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Introduction

High and low-density polyethylene (HDPE and LDPE), 
polypropylene (PP), polyvinyl chloride (PVC), and poly-
styrene (PS) are among the widely manufactured thermo-
plastics (Sánchez 2020; Zhang et al. 2021). These versatile 
thermoplastics are used in a wide range of daily items, 
playing a significant role in the notable rise of worldwide 
plastic production, which presently amounts to 368 million 
metric tons annually (Sooriyakumar et al. 2022). However, 
the surge in plastic production and extensive utilisation has 
led to a parallel escalation in releasing plastic waste into 
the environment (Geyer et al. 2017). Microplastics (plas-
tic less than 5 mm) pollution is an emerging environmental 
concern (Thompson et al. 2004). Microplastics are classi-
fied as either primary or secondary. Primary microplastics 
originate from sources with an initial size of less than 5 mm, 
while secondary microplastics result from the breakdown 
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Abstract
Microplastics can promote microbial colonisation and biofilm growth, thus being referred to as “plastispheres”. The global 
plastic pollution surge is likely to adversely impact ecology and human health by providing a novel habitat for microbial 
communities. Even though microplastics in marine environments have been the subject of in-depth research, plastispheres 
have recently received attention. Thus, the current study investigates the prevalence and distribution of plastispheres along 
the Maharashtra coast of India, considering their plausible implications for ecology and human health. Microplastics were 
isolated from sediment and water samples obtained from 10 sampling sites. Subsequently, these microplastic particles were 
subjected to ATR-FTIR and scanning electron microscopy (SEM) analyses to ascertain their chemical composition, surface 
topography, and presence of attached biofilms. The predominant polymers composing the microplastic particles were poly-
propylene (42.8%), polyethylene (28.6%), polystyrene (14.3%), and polyvinyl chloride (14.3%). SEM analysis revealed 
the presence of topographical structures and degradation effects, facilitating microbial attachment on the microplastic sur-
face. About 50% of the microplastic particles tested positive for biofilms, with over 66% of those collected from Girgaon 
and Malvan beaches exhibiting biofilm presence. These positively screened particles also displayed comparatively rough 
surface structures, likely enhancing microbial colonisation. Microplastic ageing and polymer type could positively affect 
microbial colonisation. Diatoms and fungal hyphae exhibit varied interactions with microplastic polymers. Notably, micro-
plastics host various reproductive stages of fungi, as evidenced by filamentous networks, mycelia, and conidiophores.
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of larger plastic fragments (Dong et al. 2021). These tiny 
plastic particles have become ubiquitous in terrestrial, fresh-
water, estuarine, marine, polar, and remote regions (Dong et 
al. 2021). Given their small size, various aquatic organisms, 
mainly marine fauna, readily ingest microplastics, leading 
to their potential accumulation and dispersion throughout 
the food chain (Roman et al. 2021). Numerous studies have 
extensively documented the adverse impacts of microplas-
tics on a diverse array of organisms, spanning from zoo-
plankton to molluscs, fish, seabirds, turtles, and mammals 
(Zhang et al. 2021). Moreover, the hydrophobic nature and 
the high surface area-to-volume ratio of microplastics facil-
itate the accumulation of various contaminants, including 
heavy metals, polycyclic aromatic hydrocarbons, polychlo-
rinated biphenyls, perfluorinated alkyl substances, polybro-
minated diphenyl ethers, and pharmaceuticals and personal 
care products (PPCPs) (Bakir et al. 2014a; Caruso 2019; 
Atugoda et al. 2021; Khalid et al. 2021). The potential of 
microplastics to act as carriers for a range of contaminants 
could pose additional threats to ecosystems, wildlife, and 
potentially human health (Bakir et al. 2014b; Atugoda et al. 
2021; Khalid et al. 2021).

