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Casting is a manufacturing process in which the 
liquid phase could transform to the solid phase. The 

solid fraction (fs) is usually considered as a smoothly 
changing parameter from liquid to solid in macro scale. 
A solidifying casting can be divided into three different 
zones during solidification according to the solid fractions 
inside each zone, i.e. the liquid zone (fs=0), the solid zone 
(fs=1) and the mushy zone (0<fs<1). The size of the mushy 
zone is several to tens of centimeters depending on the 
temperature gradient and the alloy compositions. This is 
schematically depicted in Fig. 1.

During solidification, the dendritic mushy zone can 
be considered as a permeable medium for liquid flow. 
The permeability is defined as a quantitative parameter 
to show how difficult it is for the liquid to pass through 
the mushy zone. Several research works [1-4] have 
demonstrated the influence of mushy zone permeability 
on solute segregation, porosity, and hot tearing 
formations. Additionally, permeability is a key parameter 
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Fig. 1: Schematic diagram of mushy zone 
during solidification

constituting the Darcy term in a volume-averaged 
solidification model [5–8]. It describes the hydrodynamic 
drag in the momentum balance equation [9], which can 
be written as:

(1)

where ρ̃ is the liquid density, ṽ is the liquid-flow velocity 
vector, p ̃ is the pressure. The wave-like notation over 
the variables represents the corresponding volume-
averaged values. μE is the equivalent viscosity of 
the mixture. The value of permeability K must be 
predetermined to perform macro-scale simulations using 

+   ·(ρ̃ ṽ · ṽ) =    ·(μE   ṽ ) -   p̃ +
∂t K

∂(ρ̃ ṽ μEṽΔ Δ ΔΔ)
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continuum solidification models. It is worth noting here that 
the permeability is a local physical parameter, its value greatly 
depends on the solid fraction at the corresponding location.

Since the permeability of the mushy zone is so important for 
the solidification process, a lot of researchers set up experiments 
to measure its value during the solidification process. It was 
firstly measured with forcing liquid lead throughout the 
solidifying Al-4.5wt%Cu alloy [10]. Additionally, investigations 
have previously been performed to obtain permeability values 
for different alloys, such as Al-Cu [11–17], Al-Si [18-21], and Pb-Sn [22-

23]. However, it is difficult to measure liquid flow in the mushy 
zone, which had been discussed by Nielsen [24].

A number of physical models have previously been developed to 
investigate the mush-zone permeability. The first model describes 
the real dendrite morphology by a simplified geometric figure, such 
as spherical shape [18, 24, 25], cylinder [20] or cross mark [26-27]. In the 
second method, the real dendrite morphology was re-constructed by 
computed tomography [12, 28] or synchrotron X-ray tomography [29-30]. In 
the third method, a simulated dendritic solidification microstructure 
was adopted to re-construct the dendrite skeletons. The 
simulation can be executed by a phase field model [31-32] or a 
cellular automation model [20, 33].

Among the above-described physical models, the phase 
field model employs a continuously varying parameter Ф to 
characterize the solid-liquid phase interface. Accordingly, the 
complex interface pattern can be explicitly expressed using 
this powerful tool [34-38]. Besides microstructure evolutions, 
liquid flows can also be considered in the phase field model by 
coupling the Navier-Stokes and continuity equations into phase 
field equations [12]. Given that it is time consuming to perform three 
dimensional (3-D) phase field simulations, several acceleration 
techniques, such as parallel computation [39], graphical processing 
unit (GPU) [40], Fourier-spectral algorithms [34], and adaptive grid 
algorithms [41], have been employed. Nonetheless, the computational 
cost is still high when flow equations are fully coupled into 3D phase 
field models. Ludwig [31] and Böttger [32] performed computational 
fluid dynamics (CFD) calculations based on the dendrite morphology 
predicted using 3D phase field simulations. However, they 
considered only a single columnar dendrite.

In this work, the liquid permeability through the dendritic 
mushy zone with multiple equiaxed grains was studied. The 
CFD simulations were performed based on the predicted 
dendrite morphology generated by 3D phase field models. The 
proposed technique can be considered effective with regard to 
high geometric accuracy and computing efficiency. Permeability 
data obtained using the proposed technique could be used as 
input to macro-scale continuum solidification models. This will 
also be an important bridging method between different length 
scales when doing the multi-scale modeling, such as Integrated 
Computational Materials Engineering (ICME).

