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Abstract: The application of additive manufacturing technology is one of the main 
approaches to achieving the rapid casting. Additive manufacturing technology can 
directly prepare casting molds (cores) with no need of patterns, and quickly cast 
complex castings. The combination of additive manufacturing and traditional casting 
technology can break the constraint of traditional casting technology, improve casting 
flexibility, and ameliorate the working environment. Besides, additive manufacturing 
promotes the realization of “free casting”, greatly simplifying the processing procedures 
and shortening the manufacturing cycle. This paper summarizes the basic principle 
of additive manufacturing technology and its development situation domestically 
and overseas, mainly focusing on the development status of several main additive 
manufacturing technologies applicable to the foundry field, including three-dimensional 
printing, selective laser sintering, stereolithography, layered extrusion forming, etc. 
Finally, the future development trend of additive manufacturing technology in the foundry 
field is prospected. 
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1 Introduction
Additive manufacturing (AM), previously known as rapid prototyping manufacturing 
(RPM), and is now publicized as three-dimensional printing (3DP). It is based on 
the dispersed-accumulated forming principle. According to the height of the discrete 
direction, the 3D part is transformed into a series of simple units, and the materials are 
processed layer by layer and stacked into the whole parts by the forming machine. 

Research on additive manufacturing technology started in the early 1980s [1]. Additive 
manufacturing technology was developed by Charles W. Hull in 1986 [2] in a process known 
as stereolithography (SL), and was later commercialized by 3D Systems Inc. Deckard [3] 
at the University of Texas at Austin invented selective laser sintering (SLS), with the first 
patent filed in 1989. Sachs et al. [4] at the Massachusetts Institute of Technology (MIT) filed 
a patent for 3D printing (3DP) in 1989 and published in 1993. Fused deposition modeling 
(FDM) was invented by Crump et al. with a patent published in 1992 [5]. Direct ink writing 
(DIW), also known as layered extrusion forming and robocasting, was first filed as a patent 
by Cesarano et al. in 1997 and published in 2000 [6]. Overseas companies based on the 
concept of “additive manufacturing” have emerged and developed rapidly during the past 
decades, including American companies such as Stratasys, 3D Systems, and ExOne, and 
German companies such as Voxeljet and SLM Solutions [7]. In the draft of the National 
Industrial Strategy 2030 issued by the Ministry of Economy and Energy of Germany in 
2019, additive manufacturing was listed as one of the “key industrial sectors” in the ten 
industrial fields. The aviation enterprises represented by GE of the United States plan 
to use 10,000 sets of metal printers in 2021, which shows the subversive significance of 
additive manufacturing technology [8]. 
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Since 1990, basic research on additive manufacturing technology 
has been carried out in China [9-10]. Huazhong University of 
Science and Technology (HUST) successfully developed the 
laminated object manufacturing (LOM) printer in the 1990s, 
and carried out numerous research works on rapid prototyping 
equipment and materials. Meanwhile, researchers carried out 
research and development of selective laser sintering equipment. 
Tsinghua University successfully developed a “M-RPMS type 
multifunctional rapid prototyping manufacturing system”. Xi'an 
Jiaotong University also carried out various research works 
on stereolithography apparatus and materials, and Beijing 
Longyuan AFS Co., Ltd. obtained achievements on the selective 
laser sintering materials and process. Although domestic studies 
on additive manufacturing technology started relatively late 
compared with foreign research, it has developed rapidly. For 
example, since 2012, Kocel [11] realized the localization of 3D 
printing materials, process, software and equipment for casting, 
and built a 10,000-ton foundry 3D printing factory, which 
provided a solution for the transformation and upgrading of the 
traditional foundry industry. However, the core component in the 
3DP system still needs to be conquered. 

After nearly 40 years of development, AM technology shows 
great significance in machinery manufacturing, aerospace, 
automotive, metal casting, biological, medical, food, footwear, 
clothing, and building industries, which helps to break through 
the traditional manufacturing mode. Furthermore, with 
increasingly evolution of AM technology, its application fields 
keep on expanding, covering a wide range of raw materials, 
including plastics, metals, ceramics, etc [12-14].

Combining AM technology with traditional casting 
technology can give full play to the technical advantages of 
AM and improve the casting flexibility, thus greatly reducing 
the cost of product R&D and innovation, shortening the 

period of innovation and improving the direct success rate of 
production [15], and therefore, promoting the development and 
transformation of traditional casting.

Many researchers have been studying the application of AM 
technology in the field of traditional casting since the 1990s [16]. 
For example, the Pratt & Whitney Laboratory in the United States 
produced 2,000 castings with 3D printing technology in 1994 [10]. 
During the same period, Huazhong University of Science and 
Technology, Tsinghua University, Beijing Longyuan AFS Co., 
Ltd., Xi'an Jiaotong University, and others, also began the research 
work of rapid casting technology [17-18]. For instance, Fan et al. [19] 
used the self-developed SLS system to prepare coated sand trial 
castings in 1998.  

Currently, AM technologies applied to casting mainly include 
3D printing, selective laser sintering, and stereolithography[20-21]. 
This paper focuses on the mechanism and state-of-the-art 
development in metal casting of the abovementioned AM 
technologies, and prospects the future development of the rapid 
casting field.