Besides serving as vectors for various pollutants, the 
interaction between microplastics and microorganisms has 
recently become a topic of great interest (Dong et al. 2021; 
Stenger et al. 2021; Sooriyakumar et al. 2022). Microorgan-
isms can attach to the surface of microplastics and form bio-
films within a relatively short time (Harrison et al. 2014; 
Khatoon et al. 2018). For instance, studies have shown 
that bacterial communities quickly colonised LDPE when 
exposed to coastal sediments, demonstrating the speed of 
this process within just a week (Harrison et al. 2014). Vari-
ous factors, including surface texture, hydrophobicity, and 
the presence of chemical additives, have been identified 
as influencing the formation of biofilms on the surface of 
microplastics (Tu et al. 2020; Wang et al. 2021a, b; Soori-
yakumar et al. 2022). According to Sooriyakumar et al. 
(2022), the surface characteristics of microplastics inher-
ently promote microbial colonisation. Microplastics featur-
ing irregular or rough surfaces serve as attachment points 
for microorganisms, creating microenvironments conducive 
to microbial colonisation and the development of biofilms. 
Similarly, the hydrophobic nature and smaller particle size 
of microplastics, which offer a larger surface area relative to 
their volume (Atugoda et al. 2021), provide additional sites 
for microbial attachment.

Biofilms encompass a variety of microorganisms exist-
ing in symbiotic collaboration (Sooriyakumar et al. 2022). 
Among the microorganisms affiliated with microplas-
tics, autotrophs like photosynthetic bacteria and algae can 
independently produce their own sustenance. Conversely, 
heterotrophs depend on the surplus food generated by 

autotrophs during their coexistence (Bolan et al. 2020). 
Consequently, microplastics offer a distinctive habitat for 
microorganisms and have been denoted as “plastispheres” 
(Zettler et al. 2013). Plastispheres signify a novel ecological 
niche that can have significant environmental implications. 
As the research on microplastics and their interactions with 
microorganisms grows, our understanding of the ecologi-
cal consequences and potential impacts on marine ecosys-
tems will become more comprehensive. Biofilm formation 
can modify the physical and chemical attributes of micro-
plastics, influencing their degradation and dispersion in the 
water column (sinking and buoyancy rate), their capacity 
to adsorb and transport various contaminants, and ulti-
mately the trophic transfer and environmental release of 
adsorbed chemicals (Rummel et al. 2017; Stabnikova et al. 
2021; Stenger et al. 2021; Vaseashta et al. 2021; Zhang et 
al. 2021). It has been established that a variety of microbial 
communities, such as toxic, pathogenic, invasive, or plastic-
degrading species, can be found in biofilms on microplastics 
(Zettler et al. 2013; McCormick et al. 2014; Oberbeckmann 
et al. 2014; Curren and Leong 2019; Li et al. 2019; Zhang et 
al. 2021). These potentially harmful microorganisms might 
be extensively disseminated in seawater, shielded by bio-
films, endangering human health (Metcalf et al. 2022a). A 
plethora of investigations have been carried out regarding 
microplastics in marine environments, addressing diverse 
topics (Ajith et al. 2020; Gola et al. 2021; Ahmed et al. 
2021; Perumal et al. 2022; Biswas and Pal 2023), includ-
ing their function as transporters for various contaminants 
(Bakir et al. 2014a; Caruso 2019; Atugoda et al. 2021; Kha-
lid et al. 2021; Kumkar et al. 2023). However, recent focus 
has shifted towards a more specific examination of biofilms 
associated with microplastics (Kumar et al. 2022a; Kaur et 
al. 2022). Furthermore, previous research has indicated that 
obtaining a more profound understanding of the processes 
involved in biofilm formation on microplastic surfaces 
necessitates more detailed insights into the plastisphere 
compared to naturally occurring substrate-associated aggre-
gates, such as microbial communities on cellulose, wood, 
and glass (Sooriyakumar et al. 2022).