1 Mathematical model
1.1 3D dendrite simulation by phase field model
Different phases and orientations of polycrystalline systems 

should be accurately described during the solidification process, 
and this requires development of a multi phase field model, the 
evolution of which can be mathematically expressed as: [42–45]

where Mαβ is the rate of interface migration; σαβ is the interfacial 
energy; σα and σβ are the phase field parameters; η is the 
interface width; and CH

ΔGαβ  is the chemical driving force, which 
can be expressed as follows:

where μ is the solute chemical potential. It can be expressed as 
follows [46-47]:

                            μ = (∂fα)/(∂cα) = (∂fβ)/(∂cβ)                          (4)

The local composition can be expressed as

                                                                                                (5)

where N is the total number of phases in the system.
It was reported that the inter-dendritic flow velocity driven by 

natural convection has the order of 10-6-10-7 m·s-1. Convection 
has little influence on dendritic growth when coupling with such 
slow fluid flows. Consequently, in this work, dendritic evolution 
was considered to occur under non-convective operating 
conditions. The governing equation for composition evolution 
can be expressed as

                                                                                                (6)

where Dα is the diffusion coefficient for phase α. 
Simulated dendrite morphologies of the Al-4.5wt.%Cu alloy 

when fs = 0.6 are depicted in Fig. 2 (a). The simulation domain 
comprised 300×300×300 grid points. The size of each element 
could be expressed as ∆x = 2 µm, the interface width η=3.5 ∆x. 
Corresponding simulation parameter values are listed in Table 1. 
Periodic boundary conditions were applied to the simulation domain.

1.2 Geometry re-construction and mesh 
generation for inter-dendrite liquid

To study the permeability of dendritic mushy zone via CFD 
simulations, CAD geometry files should first be generated 
based on the predicted dendrite morphology. This can be 
accomplished by exporting phase field results to a series of 
2D image slices. For example, Fig. 2 (b) denotes the cross-
sectional image of the phase field parameter for the case where 
in y = 300 µm. Since there exist 300×300×300 grid points 
within the computational domain, 300 such slices can be 
obtained, and the area of each slice is 600×600 µm2. Providing 
these images as input to the commercial software AVZIO, the 
3D geometry file and corresponding mesh for finite element 
analysis can be obtained. This process of inter-dendrite-
liquid reconstruction is depicted in Fig. 3. In order to show 
the morphology of dendrite and inter-dendrite liquid more 

=ΣβMαβ{σαβ[φα     
2φβ-φβ      

2φα+      (φα-φβ) ]+ 

                   ΔGαβ    }
∂t

∂φα Δ Δ π2

η2

π
η φαφβ

CH

(2)

(3)ΔGαβ   = -fα(cα) + fβ(cβ) + μ(cα-cβ)
CH

=   Σα=1φαDα     cα∂t
∂c Δ ΔN

N c=∑α=1φαcα 
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Fig. 2: Simulated dendritic solid skeleton by phase field model: (a) 3D morphology of dendrites; (b) One cross-
sectional slice

Table 1: Simulation parameters used in this work

Parameters Values

Coefficient of diffusion in liquid 2×10-8 m2·s-1

Coefficient of diffusion in solid 1×10-12 m2·s-1

Interfacial energy 0.1 J·m-2

Alloy concentration Al-4.5 wt.% Cu

Interface-migration rate 4×10-10 m4·J-1·s-1

Grid size 2×10-6 m

clearly, the complete dendrite morphology was reconstructed 
at different solid fractions, which can be seen in Fig. 4. It can 
be seen that the dendrite morphology and their evolutions can 
be well described by phase field models.

It is worth noting here that CFD simulations, in this case, 
can be performed using coarser meshes. From Fig. 2, it can 
be seen that there are 2.7×107 meshes for the phase field 
simulations. But for the CFD simulations, only 4×106 meshes 
are needed based on the same dendrite morphology, which 
can greatly reduce the computation time for solving the flow 
equations.

(a) (b)

(a) (b) (c)

Fig. 3: Geometry reconstruction process for CFD simulations: (a) slices serial; (b) CAD geometry file; (c) meshes

Fig. 4: Morphology of dendritic solid and their evolution in mush zone: (a) fs = 0.1; (b) fs = 0.3; (c) fs= 0.6

(a) (b) (c)
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Fig. 5: Calculated pressure distribution within mush zone 
(fs = 0.6)

Fig. 6: Predicted values of mush-zone permeability 
as functions of fs

1.3 CFD simulation of inter-dendrite flows
The Navier–Stokes and continuity equations over a smaller 
length scale, as described below, can be adopted to calculate 
permeability values concerning the dendritic mushy zone at 
different solid-fraction values.

ρ(       +v·   v)+   p-μ   2v=0
∂t
∂v Δ ΔΔ

·v=0Δ

(7)

(8)

where ρ is the density, v is the velocity vector, p is the pressure 
and μ is the liquid viscosity. It should be noted here that the 
parameters in Eq. (7) and Eq. (8) are all for the pure liquid 
phase.