2 Three-dimensional printing (3DP)
The 3DP method was first invented by Sachs et al. at the 
MIT, who filed a patent for it in 1989 [4]. Since then, 3DP has 
been applied to rapid casting. Tsinghua University proposed 
patternless casting manufacturing (PCM) based on upper spray 
bonding molding. Currently, well-developed 3DP equipment 
companies mainly include ExOne in the United States, 
Voxeljet in Germany, and KOCEL Co., Ltd., Guangdong 
Fenghua Zhuoli Technology Co., Ltd. (FHZL), Wuhan 
Easymade Technology Co., Ltd. (EASYMFG) in China. Table 
1 shows some typical 3DP equipment parameters in different 
companies.

Table 1: Representative companies based on 3DP technique [7, 22-24]

Company Type Build size
(L×W×H) (mm3) Resolution (dpi) Layer thickness 

(mm) Number of nozzles

ExOne

Innovent Platform 160×65×65 400×400 0.1 -

S-Print Platform 800×500×400 400×400 0.28-0.5 -

Exerial Platform 2,200×1,200×600 300×300 0.28-0.5 -

Voxeljet

VX200 300×200×150 300×300 0.15 256

VXC800 850×500×300 600×600 0.15-0.4 2,656

VX4000 4,000×2,000×1,000 600×600 0.12-0.3 26,560

KOCEL

AJS 1000A 1,000×600×500 400×400 0.2-0.5 -

AJS 2500A 2,600×2,000×1,000 300×300 -

AJD 2500B 2,500×1,800×1,000×2 ≥300 -

FHZL

PCM300 300×250×250
300×300 or 

400×400

0.2-0.5 1×1,024 P

PCM1200 1,200×1,000×600 4×1,024 P

PCM2200 2,200×1,000×800 4×1,024 P

EASYMFG

Easy3DP-S2200 2,000×1,000×600 360 0.1-0.5 -

Easy3DP-M500 500×450×400 600 0.04-0.2 -

Easy3DP-G450 450×220×300 180 0.1-0.2 -
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Fig. 1: Typical sand mold (core) prepared by 3DP method

Fig. 2: Flow chart of 3DP-based sand casting process

Hawaldar et al. [29] conducted a comparative study on 
the traditional sand mold casting process and 3DP formed 
sand mold casting process. Results showed that the 3DP 
technology had obvious advantages in preparing sand molds 
(cores) because it can not only enhance the sand utilization 
efficiency, but also improve the mechanical properties of the 
sand molds (cores). Zhao et al. [33] systematically studied the 
influence of sand angular coefficient, particle size distribution, 
surface tension and viscosity of binder on axial accuracy and 
performance of 3DP formed sand mold. It was found that the 
quality of sand mold formed with an angular coefficient of 1.1 
showed superior quality; the axial dimension deviation along 
X, Y and Z directions was 0.18 mm, 0.11 mm and -0.04 mm, 
respectively; and the tensile strength of the sand mold was 
0.88 MPa. Figure 3 shows the bonding morphology of sand 
particles with different sand particle size, layer thickness and 
binder injection amount. It can be revealed from Fig. 3 that 
a smaller sand particle size, a smaller layer thickness and a 

greater amount of binder injection led to a tighter connection 
between the sand particles, and therefore, a higher tensile 
strength.

Deng et al. [34] adopted the 3DP method to prepare complex 
furan resin sand molds with and without the air cavity 
surrounding the riser (Fig. 4) to verify the insulation effect of 
the air cavity. The analysis of heat transfer inside the air cavity 
indicated the presence of the air cavity led to a 12.5% increase 
of the solidification time of the riser. The designed sand mold 
for casting with an air cavity surrounding the riser can be 
prepared by 3DP method quickly with no need of patterns, 
which enhances production efficiency.

Based on the solvent method, Tian et al. [35] tried to 
form sand molds (cores) by 3DP. This process changes the 
traditional “viscous resin-based binder” into “solvent based 
binder”, which possesses good stability and facilitates solving 
the nozzle clogging problem. An ethanol-based binder 
containing polyethylene glycol molecules was adopted. The 

In the process of 3DP, a binder solution in droplet form is 
sprayed through printheads onto selected regions of a powder 
bed surface. Solid layers are formed by the solidification of the 
permeating liquid binder, which encloses the powder. A new 
layer of powder is then supplied and spread on the previous 
layer to repeat the building process until the part is built. After 
this, loose powder is removed to obtain the green body [25-27]. At 
present, the application of 3DP in casting is mainly to prepare 
a sand mold (core) and ceramic shell (core).

2.1 3DP sand mold (core)
Traditional sand casting mold making processes involve the 
fabricating of a pattern, mixing the sand and binder, and then 
pouring the mixture into a wood or metal mold to shape pieces for 

a sand mold assembly. Subsequently, the molten metal is poured 
into the sand mold to obtain final metal castings [7]. The process 
is considered complicated and high energy consumming. 
Recently, fabrication of sand molds based on 3DP method has 
been developed, which has changed the production mode of 
the casting industry. The sand mold can be directly rapidly 
formed without patterns, improving the production efficiency 
of metal castings [28-30]. Some sand mold (core) samples 
prepared by 3DP method are shown in Fig. 1.

