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Abstract: The 3D sand printing (3DSP), by binder jetting technology for rapid casting, 
has a pivotal role in promoting the development of the traditional casting industry as 
a result of producing high-quality and economical sand molds. This work presents an 
approach for monitoring and analyzing powder sand-bed images to serve as a real-
time control system in a 3DSP machine. A deep residual network (ResNet) is used to 
classify the defects occurring during the powder spreading stage of the process. Firstly, 
a pre-trained network was applied as the initial parameter; then it was fine-tuned on the 
labelled defective sample dataset to accomplish the task, which defines the sand-bed 
defects induced in the 3DSP processing. Furthermore, the recognition and positioning 
of sand-bed defects were readily achieved by dividing the sand-bed images into blocks. 
Experiments show that the fine-tuned network has a 98.7% classification accuracy on 
the validation dataset of sand-bed defects and 95.4% recognition accuracy for the sand-
bed images. 
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1 Introduction
Three-dimensional sand printing (3DSP) technology is increasingly becoming a 
significant instrument in the rapid sand casting [1]. Compared with the traditional sand-
casting process, it overcomes many limitations in traditional mold design which was used 
to assemble many parts in the mold. 

3DSP machines operate by spreading a thin layer of sand powder over a build plate 
using a spreading roller. After powder spreading, the nozzle sprays binder in locations 
corresponding to a 2D slice of a 3D part. After the jetting is complete, the build plate 
is lowered, another layer of powder is spread, and the process repeats until the part is 
finished [2]. Any defects occurring in processing affect the quality of the production. 
Figure 1 shows the powdered sand bed with defects. Human inspection and correction 
are commonly used to avoid defects, but it lacks intelligent recognition. One of the best 
methods is to establish a monitoring and analysis system for the working process of 
3DSP to form a negative feedback process of 3DSP molding, and the key is to identify 
the defects of the sand bed.

There has been extensive work on the monitoring of the additive manufacturing 
(AM) build process [3]. Computer vision algorithms and machine learning are widely 
applied to monitor the melt pool and the powder bed. Scime et al. [4] studied molten pool 
defects generated by laser beams in selective laser sintering using a supervised machine 
learning method and computer vision. Scime and Beuth [5-6] used deep learning, especially 
convolutional neural network (CNN), to automatically detect and classify the powder bed's 
powder state. Yuan et al.[7] used the improved convolutional neural network to carry out 
real-time monitoring on the quality of laser track weld, and finally achieved the purpose of 
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predicting track width, continuity and so on. These are all examples 
of automated monitoring using neural networks in the field of 
additive manufacturing, most of which are focused on selective laser 
sintering and welding quality evaluation. In additive manufacturing, 
because of its high degree of automation and continuous production, 
the use of machine vision has a higher application value [8]. In this 
work, a similar method could be used to detect sand-bed defects. 
However, there are still some unresolved issues due to the different 
materials (i.e., different particle size and physical properties between 
sand and metal powders). 

The particles used in this study are generally relatively coarse, with 
the particle size of about 70-100 mesh [9], while the metal powder 
mentioned above is generally relatively fine. Because the spacing 
caused by large particles will affect the final recognition accuracy, 
the finer the particles, generally speaking, the better the recognition 
efficiency. The residual neural network (ResNet) [10] is selected as the 
basic recognition network according to the characteristics of the 
sand mold. The greatest advantage of this network, compared with 
the traditional neural network, such as VGG net, is that its high 
recognition accuracy can still be guaranteed when the number of 
layers of neural network increases. In the meantime, the deeper the 
network, the more the features can be extracted, which enhances 
the learning ability and generalization ability of the network. At the 
same time, the corresponding image block segmentation measures 
were designed according to the characteristics of the sand particles. 
This kind of image segmentation can not only increase the sample 
size to a certain extent, but also make the final recognition results 
realize a simple positioning effect [11].

ResNet is a convolution neural network framework proposed by 
He et al [10]. Compared with other convolutional neural network 
structures, ResNet proposes the residual learning unit, as shown 
in Fig. 2. The output feature of each unit, which is the input of the 
next unit, is changed from F(x) to F(x)+x. Therefore, the network 
learning expressed as F(x) is no longer the feature value, but the 
differences of feature values between the input and the output 
(called residual). Compared with the early network structures, 
residual learning is more sensitive to the output changes; thus, it 
could be trained more effectively. Therefore, a pre-trained ResNet 
was used in this work. ResNet is an example of convolutional 
neural network (CNN) and requires large data sets and significant 
computational resources to train; fortunately, transfer learning 
allows for a pre-designed and pre-trained ResNet to be applied to 
a unique classification problem. Experimental results confirmed 
that the method proposed is effective on the 3DSP sand-bed defects 
recognition [12].