The projected amount of plastic debris in the Earth’s 
oceans is expected to reach 5.25 trillion particles, with 
microplastics comprising 92%. Approximately 80% of 
these plastic particles are linked to terrestrial sources (Coyle 
et al. 2020; Cincinelli et al. 2021; Gola et al. 2021). Nota-
bly, the benthic region of the Indian Ocean is reported to 
have the highest prevalence of microplastic contamination, 
quantified at 4 billion fibres per square kilometre (Eriksen 
et al. 2014; Woodall et al. 2014). Thorough examinations 
of microplastic occurrence within sedimentary substrates 
have been extensively documented across various coastal 
regions of India, including Goa (Veerasingam et al. 2016), 
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Tamil Nadu (Karthik et al. 2018), Karnataka (Tiwari et al. 
2019), Kerala (Robin et al. 2020), Odisha (Patchaiyappan et 
al. 2021), Andhra Pradesh (Sambandam et al. 2022), West 
Bengal (Kumar et al. 2022b), the Andaman and Nicobar 
Islands (Goswami et al. 2020; Patchaiyappan et al. 2021), 
and Maharashtra (Kumkar et al. 2023; Tiwari et al. 2019). 
However, there is currently a research gap concerning bio-
films’ presence and prevalence on microplastics along the 
Maharashtra coast. Moreover, we speculate that significant 
differences in biofilm density on microplastics obtained 
from sediment and water samples along the Maharashtra 
coast are likely due to the region’s diverse demographic 
zones, human activities, and land use patterns. Additionally, 
the diversity in microplastic origins offers the potential to 
gain insights into the relationship between microbial diver-
sity residing on the surfaces of different microplastic poly-
mers and the geographical locations from which they are 
sourced. To address these gaps, our study pursues the fol-
lowing objectives: (1) Collection and examination of micro-
plastics obtained from coastal sediment and water along 
the Maharashtra coast to discern their surface morphology 
and disintegration patterns, (2) To identify the microbial 
communities associated with the microplastics, (3) Char-
acterisation of the microplastics and investigation into the 
interplay between the diversity of microbial life inhabiting 

on the surfaces of microplastic polymer types and the spe-
cific regions of their origin.

Materials and Methods

Study Locations

Maharashtra, ranked as the second most populous state 
and covering the third-largest geographical area in India, is 
bounded by the Arabian Sea on one side and the Western 
Ghats Mountain ranges on the other. The state encompasses 
five coastal districts: Thane, Raigad, Mumbai, Ratnagiri, 
and Sindhudurg. Plastic pollution from anthropogenic activ-
ities poses a significant challenge along the Maharashtra 
coast, with major contributors including densely populated 
regions, urban development, industrial zones, fishing ports, 
and coastal tourism (Kumkar et al. 2023). In our investiga-
tion, we deliberately chose ten distinct sample sites labelled 
S1 to S10, strategically positioned across the five coastal 
districts mentioned above, thus providing a representative 
overview of the entire Maharashtra coastline (Fig. 1a).

Fig. 1 (a) Geographical distribution of the Maharashtra coastline show-
ing collection sites (n = 10); pie chart within the map of Maharashtra 
state indicates overall biofilm-positive and negative sites; (b and c) 
Percent distribution of biofilm-positive sites in sediment and coastal 

water, respectively; (d) Site-specific distribution of biofilm-positive 
microplastics (“#” and “*” indicates biofilm found on microplastics 
isolated from coastal sediment and water samples, respectively)
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using the Thermo Scientific NicoletTM iS20, the spectrum 
data of the microplastic particles were compared to the 
OMNiC reference library.

