¼1 IðXi � xÞ ðRi �
pÞUiðĥÞ; (iii) V2n(x): proposed GOF test with VnðxÞ ¼ n�1=2

Pn
i¼1 IðXi � xÞ ðRi �

pÞd̂optðXiÞUiðĥÞ; (iv) V3n(x): proposed GOF test with VnðxÞ ¼

258 Behaviormetrika (2017) 44:253–262

123



n�1=2
Pn

i¼1 IðXi � xÞðRi � pÞd̂optðXiÞfUiðĥÞ � q̂optðXiÞg: For each test, the two-sided

significance level was set at 0.05.

Table 1 summarizes the empirical rejection probabilities by four methods. For no

effect modification case, all of the four GOF tests kept the nominal significance

level. For linear effect modification cases, the power of the all tests were increasing

as the true effect was increasing. Among the four methods, Fischer et al.’s test

performed the best in terms of the empirical power, although the power of the

proposed test with V3n(x) was only slightly lower than that of Fischer et al.’s test.

This is not surprising because our GOF test was an omnibus test using a

Kolmogorov-type test statistic. For quadratic effect modification cases, the power of

the proposed tests were also increasing as the true effect was increasing. On the

other hand, the power of the Fischer et al.’s test was not monotonically increasing

with the strength of the true effect. Among the three statistics for the proposed

method, V3n(x) performed by far the best. This indicates that using the optimal

nuisance functions dopt (X) and qopt (X) as described in Sect. 3.2 is very important

for the good performance of our proposed test.

5 Application

We now apply the proposed method to data derived from the PROSPECT

(Prevention of Suicide in Primary Care Elderly: Collaborative Trial) (Bruce and

Pearson 1999; Bruce et al. 2004). Data are available at http://research.bmh.

manchester.ac.uk/biostatistics/research/data. PROSPECT was a multi-site

Table 1 Empirical size and power of the GOF tests

Method

Pattern of the effect (k0,k1,k2) Fischer V1n(x) V2n(x) V3n(x)

No effect modification (3,0,0) 0.040 0.045 0.040 0.048

Linear effect modification (3,0.1,0) 0.109 0.046 0.042 0.108

(3,0.2,0) 0.341 0.046 0.044 0.295

(3,0.3,0) 0.608 0.048 0.048 0.588

(3,0.4,0) 0.837 0.049 0.049 0.803

(3,0.5,0) 0.943 0.056 0.056 0.930

(3,2,0) 1.000 0.081 0.146 1.000

(3,5,0) 1.000 0.195 0.574 1.000

Quadratic effect modification (-0.2,0,0.4) 0.715 0.046 0.039 0.579

(-0.4,0,0.8) 0.552 0.047 0.050 0.928

(-0.6,0,1.2) 0.510 0.047 0.081 0.976

(-0.8,0,1.6) 0.486 0.053 0.141 0.982

(-1,0,2) 0.522 0.054 0.234 0.986

(-2,0,4) 0.535 0.152 0.782 0.989

(-4,0,8) 0.535 0.420 0.984 0.990
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prospective, randomized trial designed to evaluate the impact of a primary care-

based intervention on reducing major risk factors (including depression) for suicide

in later life. Participants were recruited from 20 primary care practices in New York

City, Philadelphia and Pittsburgh regions. Ten pairs of practices were matched by

region (urban vs suburban/rural), affiliation, size, and population type. Within these

10 pairs, practices were randomly allocated to one of the two conditions. The two

conditions were either (a) an intervention based on treatment guidelines tailored for

the elderly with care management including antidepressant medication (R = 1) or

(b) treatment as usual (R = 0). For illustration purposes, here, we analyzed the data

as if interventions were randomly assigned at the individual level. We use these data

to assess the effect of antidepressant medication (A = 1: presence; A = 0: absence)

on the change of the Hamilton Depression Rating Scale (HDRS) (Hamilton 1960)

score at four months after randomization from baseline (Y). We use the baseline

score of the HDRS as a baseline covariate (X), and it is centered with the mean

value of the entire sample for estimation of SMMs.

Table 2 summarizes the analysis results. We started with an Intention-to-treat

(ITT) analysis and it indicated that the HDRS score at four months was significantly

lower in the intervention group than it was in the control group

(ITT effect¼Ê½Y jR ¼ 1� � Ê½YjR ¼ 0� ¼ �3:62, 95 % confidence interval: -5.29

to -1.95). However, those who did not comply with the assigned treatment

comprised 15.2 % (22/145) of the intervention group and 45.4 % (69/152) of the

control group. Thus, the ITT effect would substantially underestimate the true

causal effect of the treatment (that is, antidepressant medication). Then, we applied

the following two SMMs for estimation of the causal treatment effect on the treated:

(i) a one parameter SMM including the main effect only, that is, Z(X, R) = 1; (ii) a

Table 2 Summary statistics and estimation results in the suicide prevention trial (PROSPECT)

Intervention

(n = 145)

Control

(n = 152)

p value of GOF

test

Fischer Proposed

Antidepressant medication: number (%) 123 (84.8) 69 (45.4)

HDRS score: mean ± SD

At baseline 18.93 ± 6.17 17.36 ± 5.62

At follow-up 11.51 ± 7.38 13.55 ± 8.35

Change from the baseline -7.42 ± 6.60 -3.80 ± 7.90

ITT effect (95 % CI) -3.62 (-5.29, -1.95)

1 parameter SMM (95 % CI)

Main effect -7.92 (-12.52, -3.32) 0.770 0.854

2 parameter SMM (95 % CI)

Main effect -8.09 (-12.78, -3.40) 0.974 0.825

Effect modification with baseline HDRS score -0.13 (-1.04, 0.78)