Fig. 2: A residual learning unit

2 Theory
2.1 Deep residual network
The basic network used in the study is ResNet18. 
The purposed network is built by four modules, a 
full connection layer, and a softmax layer. Figure 3 
presents the structure of the purposed network. Each 
of the modules is composed of two residual units. The 
network extracts the image features from the input 
images and outputs a 1×3 vector. The output vector 
expresses the probabilities that the input image belongs 
to each category. The softmax vector is calculated by 
the following equation to normalize the input vector V, 
which is the output of the full connection layer:

(1)

where Vi represents the ith element in V, and Σje      
represents the sum of exponents of all the elements. 
Thus, the equation can convert the input interval to the 
output interval between 0 and 1.

2.2 Strategy of fine-tuning purposed 
network

Usually, a CNN requires large datasets (on the order 
of 105-106 samples) for training [13]. However, the 
constructed sand-bed defects dataset is relatively small. 
Therefore, a fine-tuning strategy is applied to train the 
network [14], which could help the network achieve 
enhanced performance in the extraction of high-level 
features.

Fig. 1: Sand-bed defects occurring in powdering process
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Fig. 3: Structure of purpose network

Fig. 4: Strategy diagram of fine-tuning purposed network

(2)

(3)

The fine-tuning of the neural network was carried out using 
the following training strategy (Fig. 4):

(1) Obtain the pre-trained network parameters to initialize 
the purposed network, namely, the feature knowledge learned 
by the pre-trained network is transferred to the field of defect 
recognition.

(2) For the task of sand-bed defects recognition, re-initialize 
the number of output categories of the full connection layer to 
adapt to defects recognition.

(3) Freeze the two shallow modules of the proposed 
network, named Module 1 and Module 2, and keep their 

parameters from changing during training.
(4) Use the sand-bed defects dataset as input data, then 

retrain the Module 3, Module 4, and full connection layer with 
selected loss function and optimization algorithm.

There are two advantages in terms of training the network 
through the above strategy. On the one hand, the number 
of parameters to be trained is reduced. Therefore, the time 
consumed for a single step shortens. On the other hand, the 
proposed network with the initial parameters inherited from 
the pre-trained network enables us to extract the basic features 
of the image. Therefore, the number of steps required for 
training also decreases. 

The loss function was used to evaluate the degree to which 
the predicted value of the model is different from the real 
value. Usually, the smaller the loss function value, the better 
the performance of the model. Among them, the cross entropy 
loss function is effective in multi-classification problems and 
is very effective in unbalanced data set distribution, which is 
suitable for the application scenarios of this study. Thus, the 
loss function selected is the cross-entropy loss function [15], 
which is calculated based on the following equation:

where ω represents the parameter needed to be trained in 
the network, M represents the number of the categories, yic 
represents whether the input’s actual category belongs to Type 
c or not, if so, yic=1, otherwise, yic=0, and pic represents the 
predicted probability for the input’s category of c calculated by 
the network. 

The purpose of training is to find the value of ω that 
minimizes the loss function L(ω). The optimization algorithm 
by Adam [16] was used to iteratively update ω, and its iteration 
is as follows:

where α is the learning rate of the optimization algorithm, and 
represents the magnitude of each update of ω. By adjusting 
different learning rates and comparing the influence of them 
on the convergence speed of the loss value and accuracy, as 
shown in Fig. 5, it is found that either too large or too small 
a learning rate has a bad effect on the network. When the 
learning rate is 0.0001, the convergence speed of the loss 
function is faster than that of the other networks, and the 
accuracy rate is also improved steadily, regardless of the full 
training network or the pre-trained network. Consequently, 
the learning rate is set as 0.0001. The three hyperparameters 
in the Adam optimization algorithm, named β1, β2, and ε, were 
set to 0.9, 0.9999, and 10-8, respectively, according to the 
literature [16].
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Fig. 5:  Influence of learning rate on value of loss function and accuracy: (a) fully training loss function; 
(b) fully training accuracy; (c) fine-tuned loss function; (d) fine-tuned accuracy