Figure 2 shows the 3DP sand casting process, mainly 
including the structure designing, 3D printing, assembling, and 
casting procedures. Normally, the molding sand mainly includes 
silica sand, zirconium sand, etc., and the binder mainly includes 
furan resin, phenolic resin, inorganic binder, etc [31-32].
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Fig. 3:  Bonding morphology of sand particles with different particle size, layer thickness and binder injection 
amount: (a) 70-140 mesh, 0.32 mm, 10%; (b) 70-140 mesh, 0.32 mm, 5%; (c) 140-200 mesh, 0.12 mm, 
10%; (d) 140-200 mesh, 0.12 mm, 25% [33]

Fig. 4: Furan resin sand mold printed by 3DP technology without (a) and with (b) air cavity surrounding 
the riser [34]

(a) (b)

(c) (d)

results revealed that as the ethanol addition increased, the tensile 
strength of the sand molds increased. As the ethanol content was 
90%, and the layer thickness was 0.25 mm, the prepared sand 
molds possessed the initial green and post-processing tensile 
strength of 0.48 MPa and 3.787 MPa, respectively. Finally, the 
12CrMo turbine part was obtained after casting, which showed 
no obvious defects after shot pinning.

Li et al. [36] adopted resin dilution and interlayer baking 
method to effectively reduce the gas generation of the 3DP 
sand mold. The composition of the raw sand and binder used 
in this process was basically the same as that of traditional 
no-bake resin sand, but the viscosity, surface tension and 

other physicochemical properties of binder and catalyst were 
adjusted according to the characteristics of the 3DP process. 

The strength of the sand mold formed by 3DP is mainly 
provided by the binder connecting the sand particles layer by 
layer to form a cross-linked network structure. Under the same 
conditions of forming materials, the strength of the sand mold 
formed by 3DP is lower than that obtained by the traditional 
process, so, researchers usually increase the amount of 
binder injection to improve the strength of the casting molds. 
However, excessively increasing binder injection will lead to 
flocculation of sand particles, resulting in low accuracy of the 
sand molds and an increase of porosity defects in castings [26].

(a) (b)
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Fig. 5: Photographs of complex-shaped alumina ceramic cores fabricated by an inorganic binder: (a) printing 
equipment; (b) design drawing of cores; (c) green cores [46]

2.2 3DP ceramic shell (core)
As early as 1990, Sachs et al. [4, 37] adopted the 3DP method to 
prepare alumina-based ceramic shells (cores). Z Corp in US 
launched “ZCast Direct Metal Casting” technology, and the 
corresponding ceramic shells were suitable for non-ferrous 
alloy casting [38]. Gill et al. [39-42] adopted the 3DP method to 
prepare ceramic shells and carried out Al, Zn and Pd alloy 
casting. Chhabra et al. [43] prepared Al, brass and Cu castings 
using the ZCast process based on the 3D printing technique. 
The experimental average surface roughness was 6.76 µm, 
11.27 µm, and 11.56 µm, respectively, which was acceptable 
comparing to the sand cast surface roughness (6.25-25 µm).

In recent years, high temperature ceramic molds (cores) 
were prepared by 3DP technology. By spraying inorganic 
binder onto the ceramic particles, the ceramic molds (cores) 
with higher strength and lower shrinkage during sintering were 

manufactured. Zhao et al. [44-45] systematically studied the effect 
of nanozirconia-absolute ethyl alcohol solution on the 3DP 
CaO-based cores. Results showed that increasing the binder 
saturation level caused a decrease in the linear shrinkage of 
the sintered parts, but an increase in hydration resistance and 
bending strength. After sintering at 1,300 °C, the CaO-based 
cores had a bending strength of 14 MPa and linear shrinkage 
of 2.11%.

Huang et al. [46] prepared alumina-based cores through the 
3DP method (Fig. 5) using zirconium basic carbonate (ZBC) 
as binder, and the effects of different ZBC contents on the 
printability of the binder and the performance characteristics 
of the ceramic cores were investigated. The results revealed 
that as ZBC content was 35wt.% and sintering temperature 
was 1,500 °C, the ceramic core obtained had a bending strength 
of 79 MPa and linear shrinkage of 13%.

Compared with a conventional sand molding process, the 3DP 
technique greatly shortens the manufacturing periods by omitting 
the procedures of preparing wood or metal patterns. Besides, 
unlike other additive manufacturing methods that adopt laser 
curing or laser sintering or costly photosensitive resin, the 3DP 
technique adopts common binder and particle material similar 
as that suitable for conventional sand molding process, which 
comparatively reduces costs. In addition, the 3DP method shows 
superiority in the high flexibility of geometrical design without 
the addition of supports during formation. However, the formed 
parts are loose and porous, with low strength and rough surface, 
so necessary post-treatment is required to further improve the 
accuracy and strength. To fundamentally enhance the precision 
and strength of 3DP parts, it is necessary to conduct a systematic 
and in-depth analysis of several key technical issues in the 
3DP process, such as the influencing mechanism of spraying 
parameters, binder properties and curing behavior, the effect of 
powder material parameters on the accuracy of parts, and the 
interaction law of the force between the powder layers during the 
powder spreading process. In addition, 3DP apparatus produced in 
domestic companies are restricted by the core component “nozzle”, 
and efforts should be made in future to solve this technical issue.

