Skip to main content
Log in

A Histone H2A Derived Antimicrobial Peptide from the Blue Swimmer Crab, Portunus pelagicus Linnaeus 1758: In silico Characterization and Phylogenetic Analysis

  • Published:
Thalassas: An International Journal of Marine Sciences Aims and scope Submit manuscript

Abstract

In the scenario of rising multidrug resistance and allied diseases, antimicrobial peptides can be a considerable alternative for conventional antibiotics due to their broad spectrum activity and ability to bypass common resistance mechanisms. Histone derived antimicrobial peptides are found to have antibacterial, antifungal as well as anticancer properties. Here we have investigated a histone derived peptide sequence from blue swimmer crab, Portunus pelagicus for its general and immunological properties. The Pp-H2A histone derived peptide is an 8.5 kDa peptide with helical conformation on a coiled backbone. Analysis of its physicochemical characteristics such as hydrophobicity, stability and cationicity revealed its suitability as a potential drug candidate possessing antimicrobial function. According to various prediction servers, antibacterial, antifungal, anti-biofilm and anticancer properties could be attributed to the molecule. The study shall serve to strengthen the theoretical framework before proceeding for a time consuming and costly antimicrobial analysis of the molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    CAS  Google Scholar 

  • Arockiaraj J, Gnanam AJ, Kumaresan V, Palanisamy R, Bhatt P, Thirumalai MK, Kasi M (2013) An unconventional antimicrobial protein histone from freshwater prawn Macrobrachium rosenbergii: analysis of immune properties. Fish Shellfish Immunol 35(5):1511–1522

    CAS  Google Scholar 

  • Athira PP, Anju MV, Anooja VV, Archana K, Neelima S, Rosamma P (2020) A histone H2A-derived antimicrobial peptide, Hipposin from mangrove whip ray, Himantura walga: Molecular and functional characterisation. 3 Biotech 10(11):1–11

  • Birkemo GA, Lüders T, Andersen Ø, Nes IF, Nissen-Meyer J (2003) Hipposin, a histone-derived antimicrobial peptide in Atlantic halibut (Hippoglossus hippoglossus L.). Biochimica et Biophysica Acta (BBA) - Proteins Proteomics 1646(1–2):207–215

  • Birkemo GA, Mantzilas D, Lüders T, Nes IF, Nissen-Meyer J (2004) Identification and structural analysis of the antimicrobial domain in hipposin, a 51-mer antimicrobial peptide isolated from Atlantic halibut. Biochimica et Biophysica Acta (BBA) - Proteins Proteomics 1699(1–2):221–227

  • Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294(5):1351–1362

    CAS  Google Scholar 

  • Boman HG (1995) Peptide antibiotics and their role in innate immunity. Ann Rev Immunol 13(1):61–92

    CAS  Google Scholar 

  • Boman HG, Faye I, Gudmundsson GH, Lee JY, Lidholm DA (1991) Cell-free immunity in Cecropia. EJB Rev 1991:189–197

    Google Scholar 

  • Brosig B, Langosch D (1998) The dimerization motif of the glycophorin A transmembrane segment in membranes: importance of glycine residues. Protein Sci 7(4):1052–1056

    CAS  Google Scholar 

  • Bulet P, Dimarcq JL, Hetru C, Lagueux M, Charlet M, Hegy G, Hoffmann JA (1993) A novel inducible antibacterial peptide of Drosophila carries an O-glycosylated substitution. J Biol Chem 268(20):14893–14897

    CAS  Google Scholar 

  • Bustillo ME, Fischer AL, LaBouyer MA, Klaips JA, Webb AC, Elmore DE (2014) Modular analysis of hipposin, a histone-derived antimicrobial peptide consisting of membrane translocating and membrane permeabilizing fragments. Biochimica et Biophysica Acta (BBA) - Biomembranes 1838(9):2228–2233

  • Chaithanya ER, Philip R, Sathyan N, Anil Kumar PR (2013) Molecular characterization and phylogenetic analysis of a histone-derived antimicrobial peptide teleostin from the marine teleost fishes, Tachysurus jella and Cynoglossus semifasciatus. Int Scholar Res Notices 2013

  • Chen B, Fan DQ, Zhu KX, Shan ZG, Chen FY, Hou L, Wang KJ (2015) Mechanism study on a new antimicrobial peptide Sphistin derived from the N-terminus of crab histone H2A identified in haemolymphs of Scylla paramamosain. Fish Shellfish Immunol 47(2):833–846