Fig. 6: Schematic diagram of 3DSP machine (the arrows 
indicate moving direction of schematic components 
following printing of current layer)

3 Experiment
The method needs to learn from the marked sand-bed defects 
dataset to establish the relationship between the sand-defect 
image and the category. The image data were collected on the 
HXTC 200 3DSP printing machine. A schematic representation of 
the machine is shown in Fig. 6. The particle size of the molding 
sand was 150 μm-214 μm (70-100 mesh), the machine build 
plate measured 200 mm × 200 mm, and the thickness of each 
layer was 0.3 mm-0.5 mm. The resolution of the camera was 
set between 450 μm/pixel-600 μm/pixel. Besides, the image 
size after cropping was 450 pixels × 450 pixels. Consequently, 
each pixel represents a 450 μm × 450 μm field of view. During 
printing, images were automatically captured after the fusion of 
each layer.

3.1 Definition of sand-bed defects
The sand-spreading process of 3DSP is divided into two parts:

(1) The sand cylinder ascends to provide certain content of 
molding sand, and the working cylinder descends to provide 
forming space.

(2) The spreading roller spreads the molding sand on the 
working cylinder through the rotation and translation.

Based on the above two crucial points, the study defines the 
categories of 3DSP sand-bed defects, as shown in Table 1 and Fig. 7.

The size and position of the printed area may be different 
in each layer. As long as the defects appear on the sand layer, 
they may affect the final printed result. Therefore, there is no 
need to specifically distinguish the defects between the printed 
area and the non-printed area. In addition, because the color 
of the printed area is lighter and close to the color of the non-
printed area, they are not distinguished in the training data, 
which is also confirmed by the final recognition results in 
Table 2 and Table 3.

The depressions and faults caused by sand deficiencies often 
appear on the top of the sand bed. Once these overlap with the 
printed graphics, the produced sand mold would be staggered 
and deformed. As the sand scraping defects often penetrate 
into the entire sand bed, the surface of the printed sand mold 
could be consequently impaired, and a significant reduction of 
the structural strength of the printed parts makes it challenging 
to meet the quality requirements.

3.2 Sand-bed defects dataset creation
The collected sand-bed images may contain multiple different 
defective and non-defective areas, such as those shown in Fig. 1.

(a) (b)

(c) (d)
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Table 1: Categories of sand-bed defects and their color codes indicated

Name Description Overlay color codes

Sand deficiency The top layer of the sand bed has depressions and faults because of 
insufficient sand feeding Red

Sand scraping The sand scrapes parallel to the sand spreading direction in the sand bed 
because of surface defects of the powder spreading roller Yellow

Normal No sand-bed defects Transparent

Fig. 7: Sand-bed image with labels, with red and yellow 
blocks belonging to category of sand deficiency and 
sand scraping, respectively

Table 2: Results of sand-bed image recognition with fine-tuned network

Table 3: Results of sand-bed image recognition with fully trained network

Sand-bed image 
after detection

Accuracy 95% 96% 95% 96% 95%

Time cost 1.74 s 1.72 s 1.72 s 1.73 s 1.69 s

Sand-bed image 
after detection

Accuracy 90% 93% 97% 98% 92%

Time cost 2.59 s 2.47 s 2.49 s 2.45 s 2.50 s

For this reason, training of the network is performed using 
image patches. The advantage of such processing is that, on the 
one hand, the data size is expanded, which makes the original 
small sample size increase; on the other hand, the method of 

using image patches can make the distribution of dataset more 
balanced, remove a lot of redundant information, and improve 
the quality of samples. To develop the training dataset, sand-
bed images are split into patches and each image patch is 
marked by a ground-truth label as one of the three categories 
listed in Table 1. The patches and their attached labels are 
stored in a database for access by the methods. The image 
patches with labels are shown in Fig. 7. The current training 
dataset includes a total of 5,600 image patches consisting of 
2,100 non-defective blocks, 1,400 of sand deficiency, and 
2,100 of sand-scraping. The sand-bed defects classification 
network can learn how to extract image features and establish 
the relationships between image features and categories based 
on the provided dataset. Moreover, the network can reduce the 
influence of printed graphics and particles on the classification 
by correctly marking patches when constructing the dataset.