3 Selective laser sintering (SLS)
SLS technology was first proposed by Deckard and Beaman [3], and 
further developed by the DTM Company. The SLS technique 
employs a super high-power laser to selectively irradiate the 
surface of the target powder bed. Under the control of computer 
programming, the laser selectively scans the material powder 
surface at a certain scanning speed and energy density, so 
as to melt the particles and allow sintering to take place for 
bulk jointing. Then, a new layer of powder is spread onto the 
previous surface for the next run of heating and joining. In this 
way, the process is repeated layer by layer until the designed 3D 
part is finished [47]. After decades of development, the main SLS 
forming equipment manufacturers now include 3D Systems, 
EOS, Beijing Longyuan AFS Co., Ltd., Huake 3D Technology 
Co. Ltd., Farsoon Technologies, etc., as summarized in Table 2.

SLS technology plays an important role in manufacturing 
complex, light and thin-walled parts. The original intention 
of SLS was to make wax models for investment casting of 
metallic prototypes, but recently, SLS has been extended to 
coated sand and ceramic, as shown in Fig. 6.

(a)

(b) (c)
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Fig. 6: Different materials for parts by SLS technique: (a) coated sand mold; (b) wax pattern; (c) ceramic samples [14]

Table 2: Typical SLS equipment in the world [48-52]

3.1 SLS forming coated sand mold (core)
It is an outstanding application of rapid prototyping technology in 
the foundry industry to use coated sand as sintering material and 
directly forming the mold (core) for casting by SLS method [9].
Compared with the traditional sand-mold casting method, SLS 
saves tooling equipment (molding and core making machine, 
transportation equipment, etc.), and the complex and bulky 
casting production process can be completed on the SLS machine.

SLS research based on using coated sand as matrix material 
began in Europe in 1996 (such as EOS Company in Germany). 
The formation process is that heating and melting the binder 
previously coated on the surface of sand particles, and after 
cooling and solidifying, the sand particles are bonded together 
and connection necks among particles are established [53]. The 
influence of process parameters (laser power, laser spot size, 
scanning speed, sand preheating temperature, layer thickness, etc.) 
on the formability of SLS coated sand has always been the focus 
of research. Fan et al. [9, 54-57] systematically studied the effect 
of process parameters on a coated sand mold (core) by SLS 
method, analyzed the curing mechanism and characteristics 
of coated sand under laser, and obtained a variety of qualified 
metal castings. The higher sintered strength of the sand 

mold (core) would be attained in association with the slower 
scanning velocity, the greater output power and the thinner 
thickness. Otherwise, the sintered strength of the sand mold 
(core) would be lowered.

Wen et al. [58] proposed novel binder-coated Al2O3 sands 
to prepare complex sand molds via SLS for metal casting. 
The curing mechanisms of the coated sands during the SLS 
and post-curing processes were studied, and effects of binder 
content, raw sand type and post-curing parameters on the 
strength and gas evolution were investigated. Finally, a large 
sand mold of the cylinder head of a complex six-cylinder 
diesel engine was successfully prepared and cast, and the 
casting with surface quality and dimensional accuracy meeting 
the design requirements was finally obtained. The sand mold 
and casting are shown in Fig. 7.

Tang et al. [59] adopted silica sand as the matrix material to 
prepare a casting mold with SLS technology. The effects of 
process parameters on the precision, strength and surface finish 
of sintered parts were studied. The compressive strength and 
surface roughness of sintered parts increase with the increase of 
laser power and decrease with the increase of scanning speed in 
the range of 60-180 mm·s-1. Bo et al. [60] analyzed the influence 

Manufacturer Model Build volume
(mm3) Laser type Layer thickness 

(mm)
Maximum 

scanning speed 
(m·s-1)

3D Systems
sProTM 230 550×550×750 CO2, 70 W 0.08-0.15 10

ProX® SLS 6100 381×330×460 CO2, 70 W 0.08-0.15 12.7

EOS

FORMIGA P 110 
Velocis 200×250×330 CO2, 30 W 0.06-0.12 5

EOS P500 500×330×400 CO2, 2×70 W 0.06-0.18 2×10

Longyuan AFS
LaserCore-6000 1050×1050×650 CO2, 120 W 0.08-0.35 6

AFS-500 500×500×500 CO2, 55 W or 120 W 0.08-0.35 6

Huake 3D Technology
HK S1200 1200×1200×600 CO2, 100 W 0.08-0.3 8

HK S320 320×320×450 CO2, 30 W 0.08-0.3 4

Farsoon Technologies
SS403P 400×400×450 CO2, 100 W 0.06-0.3 15.2

Flight HT252P 250×250×320 Fiber laser, 300 W 0.06-0.3 15

(a) (b) (c)
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Fig. 7: Sand mold prepared by SLS method (a) and 
corresponding cylinder head casting of six-cylinder 
diesel engine (b) [58]

Fig. 9: An engine channel sand core by SLS [63]

(a)

(b)

of laser scanning speed, laser power, delamination thickness, 
scanning distance and preheating temperature on the strength and 
dimensional accuracy of SLS formed prototype under different 
process parameter combinations. Combined with the traditional 
casting method, the rapid casting of a hydraulic multi-way valve 
was achieved. Wang et al. [61] used a large SLS forming machine 
(forming size 1,000 mm×1,000 mm×600 mm), combined with 
self-developed high-performance coated sand, to produce a full 
set of coated sand cores for a KJ100 cylinder head. A qualified 
KJ100 large cylinder head casting was obtained by pouring, as 
shown in Fig. 8.