In this work, values of the liquid density and viscosity were 
set as 1.26×103 kg·m-3 and 1.2×10-3 kg·m-1·s-1, respectively. The 
flow equations were solved using the commercial CFD software 
ANSYS Fluent. Boundary velocities during these simulations 
were set to a very small value (on the order of 10-7 m·s-1). This 
is because the velocity of the inter-dendritic liquid driven by 
solidification shrinkage was rather small. No-slip conditions 
were applied at the inner walls of the computational domain 
to represent the solid-liquid interface. A laminar flow can be 
assumed in the simulation since the velocity is very small.

The pressure distribution predicted via CFD simulations 
performed with fs = 0.6 is depicted in Fig. 5. Other simulations 
with different solid fractions were also performed in accordance 
with the methodology developed in this work. 

Figure 6 shows the predicted permeability as a function of fs. 
The published experimental permeability data were also listed 
in Fig.6. It can be seen that the experimental results scattered 
too much at a fixed solid fraction. The predicted K-fs curve was 
among those experimental data. As observed, the predicted 
value of permeability changes from 10-9.8 to 10-12.5 m2 when 
fs increases from 0.3 to 0.9. Additionally, differences can be 
observed between predicted values and experimental results 
owing to the following probable factors [15, 24]: (i) difference 
between wetting properties of the solid and flux metal (eutectic 
alloy, liquid lead, etc.); (ii) oxidation layer between the testing 
sample and flux metal. The authors intend to investigate these 
factors in greater detail in future studies.

K=μvL/Δp                                         (9) 

In this work, predicted values of mush-zone permeability 
were also compared against those obtained using the 
Carman-Kozeny model, which is often used to describe the 
permeability of porous media [12,15]. The associated Carman–
Kozeny equation can be expressed as:

where K is the permeability; Sv is the specific surface area of 
solid-liquid interface; and kc is the Carman-Kozeny coefficient. 
During actual solidification processes, the value of Sv is usually 
obtained by quenching samples from the semi-solid state and 
subsequently performing quantitative metallographic analysis. 
However, using the model proposed in this work, values of 
parameters fs, Sv, and K can all be obtained simultaneously. 
Predicted values of Sv as functions of fs are depicted in Fig. 7. 
The published experimental data of Sv are also listed in Fig. 7.

For simplicity, the value of the Carman-Kozeny coefficient 
kc in Eq. (10) was considered as the constant, which is a rather 
rough assumption. The said value has been assumed equal to 
5 during the solidification process by several researchers [19, 

48], albeit some studies have also suggested that the value of 
kc cannot be considered as the constant during the entire 
solidification process [9, 12, 26, 49].

Using predicted values of fs, Sv, and K obtained in this work, 
the value of kc and its relationship with  fs can be deduced, as 
depicted in Fig. 8. As can be observed, the value of kc greatly 

KSV=
kc fs

1 (1-fs)
2

2

2 (10)

2  Predicted permeability results of 
dendritic mushy zone

Based on results obtained from CFD simulations performed 
using different values of solid fractions, as described in 
Section 1.3, the permeability of the dendritic mushy zone can 
be expressed as

where K is the permeability; μ is the fluid viscosity; L is 
sample length; v is the fluid velocity at the inlet boundary; and 
Δp is the pressure drop between the inlet and outlet.
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Fig. 7: Predicted values of Sv as functions of fs

Fig. 8:  Predicted values of Carman–Kozeny coefficient 
during solidification

changes during the entire solidification process. It approximately 
equaled to 4.5 when  f s< 0.7. This was followed by an 
exponential increase in the final solidification stage, where its 
value equaled to 5 or even more, corresponding to  fs>0.8. This 
may be attributed to the increased formation of closed-liquid 
regions during the final solidification stage. These areas could not 
play any roles for the liquid to go through the whole mushy zone.

3 Conclusions
In order to study the liquid permeability of the mushy zone, 
an integrated model was developed in this work by combining 
the phase field model and CFD model. Using the proposed 
technique, the equiaxed dendritic mush-zone permeability of Al-
4.5wt.%Cu alloy has been investigated in detail. As observed, 
values of the permeability lie in the range of 10-9.8-10-12.5 m2 as 
corresponding values of the solid fraction change from 0.3 and 
0.9. Moreover, the value of the Carman-Kozeny coefficient 
kc was confirmed to equal approximately 4.5 at low solid 
fraction values (fs<0.7). With increase in solid-fraction values 
(fs>0.8), however, the value of kc was observed to increase to 
5.5 or even higher. These predicted permeability data can be 
used in the solidification model at a greater length scale for 
the macro segregation and porosity simulations.The integrated 
model developed in this work represents an important bridging 
method between different length scales when performing 
multiscale modeling in such applications as Integrated 
Computational Materials Engineering (ICME).
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