Detection of Biofilms on Microplastics

We employed a high-resolution imaging method to compre-
hensively understand microplastic surface characteristics, 
biofilm formation, and changes induced by degradation. The 
goal was to explore microbial communities and uncover the 
importance of surface texture and topography in biofilm 
development. Scanning Electron Microscopy (SEM) was 
chosen for its effectiveness in revealing surface texture, top-
ographical features, and attached materials on microplastic 
surfaces, including microorganisms like bacteria, fungi, and 
algae (Kumkar et al. 2021; Verma et al. 2022). This tech-
nique plays a crucial role in unveiling the complexities of 
microplastic disintegration due to weathering and ageing 
and understanding its potential role in carrying other con-
taminant pollutants. In our study, six microplastic particles, 
including three from sediment and three from water samples 
at each designated station, underwent preparation for SEM 
analysis. This preparation involved sputter-coating the par-
ticles with a thin layer of gold and imaging using a Scanning 
Electron Microscope (Tescan Mira3, Tescan Orsay Holding, 
Brno, Czech Republic).

Data and Image Analysis

All values that are given as %, mean ± standard error 
(M ± SE), or otherwise specified. PAST freeware Version 
4.03 (Hammer et al. 2001) was used for the data analysis.

Results and Discussion

The present research contributes to our comprehension of 
the prevalence and distribution of biofilm formation on 
microplastics along the Maharashtra Coast, shedding light 
on the interactions between microplastics and microbes. 
These microbial communities, consisting of autotrophs, 
photosynthetic algae, fungi, and bacteria, form biofilms and 
exhibit rapid growth on the solid surfaces of microplastics 
(Bolan et al. 2020; Sooriyakumar et al. 2022). Upon scruti-
nising microplastic samples from the ten sampling sites, our 
investigation unveiled the presence of biofilms on micro-
plastic particles collected from half of these sites (50%) 
(Fig. 1a). Among the samples positive for biofilms, 30% 
were derived from sediment while 20% were obtained from 
coastal water samples (Fig. 1b and c). Microplastic particles 
from sampling sites S1, S3, S5, S7, and S10 were identi-
fied as biofilm-positive (Fig. 1d). Among the designated 

Sampling, Microplastic Isolation and 
Characterisation

In August 2021, we gathered beach sediment and surface 
water samples from ten locations along the Maharashtra 
coast, following the methodology outlined by Karthik et al. 
(2018) and Robin et al. (2020). A slight alteration was made 
to the procedure, considering our particular emphasis on 
investigating biofilms on microplastic particles. This modi-
fication was implemented to avoid the potential detachment 
of biofilms from microplastics during sample processing 
and extraction, which chemical interactions could influence. 
Stainless steel scoops were employed at each assigned sam-
pling location to collect the uppermost 5 cm of beach sedi-
ment. Sediment samples were acquired from three quadrats 
(30 cm x 30 cm) on each beach, spaced 100 m apart. The 
sediment was placed in stainless-steel containers and sieved 
through a 5-mm mesh to remove particles larger than 5 mm. 
Likewise, 100 L of water were gathered from a depth of 0 to 
25 cm below the surface for water samples, utilising a 5 L 
stainless-steel sampling container. The obtained water was 
subsequently strained through a stainless-steel sieve with a 
mesh size of 100 μm.

The sieves underwent thorough inspection, and micro-
plastic particles ranging from 3 to 5 mm in size were manu-
ally separated from the sediment and water samples using 
sterile forceps. These isolated particles were then individ-
ually placed into glass vials for subsequent analysis. The 
focus on choosing larger microplastic particles was inten-
tional in clearly separating them from the samples. This 
helps to minimise the chance of unintentionally including 
microplastics from outside sources. In an aseptic labora-
tory environment, microplastic particles from each sample 
location were pooled together. Six particles were randomly 
chosen from this combined microplastic pool for each sam-
pling location—three from water samples and three from 
sediment samples. To maintain an unbiased selection of 
microplastic particles, an anonymous individual, unaware 
of the sample sites or any sampling data, made the particle 
selections. The glass vials containing the microplastic par-
ticles were tightly sealed and covered with aluminium foil 
to prevent contamination from external sources. The task 
of impartially selecting microplastic particles was meticu-
lously carried out in a strictly aseptic environment.