3.3 Training results
The experimental computer has an i7-9750H processor, 16 GB 
of installed RAM, and GeForce RTX 1660Ti graphics card. 
The experiment used the PyTorch deep learning framework to 
implement, train, and test the algorithm on the Windows 10 
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Fig. 8: Comparisons between fine-tuned network and fully trained network: (a) loss value; (b) accuracy

Fig. 9: Confusion matrix of proposed network: (a) fully trained network; (b) fine-tuned network

Fig. 10: ROC curve of each category of sand-bed defects: (a) sand deficiency; (b) sand scraping; (c) normal

(a)

(a)

(b)

(b)

(a) (b) (c)

operating system. 
The effectiveness of the sand-bed defect-recognition network 

was verified by the following two aspects: (1) 10% of the sand-
bed defect data were extracted randomly as the verification 
set to validate the classification effect of the network, and 
a comparison between a fine-tuned network with the above 
strategy and fully trained network was executed. (2) Several 
sand-bed images were taken to evaluate the network.

3.3.1 Single sand-bed defect classification

Confusion matrices and the receiver operation characteristic 
(ROC) graph are a metric commonly used to evaluate machine 
learning algorithms [17]. Figure 8 shows the convergence of 
the loss function value and accuracy with the step size. The 
fine-tuned network produced 98.7% accuracy after 200 steps. 
However, the fully trained network only produced 95.6% 

accuracy after 200 steps. Figure 8 also compares the fine-
tuned network with the fully trained network on loss value and 
total accuracy. The fine-tuned network has a higher starting 
point and faster convergence. It has also achieved a higher 
overall accuracy. Figure 9 shows the confusion matrix of the 
classification results in sand-bed defects. The diagonal elements 
on the confusion matrix represent the proportion of correctly 
classified samples. The correctly classified samples account for 
most of the tested samples, which confirms the effectiveness 
and accuracy of the classification model.

The ROC graph of the network is shown in Fig. 10. The area 
closer to the upper left corner of the ROC curve will result in 
a better model. The fine-tuned network has a good recognition 
effect for every category of the sand-bed defects. Moreover, it 
also receives superior evaluations in every category over that 
of the fully trained.
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3.3.2 Multiple sand-bed defects recognition

The sand-bed image usually contains multiple defective or 
non-defective areas, while the convolutional neural network 
trained can only discriminate the defective types of a single 
area. During implementation of the sand bed monitoring 
algorithm, the pre-processed sand-bed image is divided into 
10×10 patches through the Python imaging library (PIL). Then, 
each patch is input into the trained network for classification. 
Five collected sand-bed images are recognized to test the 
recognition method, and the results are shown in Table 2 and 
Table 3. For 500 split image patches, 477 (95.4%) of them 
were correctly identified by the fine-tuned network, and the 
average recognition time for each image was 1.72 s, while in 
the fully training network, 470 (94%) were correctly identified, 
and the average recognition time for each image was 2.5 s. 
By contrast, it can be seen that the recognition effect of the 
pre-trained network after fine-tuning is better than that of the 
fully trained network both in terms of the recognition accuracy 
and time. Misrecognition mostly occurs for the sand scraping 
defects. Further research will be conducted in this aspect.

4 Conclusions
(1) Through the fine-tuning strategy of the classical 

convolution neural network model, the deep neural network with 
the ResNet transfer learning pre-trained by imageNet database 
has a good effect in the sand bed defect recognition task of 3D 
sand printing.

(2) For the fine-tuned ResNet18 network, when the two 
modules Module 1 and Module 2 are frozen and the cross 
entropy loss function is adopted, the accuracy of single defect 
classification is 98.7%, and the average recognition accuracy 
and recognition time of multi-defect classification are 95.6% 
and 1.72 s, which are better than the 95.4% accuracy of 
single defect classification, 94% accuracy of multi-defect 
classification, and average time of 2.5 s of the full training 
network. The average recognition time of the former is nearly 
30% lower than that of the latter, which has a very important 
advantage in the real-time printing process.

(3) The network has a good recognition effect for 3D sand 
printing sand bed defects, but it cannot accurately locate 
the defects, and the positioning ability of the model can be 
optimized in the future.

(4) Once the defects are recognized in the printing process, 
the signal can be fed back to the printer machine for the 
spreading roller to relay the sand, and the corresponding 
adjustment can be made according to the defect type of the 
sand layer.
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