Fig. 8: SLS cylinder head sand core assembly (a) and 
cylinder head casting (b) [61]

(a)

(b)

strength of a coated zirconium sand mold. The results showed 
that the effect of single scanning area on the tensile strength 
of the coated zircon sand mold was significant, and under 
the same laser power and scanning speed, the initial strength 
decreased from 0.27 MPa to 0.04 MPa as the multiple of 
scanning area increased from 3 to 48. The laser power directly 
determined the tensile strength of the coated zircon sand mold. 
As the laser power increased, the tensile strength increased, 
however, as laser power continued to increases, the surface 
quality of sand mold was destructed due to the sand clogging. 
Finally, the coated zirconium sand mold was prepared and 
applied to Ti alloy casting, and the resultant Ti alloy casting 
exhibited a clear contour and bright surface.

3.2 SLS forming ceramic mold (core)
In the process of SLS ceramic mold (core) production, due to 
the high melting temperature of the ceramic material, the laser 
of the current SLS processing equipment can barely realize 
direct fusion the bonding of the ceramic particles in a short 
time. Present research on SLS formed ceramics involves mixing 
ceramic powders with polymer binders, and sintering the coated 
ceramic particles by laser irradiation, after which sintering is 
conducted to obtain the required ceramic shell mold (core).

Li et al. [65] combined SLS technology with different post-
treatment methods including silica-sol infiltration, vacuum 
silica-sol infiltration, debinding, and pressure-less sintering 
to prepare Al2O3-SiO2 based ceramic parts. The geometric 
dimension accuracy and surface quality of the final samples can 
be effectively improved with appropriate SLS parameters and 
SiO2-sol infiltration. The optimal SLS processing parameters for 
the parts in Fig. 10 were as follows: hatch spacing of 0.15 mm, 
laser power of 10 W, layer thickness of 0.10 mm, and scanning 
speed of 1,500 mm·s-1. Under optimized SLS parameters, the 
SLS samples possess a low linear shrinkage ratio (<1%), small 
warpage degree (<3%), and good surface morphology (surface 

To enhance the initial strength of coated sand molds 
prepared by SLS, Si et al. [62-63] studied the influence of binder 
content, curing temperature and curing time on strength of 
molds by orthogonal test. The results showed that the strength 
of sand molds could reach 3.6 MPa when the binder content was 
3wt.%, curing temperature was 110 °C and curing time was 35 s. 
The influence degree of each process parameter on the sintering 
characteristics of coated sand was as follows: laser power > 
scanning distance > scanning speed > coating layer thickness. 
The prepared coated sand core is shown in Fig. 9.

Liang et al. [64] prepared coated zirconium sand through cold 
and hot methods, and systematically studied the influence 
of single-layer scanning area and laser power on the tensile Fig. 10: Al2O3-SiO2 ceramic parts prepared by SLS method [65]
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altitude difference <170 µm) after vacuum silica-sol infiltration, 
debinding, and pressure-less sintering.

Wei et al. [66] prepared a mullite ceramic shell by SLS, aiming 
at enhancing ceramic shell strength and avoiding crack defects 
during preparation. After optimizing process parameters through 
orthogonal testing, ceramic shell samples with 99.01-172.02 MPa 
compressive strength were obtained. They also prepared alumina 
based ceramic cores through SLS technology, and the bending 
strength of the ceramic core was improved by combining with 
high temperature sintering. Experimental results showed that the 
bending strength of the ceramic shell after sintering at 1,600 °C 
reached 38.03 MPa [67].

3.3 SLS forming investment casting patterns
Traditional investment casting mainly includes preparation of 
wax pattern, assembly of wax pattern, preparation of multi-
layer ceramic shell, dewaxing, shell baking, pouring, removal 
of ceramic shell, and post-treatment of metal castings [68-69]. 
The production period was considered long and complicated.

SLS technology was adopted to directly form a wax and 
resin pattern instead of an investment pattern which could break 
through the design limit of traditional wax patterns and shorten 
the preparation cycle of a ceramic shell mold, which was another 
promising application field of SLS technology in the metallic 
casting field. In the 1990s, SLS was applied to investment 
precision casting. The technology was developed earlier by DTM 
Company in the United States, and later, Huazhong University of 
Science and Technology, Nanjing University of Aeronautics and 
Astronautics and Beijing Longyuan AFS Co., Ltd. in China also 
carried out the relevant research works [10, 18, 70].

Polycarbonate (PC) is the first polymer material used in the 
preparation of investment materials for SLS because of its 
good laser sintering properties and high strength. However, 
PC has a high melting point and poor fluidity, which requires 
a higher roasting temperature. Compared with PC, polystyrene 

(PS) and high impact polystyrene (HIPS) are mainly used 
as raw materials in recent research for preparing investment 
patterns by SLS because of low thermal deformation 
temperature and good fluidity [71].

Shi et al. [72-74] adopted post-processing methods including 
immersing epoxy resin and wax to enhance mechanical 
properties and surface quality of SLS-formed PS and HIPS 
structures. The treated molds could be applied to investment 
casting. As shown in Fig. 11, integral HIPS patterns suitable 
for investment casting were successfully prepared through SLS 
technique, and corresponding metal castings were obtained 
after investment casting.