The selected microplastic particles were thoroughly 
examined for their colour (red, green, blue, white, yel-
low, and black) and morphological characteristics using 
the Olympus SZ61 stereo zoom microscope. To identify 
the polymeric composition of the microplastics and deter-
mine their potential source, we employed Attenuated Total 
Reflectance Fourier-transform Infrared Spectroscopy (ATR-
FTIR) (Ballent et al. 2016). Following ATR-FTIR analysis 

1 3



Thalassas: An International Journal of Marine Sciences

(Kumkar et al. 2021, 2023; Verma et al. 2022). Considering 
that fish and fish-related products constitute a primary food 
source for the population residing in the coastal regions 
of Maharashtra, the presence of diverse pollutants along 
the Maharashtra Coast (Kumkar et al. 2023), the transport 
capacity of microplastics for these pollutants (Li et al. 2018; 
Kumkar et al. 2021, 2023), and the potential enhancement 
of microplastics uptake by marine organisms through bio-
films (Fabra et al. 2021), pose a substantial threat to aquatic 
biota and human health.

Among the five distinct morphological categories con-
sidered (Supplement 1a), only microplastic fragments and 
beads exhibited positive biofilm presence (Fig. 2a). In 
this context, microplastic fragments were notably preva-
lent, constituting 85.7% of instances with associated bio-
films, while beads accounted for 14.3%. Regarding colour, 
white microplastics showed the highest occurrence of bio-
film, making up 28.5% of the total instances, followed by 
other colour categories, each representing 14.3% (Fig. 2b). 
Notably, white-coloured microplastics have often been 
observed in the digestive systems of marine fish (Tanaka 
and Takada 2016; Pan et al. 2021). Previous research has 
investigated the impact of microplastic colour and biofilm 
growth on the ingestion and susceptibility of species to such 
particles (Peters and Bratton 2016; Ory et al. 2017; Naidoo 
et al. 2020; Kumkar et al. 2021). This study analysed the 
polymeric composition of 60 microplastic particles using 
ATR-FTIR. Spectral analysis (Supplement 1b) revealed 
the following polymers: polypropylene (PP), polyethylene 
(PE), polystyrene (PS), and polyvinyl chloride (PVC). The 
per cent distribution of biofilm-positive microplastic poly-
mers along the Maharashtra coast is as follows: PP (42.8%), 
PE (28.6%), PS (14.3%), and PVC (14.3%), respectively 
(Fig. 2c). Over 70% of the polymers identified in micro-
plastic particles consisted of PE and PP. This finding is rea-
sonable, considering that the study sites were either urban 
(Urban area) or suburban to rural (Tourism) areas, where 
disposable items like food wrappers, straws, water and bev-
erage bottles, wire insulation, plastic bags, and sachets for 
personal care products (shampoo, conditioners, and scrub) 
are commonly utilised. It is crucial to highlight that PP, 
PE, PS, and PVC have demonstrated a higher affinity for a 
range of environmental contaminants, including heavy met-
als and hydrophilic and/or hydrophobic chemicals (Amelia 
et al. 2021). Specifically, PE exhibits the highest affinity for 
heavy metals, while PS shows the highest affinity for hydro-
philic and hydrophobic chemicals (Amelia et al. 2021). In 
this context, the presence of biofilm on white microplastics 
in the study area, coupled with the prevalence of polymer 
types exhibiting a high affinity for pollutants, presents a 
dual threat to marine life, raising concerns.