    CAS  Google Scholar 

  • Chen R, Kang R, Fan XG, Tang D (2014) Release and activity of histone in diseases. Cell Death Disease 5(8):e1370–e1370

    CAS  Google Scholar 

  • Cho JH, Park IY, Kim HS, Lee WT, Kim MS & Kim SC (2002) Cathepsin D produces antimicrobial peptide parasin I from histone H2A in the skin mucosa of fish. FASEB J 16(3): 429–431

  • Cho JH, Sung BH, Kim SC (2009) Buforins: histone H2A-derived antimicrobial peptides from toad stomach. Biochimica et Biophysica Acta (BBA) - Biomembranes 1788(8):1564–1569

  • Conchillo-Solé O, de Groot NS, Avilés FX, Vendrell J, Daura X, Ventura S (2007) AGGRESCAN: a server for the prediction and evaluation of hot spots of aggregation in polypeptides. BMC Bioinform 8(1):1–17

    Google Scholar 

  • Cserzö M, Wallin E, Simon I, von Heijne G, Elofsson A (1997) Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng 10(6):673–676

    Google Scholar 

  • Cutrona KJ, Kaufman BA, Figueroa DM, Elmore DE (2015) Role of arginine and lysine in the antimicrobial mechanism of histone-derived antimicrobial peptides. FEBS Lett 589(24):3915–3920

    CAS  Google Scholar 

  • Daly MM, Mirsky AE, Ris H (1951) The amino acid composition and some properties of histones. J General Physiol 34(4):439–450

    CAS  Google Scholar 

  • De Castro E, Sigrist CJ, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, Hulo N (2006) ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res 34(suppl_2):W362–W365

  • De Zoysa M, Nikapitiya C, Whang I, Lee JS, Lee J (2009) Abhisin: a potential antimicrobial peptide derived from histone H2A of disk abalone (Haliotis discus discus). Fish Shellfish Immunol 27(5):639–646

    Google Scholar 

  • Deng W, Wang C, Zhang Y, Xu Y, Zhang S, Liu Z, Xue Y (2016) GPS-PAIL: prediction of lysine acetyltransferase-specific modification sites from protein sequences. Sci Rep 6(1):1–10

    Google Scholar 

  • Duckert P, Brunak S, Blom N (2004) Prediction of proprotein convertase cleavage sites. Protein Eng Des Select 17(1):107–112

    CAS  Google Scholar 

  • Eilers M, Shekar SC, Shieh T, Smith SO, Fleming PJ (2000) Internal packing of helical membrane proteins. Proc Natl Acad Sci 97(11):5796–5801

    CAS  Google Scholar 

  • Fernandes JM, Kemp GD, Molle MG, Smith VJ (2002) Anti-microbial properties of histone H2A from skin secretions of rainbow trout, Oncorhynchus mykiss. Biochem J 368(2):611–620

    CAS  Google Scholar 

  • Fimland G, Eijsink VG, Nissen-Meyer J (2002) Mutational analysis of the role of tryptophan residues in an antimicrobial peptide. Biochemistry 41(30):9508–9515

    CAS  Google Scholar 

  • Frohm M, Gunne H, Bergman AC, Agerberth B, Bergman T, Boman A, Boman HG (1996) Biochemical and antibacterial analysis of human wound and blister fluid. Eur J Biochemi 237(1):86–92

    CAS  Google Scholar 

  • Fyodorov DV, Zhou BR, Skoultchi AI, Bai Y (2018) Emerging roles of linker histones in regulating chromatin structure and function. Nat Rev Mol Cell Biol 19(3):192–206

    CAS  Google Scholar 

  • Gabler F, Nam SZ, Till S, Mirdita M, Steinegger M, Söding J, Alva V (2020) Protein sequence analysis using the MPI bioinformatics toolkit. Curr Protocols Bioinform 72(1):e108

    CAS  Google Scholar 

  • Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31(13):3784–3788

    CAS  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. The Proteomics Protocols Handbook, pp 571–607

  • Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL (2008) The Vienna RNA websuite. Nucleic Acids Res 36(suppl_2):W70–W74

  • Hamby SE, Hirst JD (2008) Prediction of glycosylation sites using random forests. BMC Bioinform 9(1):1–13

    Google Scholar 

  • Hancock RE, Diamond G (2000) The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol 8(9):402–410

    CAS  Google Scholar 

  • Hildebrand A, Remmert M, Biegert A, Söding J (2009) Fast and accurate automatic structure prediction with HHpred. Proteins: Struct Func Bioinform 77(S9):128–132