Özer et al. [75] used polystyrene powder as matrix material to 
prepare a polymer pattern by SLS technology. After the SLS 
process, plaster slurry was coated on the surface of the polymer 
pattern, and the ceramic shell required for casting was obtained 
by drying, pattern removal and sintering. Compared with 
traditional technology, the production cycle was shortened and 
the production cost was reduced. Figure 12 shows the pattern 
prepared by SLS method and the corresponding castings.

Wang et al. [76] used SLS technology to prepare a wax 
pattern. After being coated with silica sol/zircon-based slurry 
on the surface, the wax patterns were dried at 19-25 °C for 24 h. 
The ceramic shell with the thickness of 5.5 mm was obtained 
after drying, dewaxing, and sintering, and finally a high-
quality complex stainless steel impeller casting was obtained.

Yang et al. [77] carried out the research on the rapid 
investment casting process of complex surface parts based on 
SLS technique. Polystyrene was used to prepare the induction 
wheel resin pattern, and after wax impregnation treatment, the 
mold shell of the induction wheel was prepared by dip-coating 
silica sol. Finally, the induction wheel with good internal and 
external quality was obtained under the mold shell preheating 
temperature of 1,115 °C and pouring temperature of 1,600 °C. 

Fig. 11: HIPS sample formed by SLS for investment casting: (a, b) HIPS sample; (c, d) castings [74]

(a) (b)

(c) (d)
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Fig. 12: SLS patterns and casting: (a) images of wax tree and (b) A356 samples after casting [75]

(a) (b)

The average dimension error was 0.17%-0.19%, and the 
average surface roughness was 0.693 μm.

SLS technology features a high material utilization rate, but 
the forming parts with loose microstructure are apt to deform 
due to internal stress. The forming sample surface is rough 
and porous because of the limited size of powder particle and 
laser spot. In addition, post-processing is generally necessary to 
improve the strength and precision of the SLS forming sample 
to meet the requirements of practical utilization. For example, to 
improve the strength and surface precision of the sand shell mold 
(core), it is necessary to repeatedly heat in an oven and conduct 
surface coating treatment, which can be used to prepare cast 
steel, cast iron, magnesium alloy, titanium alloy, etc [58, 64, 71, 78]. 
The dimensional accuracy and surface roughness of castings 
using coated sand molds are generally up to CT6-8 and 12.5-
3.2 µm. The investment patterns are generally treated by 
infiltrating paraffin wax or resin to improve the strength and 
surface precision, which can be used to prepare stainless steel 
casting, aluminum alloy castings, etc [75, 76, 79]. The dimensional 
accuracy of obtained castings is generally up to CT6, and the 
surface roughness is generally below 6.3 µm. However, the 
preparation of investment patterns instead of the wax patterns 

based on SLS technology can only be used to form ceramic 
shells indirectly. The surface of an investment pattern needs to 
be dip-coated multiple times to obtain the ceramic shell after 
drying, dewaxing and roasting. After the molten metal is filled, 
the ceramic shell can be removed to obtain the desired casting. 
The preparation cycle of the precision castings is still long.

4 Stereolithography (SL)
The SL technique is recognized as the most popular AM 
technology which was first proposed and developed by Hull [2]. 
SL is a process in which an ultraviolet light source is used to 
selectively cure photo-polymerizable monomer with other 
additives. When polymerization is finished for one layer, 
the platform supporting the part being produced is lifted or 
lowered by the thickness of a layer, and the process is repeated 
until the structure is built [14, 80]. Some main manufacturers of 
SL apparatus are listed in Table 3.

Recent research on SL-based rapid casting focuses on 
the preparation of polymer pattern (mold), wax pattern, and 
ceramic shell (core). Figure 13 shows various specimens built 
by SL method with different materials.

Table 3: Representative companies based on SL technique [81-82]

Manufacturer Type Build size
 (L×W×H) (mm3) Layer thickness (μm) Light source

Prodways
ProMaker L6000 800×330×400

25-150 LED
ProMaker LD20 300×445×200

Admatec
Admaflex 130 160×100×110

10-200 UV laser
Admaflex 300 260×220×500

3D Systems
ProX 950 1500×750×550 125-750

UV laser
ProJet 7000 HD 380×380×250 75-750

UnionTech
Lite-800 800×800×550 70-250 UV laser

D300 300×300×100 50-250 UV laser
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Fig. 13: SL samples with different materials: (a) polymer pattern; (b) wax pattern; (c) ceramic shell

Fig. 14: Impeller by SL combined with investment casting: (a) SL impeller resin pattern; (b) shell mold after 
firing; (c) impeller casting [83]

(a) (b) (c)

(a) (b) (c)

4.1 SL forming investment casting patterns 
and molds 

As shown in Fig. 14, Zong et al. [83] used SL technology to 
make the pattern for an impeller casting, and finally obtained 
the fan impeller casting with good performance with only 1/3 
cost of the traditional casting technology, and 1/5 the time 
consumption.