sampling stations, the Girgaon (S3) and Malvan (S10) loca-
tions displayed the highest percentage (66.66%) of biofilm 
positive microplastic (Fig. 1d). In contrast, the Tarapur (S1), 
Diveagar (S5), and Guhagar (S7) stations had 33.33% of 
microplastic particles exhibiting biofilm (Fig. 1d). The for-
mation of biofilms and the degree of microbial colonisation 
can be significantly influenced by various factors, includ-
ing surface roughness, polymer composition, hydrophilic 
or hydrophobic characteristics, and other relevant attributes 
(Sooriyakumar et al. 2022). While microplastics themselves 
lack direct porosity, their surfaces can develop pits, fissures, 
and cavities through weathering, abrasion, and photo-oxi-
dation processes (Atugoda et al. 2021; Kumkar et al. 2021, 
2023). The presence of such morphological features, includ-
ing flakes, eroded surfaces, trenches, and cavities, not only 
facilitates the adsorption of pollutants like heavy metals 
(Turner and Holmes 2011; Li et al. 2018; Shruti et al. 2019; 
Atugoda et al. 2021; Khalid et al. 2021; Kumkar et al. 2021, 
2023) but also encourages the formation of biofilms (Tu et 
al. 2020; Wang et al. 2021a, b; Sooriyakumar et al. 2022). 
Using detailed SEM analysis, Tiwari et al. (2019) demon-
strated that microplastics collected from Girgaon exhibit 
rougher surfaces than those from other places. Our present 
data align with this past trend, revealing a noticeable pattern 
of increased biofilm colonisation on microplastic particles 
with rough surfaces. We observed more microplastic par-
ticles with positive biofilm presence in samples collected 
from Girgaon and Malvan than in other locations. This is 
likely associated with the rougher surfaces of the microplas-
tics obtained from these specific areas. This holds particular 
significance as both microplastics and the pollutants they 
absorb can accumulate in substantial quantities in the envi-
ronment, potentially exerting adverse effects on ecosystems 
and food chains. Verdú et al. (2023) showed that biofilm 
growth considerably affects the vector transport of per-
sonal care products such as triclosan-adhered polyethylene 
microplastics into Daphna magna. Furthermore, Guan et al. 
(2020) conclusively proved that biofilm formation increased 
microplastics’ function in the transport of trace metals, such 
as nickel (Ni), copper (Cu), zinc (Zn), and cadmium (Cd) in 
the aquatic environment. In a recent study by Kumkar et al. 
(2023), various emerging pollutants were identified in the 
coastal waters of Maharashtra. These pollutants included 
heavy metals such as vanadium (V), copper (Cu), arsenic 
(As), nickel (Ni), cobalt (Co), chromium (Cr), cadmium 
(Cd), and lead (Pb). Additionally, pharmaceuticals and per-
sonal care products such as metoprolol, tramadol, venlafax-
ine, triclosan, bisphenol A, and bisphenol S were detected, 
along with plasticisers like di-n-butyl phthalate (DBP) and 
bis(2-ethylhexyl) phthalate (B2EHP or DEHP). Moreover, 
earlier investigations have showed weathered microplas-
tic particles’ capability to carry these pollutants into fish 
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the microplastic particles from sediment samples. Similar 
findings were reported by Eich et al. (2015), where floating 
plastic exhibited an increased abundance of diatoms. Hence, 
it is evident that microplastics can act as selective artificial 
microhabitats, attracting distinct microbial communities.

Though fungal pathogens represent one of the most 
diverse microbial groups and exhibit a propensity to adhere 
to plastics, colonising and persisting on plastic pollutants in 
the environment and posing a potential pathogenic threat, 
their significance has only recently gained attention from the 
scientific community (Gkoutselis et al. 2021; Akinbobola et 
al. 2024). For instance, A recent investigation by Akinbob-
ola et al. (2024) revealed that biofilms linked with plastic 
could function as a unique reservoir facilitating the environ-
mental persistence of the multi-drug resistant fungal patho-
gen Candida auris for up to 30 days, whether in freshwater 
or marine water. Additionally, C. auris could transfer from 
plastic beads to beach sand while retaining its pathogenic 
properties. In the current investigation, the presence of a sub-
stantial layer of extracellular polymeric substances (EPS) 