  • Holak TA, Engstroem A, Kraulis PJ, Lindeberg G, Bennich H, Jones TA, Clore GM (1988) The solution conformation of the antibacterial peptide cecropin A: a nuclear magnetic resonance and dynamical simulated annealing study. Biochemistry 27(20):7620–7629

    CAS  Google Scholar 

  • Honig B, Nicholls A (1995) Classical electrostatics in biology and chemistry. Science 268(5214):1144–1149

    CAS  Google Scholar 

  • Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19(3):491–511

    CAS  Google Scholar 

  • Jodoin J, Hincke MT (2018) Histone H5 is a potent antimicrobial agent and a template for novel antimicrobial peptides. Sci Rep 8(1):1–15

    CAS  Google Scholar 

  • Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292(2):195–202

    CAS  Google Scholar 

  • Kossel A (1928) The protamines and histones. Longmans Green, London

  • Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9(4):299–306

    CAS  Google Scholar 

  • Lai Y, Gallo RL (2009) AMPed up immunity: How antimicrobial peptides have multiple roles in immune defense. Trends Immunol 30(3):131–141

    CAS  Google Scholar 

  • Lanford RE, Butel JS (1984) Construction and characterization of an SV40 mutant defective in nuclear transport of T antigen. Cell 37(3):801–813

    CAS  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291

    CAS  Google Scholar 

  • Lee HS, Park CB, Kim JM, Jang SA, Park IY, Kim MS, ... Kim SC (2008) Mechanism of anticancer activity of buforin IIb, a histone H2A-derived peptide. Cancer Lett 271(1):47–55

  • Li A, Xue Y, Jin C, Wang M, Yao X (2006) Prediction of Nε-acetylation on internal lysines implemented in Bayesian Discriminant Method. Biochem Biophys Res Commun 350(4):818–824

    CAS  Google Scholar 

  • Li C, Song L, Zhao J, Zhu L, Zou H, Zhang H, Cai Z (2007) Preliminary study on a potential antibacterial peptide derived from histone H2A in hemocytes of scallop Chlamys farreri. Fish Shellfish Immunol 22(6):663–672

    Google Scholar 

  • Li SC, Deber CM (1994) A measure of helical propensity for amino acids in membrane environments. Nat Struct Biol 1(6):368–373

    CAS  Google Scholar 

  • Lorenz R, Bernhart SH, Höner zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) Vienna RNA Package 2.0. Algo Mol Biol 6(1):1–14

  • Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389(6648):251–260

  • Mackintosh JA, Gooley AA, Karuso PH, Beattie AJ, Jardine DR, Veal DA (1998) A gloverin-like antibacterial protein is synthesized in Helicoverpa armigera following bacterial challenge. Dev Comp Immunol 22(4):387–399

    CAS  Google Scholar 

  • Mahlapuu Margit, Håkansson Joakim, Ringstad Lovisa, Björn Camilla (2016) Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol 6:194

    Google Scholar 

  • Manavalan B, Shin TH, Kim MO, Lee G (2018) AIPpred: sequence-based prediction of anti-inflammatory peptides using random forest. Front Pharmacol 9:276

    Google Scholar 

  • Marshall SH, Arenas G (2003) Antimicrobial peptides: a natural alternative to chemical antibiotics and a potential for applied biotechnology. Electron J Biotechnol 6(3):271–284

    Google Scholar 

  • Mól AR, Castro M, Fontes W (2016) NetWheels: Peptides helical wheel and net projections maker. Laboratório de Bioquímica e Química de Proteínas (LBQP), Brasília

  • Nag DK, Huang HV, Berg DE (1988) Bidirectional chain-termination nucleotide sequencing: transposon Tn5seq1 as a mobile source of primer sites. Gene 64(1):135–145

    CAS  Google Scholar 

  • Park CB, Kim MS, Kim SC (1996) A novel antimicrobial peptide from Bufo bufo gargarizans. Biochem Biophys Res Commun 218(1):408–413

    CAS  Google Scholar 

  • Park CB, Yi KS, Matsuzaki K, Kim MS, Kim SC (2000) Structure–activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc Natl Acad Sci 97(15):8245–8250

    CAS  Google Scholar 

  • Park IY, Park CB, Kim MS, Kim SC (1998) Parasin I, an antimicrobial peptide derived from histone H2A in the catfish, Parasilurus asotus. FEBS Lett 437(3):258–262