Li and Wu et al. [84-86] combined SL technology with 
gelcasting technology to prepare a ceramic mold (core). Firstly, 
the SL technology was used to prepare resin molds, and then 
the prepared aqueous ceramic slurry was injected into the resin 
molds. The freeze drying process instead of the traditional air 
drying process reduces the drying shrinkage rate of the ceramic 

core from the original 2.0% down to 0.25%, which is conducive 
to maintaining the structural integrity of the complex ceramic 
core, as shown in Fig. 15. Yang et al. [87] fabricated a high-
performance integral calcium-based ceramic mold (Fig. 16) for 
investment casting by SL and non-aqueous gelcasting. Under 
an optimized pre-sintering and sintering regime, the CaO-
based ceramic mold exhibited a relatively low shrinkage of 
0.6%, a room temperature bending strength of 14.12 MPa and 
a high temperature (1,200 °C) bending strength of 8.22 MPa. 
Compared with Al2O3-based AC-1 ceramic cores (made by 
Beijing Institute of Aeronautical Materials, Beijing, China, and 
applied in the fabrication of turbine blades), it is predicted that 
the properties of a CaO-based integral ceramic mold by this 
method can meet the requirements for investment casting.

Fig. 15: Fabrication process of an alumina core: (a) CAD design; (b) polymer molds prepared by SL; 
             (c) ceramic core after gel-casting processing [86]

(a) (b) (c)
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Fig. 16:  Schematic diagram of integral ceramic mold via 
SL combined gel-casting [87]

4.2 SL direct forming ceramic shell (core)
Ceramic shell or core could be directly formed via SL method, 
without developing the mold required by the core and wax 
pattern, which then greatly shortens the process flow and 
preparation cycle of traditional precision casting.

Li et al. [88] prepared an alumina ceramic core based on SL 
method, and the effect of sintering atmosphere on a ceramic core 
was studied. The results revealed that a ceramic core sintered at 
1,350 °C under argon atmosphere possessed superior properties 
with bending strength of 26.7 MPa, volume density of 2.5 g·cm-3,
open porosity of 33.8%, meeting the requirements of practical 
ceramic cores. Bae and Halloran et al. [89-92] used SL method to 
realize the integral formation of a silica-based ceramic shell 
and core, as shown in Fig. 17, and after sintering at 1,300 °C, 
the corresponding bending strength reached 11.4 MPa with 
relative density of 71%.

Li et al. [93] prepared a ceramic shell by SL method, in which 
a 45vol.% slurry containing photosensitive resin as binder and 
Al2O3-SiO2 as bone powders were adopted. After sintering at 
1,200 °C, the specimen possessed a fracture strength of 9.98 MPa, 
linear shrinkage of 22% and surface roughness of 4.51-4.82 μm. 
Finally, the stainless blade was obtained through metal casting 
(as shown in Fig. 18).

Fig. 17: Integral ceramic shell-core sample formed via SL 
method: (a) STL model; (b) green sample;  (c) sintered 
sample; (d) sectional profile at 630th layer [89]

(c)

(d)

(a) (b)

Fig. 18: Ceramic shell prepared by SL method: (a) green 
ceramic shell; (b) sintered ceramic shell; 

                (c) stainless blade casting [93]

Li et al. [94] systematically studied the influence of sintering 
process on silica and alumina cores prepared via SL method. 
As sintering temperature increased to 1,300 °C, the silica-
based ceramic cores reached a maximum value of 12.1 MPa 
due to the enhanced α-cristobalite content responsible for 
the flexural strength at room temperature. Vacuum sintering 
was introduced to improve the mechanical properties of 
alumina ceramic cores, as shown in Fig. 19. As the sintering 
temperature increased, the flexural strength and the hardness 
increased. Overall, 1,150 °C was determined to be the best 
sintering temperature in vacuum, yielding a ceramic core 
with bulk density of 2.43 g·cm-3, open porosity of 37.9%, 
and flexural strength of 33.7 MP, which was similar to results 
found from sintering at 1,280 °C in air. When the sintering 
temperature reaches 1,350 °C, the maximum shrinkage of the 
sample was close to 12% [95].

SL technique facilitates fabricating specimens with fine 
resolution and complicated structures, and it can be well 
combined with investment casting to replace a wax pattern, 
which then shortens traditional investment casting period. The 
dimensional accuracy of the castings based on SL investment 
patterns is up to CT4, and the surface roughness is less than 
6.3 μm. However, this is still an indirect forming method; the 
surface of an investment pattern needs to be dip-coated multiple 
times to obtain the ceramic shell after drying, dewaxing and 
roasting. The size shrinkage of ceramic shell is large and 
difficult to control, which tends to generate deformation or 
cracking. Besides, the SL equipment operation and maintenance 
cost are high, and the liquid resin has odor and toxicity.

5 Layered extrusion forming (LEF)
Layered extrusion forming, also known as direct ink writing 
(DIW) or robocasting (RC), was first filed as a patent by 
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Fig. 19: Performances of samples sintered at different temperatures in vacuum: (a) flexural properties; 
(b) bulk density and open porosity; (c) shrinkage [95]

Cesarano in 1997 [6]. The LEF technique extrudes viscous 
slurry through nozzles, and deposits it on the platform. 
Objects are built up by moving nozzles to directly fabricate 
the designed shape layer by layer until the green body is 
completed. Then, the green body is debonded and sintered to 
obtain the part without organics [97].