CI confidence interval, HDRS Hamilton depression rating scale, ITT intention-to-treat, PROSPECT

prevention of suicide in primary care elderly: collaborative trial, SD standard deviation, SMM structural

mean model
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two parameter SMM assuming the effect modification with X, that is, Z(X, R) = (1,

X). The baseline covariate X was centered; thus, the main effect parameter for the

model (ii) was interpreted to represent the treatment effect at the mean value for the

covariates. As shown in Table 2, the two SMMs gave much larger effect estimates

than the ITT analysis did, as expected. From the estimation result of the two

parameter SMM, the treatment effect was slightly larger for those with higher

baseline levels of the baseline HDRS score, although the effect was not statistically

significant. We then applied the proposed GOF test using the test statistics V3n(x) in

Sect. 4 as well as the test proposed by Fischer et al. (2011). The p value of the GOF

test was large for the one parameter model (i) for both methods, indicating good

fitting of the main effect model. No difference was observed between the two GOF

tests in this analysis. As noted in Taguri et al. (2014), the larger model (two

parameter model) gave the larger p value for the Fischer et al.’s test.

6 Discussion

In this article, we have proposed a new global GOF test for the parametric part of

the SMMs. The proposed model-checking method is an objective and informative

approach for numerically checking the function form of covariates in SMM.

Simulation studies demonstrate that the proposed test works well in terms of the

type errors and power for both linear and non-linear effect modifications.

Although SMMs and g-estimation always provide a valid test of the no treatment

effect in the presence of non-compliance (Robins 1994), the correct model

specification is a fundamental assumption for consistently estimating the causal

treatment effect. In this regard, assessing the GOF of the candidate SMMs is very

important. Our GOF test and the model selection criterion proposed by Taguri et al.

(2014) can be used as complementary approaches, with the GOF test evaluating the

overall fit and the model selection criterion evaluating the relative fit of candidate

models.

SMMs have been used to handle repeated measures over time as structural nested

mean models (Robins 1994) and related structural distribution models have been

developed for survival outcomes (Mark and Robins 1993; Loeys and Goetghebeur

2003). Recently, Wallace et al. (2016) proposed a model assessment technique

which can detect misspecifications of nuisance functions in SMMs for dynamic

treatment regimens using the property of double robustness in observational studies.

It is interesting to investigate as to how to extend our method to these problems.
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Budapest, pp 267–281

Bruce ML, Pearson JL (1999) Designing and intervention to prevent suicide. Dialogues Clin Neurosci

1:100–110

Bruce ML, Ten Have TR, Reynolds CF, Katz II, Schulberg HC, Mulsant BH, Brown GK, McAvay GJ,

Pearson JL, Alexopoulos GS (2004) Reducing suicidal ideation and depressive symptoms in

depressed older primary care patients–a randomized controlled trial. J Am Med Assoc

291:1081–1091

Chen B, Qin J (2014) Test the reliability of doubly robust estimation with missing response data.

Biometrics 70:289–298

Comte L, Vansteelandt S, Tousset E, Baxter G, Vrijens B (2009) Linear and loglinear structural mean

models to evaluate the benefits of an on-demand dosing regimen. Clin Trials 6:403–415

Fischer K, Goetghebeur E, Vrijens B, White IR (2011) A structural mean model to allow for non-

compliance in a randomized trial comparing two active treatments. Biostatistics 12:247–257

Goetghebeur E, Vansteelandt S (2005) Structural mean models for compliance analysis in randomized

clinical trials and the impact of errors on measures of exposure. Stat Methods Med Res 14:397–415

Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23:56–62

Joffe MM, Brensinger C (2003) Weighting in instrumental variables and G-estimation. Stat Med

22:1285–1303

Lin DY, Wei LJ, Ying Z (2002) Model-checking techniques based on cumulative residuals. Biometrics

58:1–12

Loeys T, Goetghebeur E (2003) A causal proportional hazards estimator for the effect of treatment

actually received in a randomized trial with all-or-nothing compliance. Biometrics 59:100–105

Mark SD, Robins JM (1993) A method for the analysis of randomized trials with compliance information:

an application to the multiple risk factor intervention trial. Control Clin Trials 14:79–97

Pan Z, Lin DY (2005) Goodness-of-fit methods for generalized linear mixed models. Biometrics

61:1000–1009

Robins JM (1994) Correcting for non-compliance in randomized trials using structural nested mean

models. Commun Stat Theory Methods 23:2379–2412

Rubin DB (1974) Estimating causal effects of treatments in randomized and nonrandomized studies.

J Educ Psychol 66:688–701

Rubin DB (1976) Inference and missing data. Biometrika 68:581–592

Su JQ, Wei LJ (1991) A lack-of-fit test for the mean function in a generalized linear model. J Am Stat

Assoc 86:420–426

Taguri M, Matsuyama Y, Ohashi Y (2014) Model selection criterion for causal parameters in structural

mean models based on a quasi-likelihood. Biometrics 70:721–730

Vansteelandt S, Goetghebeur E (2003) Causal inference with generalized structural mean models. J Roy

Stat Soc B 65:817–835

Wallace MP, Moodie EE, Stephens DA (2016) Model assessment in dynamic treatment regimen

estimation via double robustness. Biometrics 72:855–864

262 Behaviormetrika (2017) 44:253–262

123

http://creativecommons.org/licenses/by/4.0/

	A global goodness-of-fit test for linear structural mean models
	Abstract
	Introduction
	Structural mean models
	Goodness of fit tests for structural mean models
	Goodness of fit test proposed by Fischer et al. (2011)
	Proposed goodness of fit test

	A simulation study
	Application
	Discussion
	Acknowledgements
	References