    CAS  Google Scholar 

  • Pasupuleti M, Schmidtchen A, Malmsten M (2012) Antimicrobial peptides: Key components of the innate immune system. Critical Rev Biotechnol 32(2):143–171

    CAS  Google Scholar 

  • Patat SA, Carnegie RB, Kingsbury C, Gross PS, Chapman R, Schey KL (2004) Antimicrobial activity of histones from hemocytes of the Pacific white shrimp. Eur J Biochem 271(23–24):4825–4833

    CAS  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    CAS  Google Scholar 

  • Qiu WR, Xiao X, Lin WZ, Chou KC (2015) iUbiq-Lys: prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a gray system model. J Biomol Struct Dyn 33(8):1731–1742

    CAS  Google Scholar 

  • Ren J, Gao X, Jin C, Zhu M, Wang X, Shaw A, Xue Y (2009) Systematic study of protein sumoylation: Development of a site‐specific predictor of SUMOsp 2.0. Proteomics 9(12):3409–3412

  • Robinette D, Wada S, Arroll T, Levy MG, Miller WL, Noga EJ (1998) Antimicrobial activity in the skin of the channel catfish Ictalurus punctatus: Characterization of broad-spectrum histone-like antimicrobial proteins. Cell Mol Life Sci CMLS 54(5):467–475

    CAS  Google Scholar 

  • Rose-Martel M, Kulshreshtha G, Berhane NA, Jodoin J, Hincke MT (2017) Histones from avian erythrocytes exhibit antibiofilm activity against methicillin-sensitive and methicillin-resistant Staphylococcus aureus. Sci Rep 7(1):1–11

    Google Scholar 

  • Sathyan N, Philip R, Chaithanya ER, Anil Kumar PR (2012a) Identification and molecular characterization of molluskin, a histone-H2A-derived antimicrobial peptide from molluscs. Int Scholar Res Notices 2012

  • Sathyan N, Philip R, Chaithanya ER, Anil Kumar PR, Sanjeevan VN, Singh IS (2013) Characterization of Histone H2A derived antimicrobial peptides, Harriottins, from Sicklefin Chimaera Neoharriotta pinnata (Schnakenbeck, 1931) and its evolutionary divergence with respect to CO1 and Histone H2A. Int Scholar Res Notices 2013

  • Sathyan N, Philip R, Chaithanya ER, Kumar PA, Antony SP (2012b) Identification of a histone derived, putative antimicrobial peptide Himanturin from round whip ray Himantura pastinacoides and its phylogenetic significance. Results Immunol 2:120–124

    Google Scholar 

  • Sharma A, Gupta P, Kumar R, Bhardwaj A (2016) dPABBs: a novel in silico approach for predicting and designing anti-biofilm peptides. Sci Rep 6(1):1–13

    Google Scholar 

  • Shazman S, Celniker G, Haber O, Glaser F, Mandel-Gutfreund Y (2007) Patch Finder Plus (PFplus): a web server for extracting and displaying positive electrostatic patches on protein surfaces. Nucleic Acids Res 35(suppl_2):W526–W530

  • Sippl MJ (1993) Recognition of errors in three‐dimensional structures of proteins. Proteins: Struct Func Bioinform 17(4):355–362

  • Smith VJ, Desbois AP, Dyrynda EA (2010) Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Marine Drugs 8(4):1213–1262

    CAS  Google Scholar 

  • Sol A, Skvirsky Y, Blotnick E, Bachrach G, Muhlrad A (2016) Actin and DNA protect histones from degradation by bacterial proteases but inhibit their antimicrobial activity. Front Microbiol 7:1248

    Google Scholar 

  • Sruthy KS, Nair A, Antony SP, Puthumana J, Singh IB, Philip R (2019) A histone H2A derived antimicrobial peptide, Fi-Histin from the Indian White shrimp, Fenneropenaeus indicus: Molecular and functional characterization. Fish Shellfish Immunol 92:667–679

    CAS  Google Scholar 

  • Tossi A, Sandri L, Giangaspero A (2000) Amphipathic, α-helical antimicrobial peptides. Peptide Sci 55(1):4–30

    CAS  Google Scholar 

  • Tyagi A, Kapoor P, Kumar R, Chaudhary K, Gautam A, Raghava GPS (2013) In silico models for designing and discovering novel anticancer peptides. Sci Rep 3(1):1–8

    Google Scholar 

  • Veltri D, Kamath U, Shehu A (2018) Deep learning improves antimicrobial peptide recognition. Bioinformatics 34(16):2740–2747