In recent years, progressive has been made in LEF research 
and application, including slurry preparation mechanism and 
expansion of application fields to include biology, ceramic, 
food, medical and electronics, etc [98-104]. LEF enables a cheaper 
and faster manufacturing process compared with other AM 
methods, and shows advantages such as suitability for various 
materials, and reduced size shrinkage [105-106]. Researchers have 

explored the feasibility of adopting the LEF method to prepare 
a ceramic shell or core that could be used in metal casting. 
Tang et al. [107-108] prepared a ceramic shell (core) for casting 
by LEF method, and systematically studied the effects of 
slurry composition and process parameters on the dimensional 
accuracy and surface quality. The influence priority on the 
accuracy of ceramic core based on alumina is: slurry solid 
content > extrusion head diameter > layer thickness > printing 
speed [109]. Further, to decrease alumina sintering temperature, 
nano-sized additives (SiO2, MgO) are introduced [110-111], so 
that the alumina ceramic can obtain high strength at a lower 
sintering temperature. Some of the layered extruded ceramic 
samples are shown in Fig. 20.
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Fig. 20: Some typical ceramic samples prepared by LEF method

To obtain complex (hollow, cantilever) ceramic components, 
double-extrusion and multiple-extrusion LEF methods were 
developed. Also, researchers have developed a variety of 
supporting materials for the forming of complex components, 
including salt base, calcium oxide base, graphite base, starch base, 
plastic base, etc., and prepared components with different levels of 
complexity, such as Mg scaffolds with well-controlled and ordered 
porosity, turbine blower ceramic shell, etc [112-118]. However, due 
to the intrinsic behaviors of the LEF process, deposited slurry 
filaments accumulate layer by layer, and the corresponding 
sample’s surface inevitably exhibits “laminated striation” 
morphology (Fig. 21), resulting in a low surface accuracy. Great 
application potential in rapid casting would be promoted if the 
ceramic shell (core) surface accuracy could be greatly improved.

6 Summary and future perspectives
AM technology combined with a traditional casting process 
can greatly shorten the manufacturing cycle, improve the 
casting flexibility, and improve the production environment, 
which shows a broad application prospect in future casting 
production. Besides, each AM technology has its own scope of 
application and characteristics in metal casting: 

(1) Three-dimensional printing (3DP) technology is 
suitable for sand casting and ceramic shell casting, which 
adopts refractory materials including fine sand (quartz sand, 
zircon sand, etc.), ceramic powder (alumina, zirconia, etc.), 
and binder materials including organic resin binders and 
inorganic binders. 3DP technology shows the advantage of fast 
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formation, however, surface finishing post-treatment is required for 
fine precision casting.

(2) Selective laser sintering (SLS) is suitable for shell casting 
and investment casting, which adopts coated sands, wax-based 
materials and polymers to prepare a coated sand shell (core) and 
investment patterns. SLS technology has drawbacks, including 
high cost of material and device maintenance, and low strength 
of green parts. Besides, post heating curing is required for SLS 
prepared coated sand shell (core) to conduct metal casting. 
Investment patterns prepared by SLS need to be treated with 
dip-coating to improve strength and surface quality, after which 
procedures including coating, crusting, investment pattern removal 
and sintering are conducted to to generate a ceramic shell suitable 
for metal casting. 

(3) Stereolithography (SL) can prepare an investment pattern and 
ceramic shell (core), adopting materials including photosensitive 
resin, and ceramic powder mixed with photosensitive resin. 
However, the cost of photosensitive resin and apparatus is 
relatively high. The investment patterns prepared by SL technique 
possess good surface quality and dimensional accuracy, but this 
method is still an indirect forming method for investment casting. 
Besides, ceramic shell (core) prepared by SL technique shows 
great size-shrinkage and poor dimensional stability after high 
temperature sintering due to high resin content, which brings 
cracks, deformation, and difficulty in controlling the accuracy of 
the ceramic shell (core).

(4) Layered extrusion forming (LEF) can prepare ceramic shells 
(cores) using slurries containing ceramic powders and liquid binder 
as starting materials. The method shows advantages of reduced cost 
of materials and apparatus, environmental-friendliness, and low 
dimensional shrinkage after sintering because of high solid content. 
At present, the surface roughness of a ceramic shell (core) prepared 
by LEF method requires further improvement, and some endeavors 
are required to satisfy requirements of investment casting surface 
accuracy.

Looking into the future, research on AM technology in 
the field of casting should give full play to the respective 
advantages of AM and casting processes, including process 
method, equipment accuracy, material types, etc. The key 
is to improve the precision of the shell (core) and reduce 
the preparation cost to realize intelligent, green, and high-
quality development. The following lists some of the 
needed improvements:

(1) Mechanism that affects the molding accuracy, surface 
accuracy and strength performance of the casting mold (core) 
prepared by AM methods should be systematically studied. 
The formability of various materials and the defects formation 
mechanism of the mold (core) should be deeply studied to 
propose solutions to enhance accuracy and strength.

(2) Further improvement of sand shell (core) accuracy, 
and development of high-strength inorganic binders to meet 
the requirements of green casting is required for the 3DP 
method. Besides, efforts to improve core technology such as 
3DP nozzles should be made.

(3) Issues of poor precision, deformation and cracking 
should be solved in direct preparation of the ceramic shell 
(core) through AM methods to realize the high efficiency 
and low-cost preparation. As the dimensional accuracy and 
surface quality of the prepared ceramic shell (core) can 
meet the requirements of investment casting, the traditional 
investment casting process will be completely reformed, 
and the production cycle of precision casting will be 
greatly shortened, which has great theoretical and practical 
significance.
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