Plastispheres are recognised for fostering the growth of 
biofilms, hosting diverse microbial communities (Ober-
beckmann et al. 2015; Frère et al. 2018; Debroy et al. 2022; 
Miao et al. 2021). It is crucial to emphasise the progression 
from biofilm formation to subsequent biodegradation pro-
cesses, leading to the deterioration of the polymer’s physical 
structure (Debroy et al. 2022). In our study, all plastispheres 
exhibited rough surfaces characterised by cracks, fissures, 
and trenches (Fig. 3a–d). This highlights the complex inter-
play among microplastics, biofilms, and polymer integrity, 
contributing to our understanding of their ecological impli-
cations. According to Eich et al. (2015), diatoms constitute 
a significant element of marine biofilms and play a crucial 
role in their formation and activity. SEM micrographs offer 
tangible evidence of the substantial colonisation of plastic 
surfaces by diatoms (Fig. 3a and b) and fungal colonisation 
(Fig. 3c and d) in the majority of the examined samples. 
Diatoms were prevalent on microplastic particles obtained 
from coastal waters of Maharashtra, while fungi (fungal 
hyphae or spores) were observed to have colonised 60% of 

Fig. 2 Categorisation of micro-
plastics isolated from coastal 
sediment and water sample across 
Maharashtra state according to 
(a) Morphotype; (b) Colour, and 
(c) Polymer type
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reasonable to assume the potential presence of opportunistic 
human pathogenic fungi in these environments. Therefore, 
we suggest that future studies should focus on isolating and 
characterising the microbial community associated with 
plastispheres, particularly multi-drug resistant pathogens 
capable of enduring transitions across diverse environmen-
tal matrices, thereby possessing the potential for widespread 
dissemination within the landscape (Junaid et al. 2022a, b; 
Metcalf et al. 2022b; Khare et al. 2024). This would assist in 
reducing the possible risk imposed by these biofilms-associ-
ated microorganisms on human health.

Earlier studies have indicated that the microbial coloni-
sation of microplastics is influenced by the type of polymer 
(Oberbeckmann et al. 2015; Frère et al. 2018). For example, 
marine bacteria exhibit a preference for polystyrene (PS) 
polymer, while algal microbes tend to favor polyvinyl chlo-
ride (PVC) surfaces (Eich et al. 2015; Miao et al. 2021), and 
diatoms are more prevalent on PS foam (Carson et al. 2013). 
In a previous investigation, Frère et al. (2018) found that 

forming a biofilm is apparent on the plastisphere, along with 
distinct filamentous fungal structures such as vegetative and 
reproductive hyphae (Fig. 3c and d). As noted by Priyadar-
shanee and Das (2023), EPS consists of proteins, nucleic 
acids, and carbohydrates that are recognised for promoting 
microbial growth and keeping them clustered in the biofilm. 
Abundant conidia, the asexual fungal spores, are observed 
surrounding the fungal hyphae (Fig. 3d). Additionally, there 
were compact mycelia (Fig. 3d) and fungal hyphae distrib-
uted across the surface or forming filamentous networks. 
The presence of conidiogenous hyphae (conidiophore) was 
also noteworthy, indicating efficient fungal growth and 
reproduction within the plastisphere (Fig. 3d). Our results 
support an earlier study conducted on soil samples obtained 
from disposal areas within the city confines of Siaya, West-
ern Kenya (Gkoutselis et al. 2021). These sites receive a 
significant influx of plastic waste and sewage water from 
both terrestrial and river sources. While the specific iden-
tification of the fungus was not possible in our study, it is 

Fig. 3 Surface characteristics and microbial colonisation of microplas-
tic particles observed using SEM: (a and b) Microplastic displaying 
a rough surface with evident cracks, crevices, and holes (white arrow-
heads), hosting diatom colonisation (red arrow); (c and d) Micro-

plastic featuring fungal colonisation, showcasing intricate mycelial 
networks comprising hyphal filaments (1), clusters of conidia (2), 
compact mycelia (3), and conidiophore structures (4)
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