    CAS  Google Scholar 

  • Vogel H, Jähnig F (1986) The structure of melittin in membranes. Biophys J 50(4):573–582

    CAS  Google Scholar 

  • Wang G (2012) Post-translational modifications of natural antimicrobial peptides and strategies for peptide engineering. Curr Biotechnol 1(1):72–79

    CAS  Google Scholar 

  • Wang B, Gu HJ, Huang HQ, Wang HY, Xia ZH, Hu YH (2020) Characterization, expression, and antimicrobial activity of histones from Japanese flounder Paralichthys olivaceus. Fish Shellfish Immunol 96:235–244

    CAS  Google Scholar 

  • Webb B, Sali A (2016) Comparative protein structure modeling using MODELLER. Curr Protocols Bioinform 54(1):5–6

    Google Scholar 

  • Wiederstein M, Sippl MJ (2007) ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(suppl_2):W407–W410

  • Wu LP, Wang X, Li L, Zhao Y, Lu S, Yu Y & Zhu WG (2008) Histone deacetylase inhibitor depsipeptide activates silenced genes through decreasing both CpG and H3K9 methylation on the promoter. Mol Cell Biol 28(10):3219–3235

  • Yakovlev IA, Lysøe E, Heldal I, Steen H, Hagen SB, Clarke JL (2020) Transcriptome profiling and in silico detection of the antimicrobial peptides of red king crab Paralithodes camtschaticus. Sci Rep 10(1):1–10

    Google Scholar 

  • Zagorski MG, Norman DG, Barrow CJ, Iwashita T, Tachibana K, Patel DJ (1991) Solution structure of pardaxin P-2. Biochemistry 30(32):8009–8017

    CAS  Google Scholar 

  • Zhang W, Sato T, Smith SO (2006) NMR spectroscopy of basic/aromatic amino acid clusters in membrane proteins. Prog Nucl Magn Reson Spectrosc 48(4):183

    CAS  Google Scholar 

  • Zhao Q, Xie Y, Zheng Y, Jiang S, Liu W, Mu W, ... Ren J (2014) GPS-SUMO: a tool for the prediction of sumoylation sites and SUMO-interaction motifs. Nucleic Acids Res 42(W1):W325–W330

  • Zhou Y, Cui Q, Zhou Y (2019) NmSEER V2. 0: a prediction tool for 2′-O-methylation sites based on random forest and multi-encoding combination. BMC Bioinform 20(25):1–9

  • Zimmermann L, Stephens A, Nam SZ, Rau D, Kübler J, Lozajic M, Alva V (2018) A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol 430(15):2237–2243

    CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Cochin University of Science and Technology for providing necessary facilities to carry out this work. The first author gratefully acknowledges CSIR (Council of Scientifc & Industrial Research) for the award of a fellowship and the corresponding author to UGC, Government of India for the BSR Faculty Grant (F.18-1/2011(BSR) dt. 16 May 2019). The authors thank Ministry of Earth Sciences (MoES), Govt. of India for the financial assistance (MoES/10-MLR/01/2012) and scientific support for the work. Molecular graphics and analyses performed with UCSF Chimera, developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco, with support from NIH P41-GM103311

Funding

This work was supported by funding from Ministry of Earth Sciences (MoES), Government of India (MoES/10-MLR/01/2012). The first author received research support from the Council of Scientific and Industrial Research (CSIR) (09/239(0566)/2020-EMR-I) and the corresponding author from UGC, Government of India for the BSR Faculty Grant (F.18-1/2011(BSR) dt. 16 May 2019).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Anooja V V with the support of Athira P P, Dhanya Kesavan, Neelima S, Anju M V, Archana K, Muhammed Musthafa S. The work was carried out under the supervision of Dr. Rosamma Philip and Dr. C K Radhakrishnan. The manuscript was written by Anooja V V and corrected by Dr. Rosamma Philip.

Corresponding author

Correspondence to Rosamma Philip.

Ethics declarations

Ethical Approval

This article does not contain any study that requires ethical approval

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anooja, V.V., Athira, P.P., Dhanya, K. et al. A Histone H2A Derived Antimicrobial Peptide from the Blue Swimmer Crab, Portunus pelagicus Linnaeus 1758: In silico Characterization and Phylogenetic Analysis. Thalassas 40, 65–79 (2024). https://doi.org/10.1007/s41208-023-00607-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41208-023-00607-9

Keywords

Navigation